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Abstract. This paper presents a method for incrementally segmenting
images over time using both intensity and motion information. This is done
by formulating a model of physically signi�cant image resgions using local
constraints on intensity and motion and then �nding the optimal segmenta-
tion over time using an incremental stochastic minimization technique. The
result is a robust and dynamic segmentation of the scene over a sequence
of images. The approach has a number of bene�ts. First, discontinuities
are extracted and tracked simultaneously. Second, a segmentation is always
available and it improves over time. Finally, by combining motion and in-
tensity, the structural properties of discontinuities can be recovered; that is,
discontinuities can be classi�ed as surface markings or actual surface bound-
aries.

1 Introduction

Our goal is to e�ciently and dynamically build useful and perspicuous descriptions of
the visible world over a sequence of images. In the case of a moving observer or a dy-
namic environment this description must be computed from a constantly changing retinal
image. Recent work in Markov random �eld models [7], recovering discontinuities [2], seg-
mentation [6], motion estimation [1], motion segmentation [3, 5, 8, 10], and incremental
algorithms [1, 9] makes it possible to begin building such a structural description of the
scene over time by compensating for and exploiting motion information.

As an initial step towards the goal, this paper proposes a method for incrementally
segmenting images over time using both intensity and motion information. The result is
a robust and dynamic segmentation of the scene over a sequence of images. The approach
has a number of bene�ts. First, discontinuities are extracted and tracked simultaneously.
Second, a segmentation is always available and it improves over time. Finally, by com-
bining motion and intensity, the structural properties of discontinuities can be recovered;
that is, discontinuities can be classi�ed as surface markings or actual surface boundaries.

By jointly modeling intensity and motion we extract those regions which correspond
to perceptually and physically signi�cant properties of a scene. The approach we take
is to formulate a simple model of image regions using local constraints on intensity
and motion. These regions correspond to the location of possible surface patches in the
image plane. The formulation of the constraints accounts for surface patch boundaries as
discontinuities in intensity and motion. The segmentation problem is then modeled as a
Markov random �eld with line processes.
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Scene segmentation is performed dynamically over a sequence of images by exploiting
the technique of incremental stochastic minimization (ISM) [1] developed for motion
estimation. The result is a robust segmentation of the scene into physically meaningful
image regions, an estimate of the intensity and motion of each patch, and a classi�cation
of the structural properties of the patch discontinuities.

Previous approaches to scene segmentation have typically focused on either static im-
age segmentation or motion segmentation. Static approaches which attempt to recover
surface segmentations from the 2D properties of a single image are usually not su�cient
for a structural description of the scene. These techniques include the recovery of per-
ceptually signi�cant image properties; for example segmentation based on intensity [2, 4]
or texture [6], location of intensity discontinuities, and perceptual grouping of regions
or edges. Structural information about image features can be gained by analyzing their
behavior over time. Attempts to deal with image features in a dynamic environment have
focused on the tracking of features over time [11].

Motion segmentation, on the other hand, attempts to segment the scene into struc-
turally signi�cant regions using image motion. Early approaches focused on the seg-
mentation and analysis of the computed ow �eld. Other approaches have attempted
to incorporate discontinuities into the ow �eld computation [1, 10], thus computing
ow and segmenting simultaneously. There has been recent emphasis on segmenting and
tracking image regions using motion, but without computing the ow �eld [3, 5].

In attempt to improve motion segmentation a number of researchers have attempted
to combine intensity and motion information. Thompson [12] describes a region merging
technique which uses similarity constraints on brightness and motion for segmentation.
Heitz and Bouthemy [8] combine gradient based and edge based motion estimation and
realize improved motion estimates and the localization of motion discontinuities.

The following section formalizes the notion of a surface patch in the image plane in
terms of constraints on image motion and intensity. Section 3 describes the incremental
minimization scheme used to estimate patch regions. Section 4 presents experimental
results with real image sequences. Finally, before concluding, section 5 discusses issues
regarding the approach.

2 Joint Modeling of Discontinuous Intensity and Motion

To model our assumptions about the intensity structure and motion in the scene we adopt
a Markov random �eld (MRF) approach [7]. We formalize the prior model in terms of
constraints, de�ned as energy functions over local neighborhoods in a grid. For an image
of size n� n pixels we de�ne a grid of sites:

S = fs1; s2; : : : ; sn2 j 8w 0 � isw ; jsw � n� 1g;

where (is; js) denotes the pixel coordinates of site s.
For the �rst order constraints employed here we de�ne a neighborhood system G =

fGs; s 2 Sg in terms of the nearest neighbor relations (North, South, East, West) in the
grid. We de�ne a clique to be a set of sites, C � S, such that if s; t 2 C and s 6= t, then
t 2 Gs. Let C be a set of cliques.

We also de�ne a \dual" lattice, l(s; t), of connections between sites s and their neigh-
boring sites t 2 Gs. This line process [7] de�nes the boundaries of the image patches.
If l(s; t) = 1 then the sites s and t are said to belong to the same image patch. In the
case where l(s; t) = 0, the neighboring sites are disconnected and hence a discontinuity
exists.



Associated with each site s is a random vector X(t) = [u; i; l] which represents the
horizontal and vertical image motion u = (u; v), the intensity i, and the discontinuity
estimates l at time t. A discrete state space �s(t) de�nes the possible values that the
random vector can take on at time t.

To model surface patches we formulate three energy terms, EM, EI, and EL which
express our prior beliefs about the motion �eld, the intensity structure, and the organi-
zation of discontinuities respectively. The energy terms are combined into an objective
function which is to be minimized:

E(u;u�; i; i�; l; l�) = EM(u;u�; l) + EI(i; i
�; l) +EL(l; l

�): (1)

The terms u�, i�, and l� are predicted values given the history of the sequence, and are
used to express temporal continuity.

We convert the energy function, E, into a probability measure � by exploiting the
equivalence between Gibbs distributions [7, 10] and MRF's:

�(X(t)) = Z�1e�E(X(t))=T (t); Z =
X

X(t)2�(t)

e�E(X(t))=T (t); (2)

where Z is the normalizing constant, and where T (t) is a temperature constant at time
t. Minimizing the objective function is equivalent to �nding the maximum of �.

The constraints are summarized in �gure 1 and described briey below:

The Intensity Model: We adopt a weak membrane model of intensity [2]. The data
consistency term DI keeps the estimate close to the data while the term SI enforces
spatial smoothness. The current formulation di�ers from previous approaches in that we
add a temporal continuity TI term to express the expected change in the image over
time.

The Boundary Model: We want to constrain the use of discontinuities based on our
expectations of how they occur in images. Hence, we will penalize discontinuities which do
not conform to expectations. The boundary model is expressed as the sum of a temporal
coherence term and a penalty term de�ned as the sum of clique potentials VC over a set
of cliques C.

One component of the penalty term expresses our expectation about the local con�g-
uration of discontinuities about a site. Figure 2 shows the possible local con�gurations
up to rotation. We also express expectations about the local organization of boundaries;
for example we express notions like \good continuation" and \closure" which correspond
to assumptions about surface boundaries (�gure 3). The values for these clique potentials
were determined experimentally and are similar to those of previous approaches [4, 10].

The Motion Model: As with the intensity model, we express our prior assumptions
about the motion in terms of three constraints. The data consistency constraint DM
states that the image measurements corresponding to an environmental surface patch
change slowly over time. The spatial coherence constraint SM is derived from the ob-
servation that surfaces have spatial extent and hence neighboring points on a surface
will have similar motion. Finally, the temporal coherence constraint TM is based on the
observation that the velocity of an image patch changes gradually over time.



Intensity Model

EI(I; i; i
�; l; s) = !DIDI(I; i; s) + !TITI(i; i

�; s) + !SISI(i; l; s) (3)

DI(I; i; s) = (I(s)� i(s))2 (4)

TI(i; i
�; s) = (i(s)� i�(s))2 (5)

SI(i; l; s) =
X

n2Gs

l(s; n)(i(s)� i(n))2 (6)

Boundary Model

EL(l; l
�; s) = !TL

X

n2Gs

(l(s; n)� l�(s; n))2 + !PL

X

C2C

VC (l) (7)

Motion Model

EM(In; In+1;u;u
�; l; s) =

!DMDM(In; In+1;u; s) + !TMTM(u;u�; s) + !SMSM(u; l; s) (8)

DM(In; In+1;u; s) =
X

t2Gs

�D(In(it; jt)� In+1(it + u; jt + v)) (9)

SM(u; l; s) =
X

t2Gs

l(s; t)ku(s)� u(t)k (10)

TM(u;u�; s) = ku(s)� (u�(s) +�u�(s))k (11)

�u�t (s) = u
�
t (s)� u

�

t�1(s) (12)

Miscellaneous

GDs = ft j (it; jt) = (is +�i; js +�j); �c � �i;�j � cg (13)

Gs = ft j (it; jt) = (is + �i; js + �j); �1 � �i; �j � 1g (14)

�D(x) =
�1

1 + (x=�D)2
(15)

Fig. 1. Robust constraints on image motion.
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Fig. 2. Examples of local surface patch discontinuities; (sites: (�), discontinuities: (j;�)).
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Fig. 3. Examples of local organization of discontinuities based on continuity with neighboring
patches.



3 The Computational Problem

The objective function de�ned in the previous section will typically have many local
minima. Simulated annealing (in this case a Gibbs Sampler [7]) can be used to �nd the
minimumX(t) by sampling from the state space � according to the distribution � with
logarithmicly decreasing temperatures.

As mentioned earlier, each site contains a random vector X(t) = [u; i; l] which rep-
resents the motion, intensity, and discontinuity estimates at time t. The discontinuity
component of this state space is taken to be binary, so that l 2 f0; 1g.

The intensity component i can take on any intensity value in the range [0; 255]. For
e�ciency, we can restrict i to take on only integer values in that range. We make the
further approximation that the value of i at site s is taken from the union of intervals of
intensity values about i(s), the neighbors i(t) of s, and the current data value In(s). Small
intervals result in a smaller state space without any apparent degradation in performance.

The motion component u = (u; v) is de�ned over a continuous range of displacements
u and v. Continuous annealing techniques [1] allow accurate sub-pixel motion estimates
by making the state space for the ow component adapt to the local properties of the
function being minimized.

3.1 Incremental Minimization

Unfortunately, stochastic algorithms remain expensive, particularly without parallel hard-
ware, making them ill-suited to dynamic problems. Ideally a motion algorithm should
involve fast simple computations between a pair of frames, and exploit the fact that
tremendous amounts of data are available over time.

In the context of optical ow, Black and Anandan [1] describe an incremental stochas-
tic minimization (ISM) algorithm (�gure 4) that has the bene�ts of simulated annealing
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Fig. 4. Incremental Stochastic Minimization.

without many of the shortcomings. As opposed to minimizing the objective function for
a pair of frames, the ISM approach is designed to minimize an objective function which
is changing slowly over time. The assumption of a slowly changing objective function is
made possible by exploiting current motion estimates to compensate for the e�ects of
the motion on the objective function. With each new image, current estimates are propa-
gated by warping the grid of sites using the current optic ow estimate. The estimates are
then re�ned using traditional stochastic minimization techniques. Additionally, during
the warping process motion discontinuities are classi�ed as occluding or disoccluding.



4 Experimental Results

The system is implemented in *Lisp on a 8K node Connection Machine (CM-2). A number
of experiments have been performed using real image sequences. For these experiments,
the parameters of the model were determined empirically.The intensity model parameters
were: !DI = !TI = 1=402 and !SI = 1=202. For the boundary model, the weights were:
!TL = 0:5 and !PL = 1:0. Finally, for the motionmodel, we have: !DM = 0:5, !TM = 0:1,
and !SM = 1:5, with a 3 � 3 correlation window. An initial temperature of T (0) = 0:3
was chosen with a cooling rate of T (t+ 1) = T (t)� 0:0025 and �D was set to 5:0.

The Pepsi Sequence1 The �rst sequence consists of ten 64 � 64 square images; the
�rst image in the sequence is shown in �gure 5a. The Canny edge operator was applied
to the image and the edges are shown in �gure 5b. For comparison, �gure 5c shows an
intensity based segmentation using a piecewise constant intensity model with no motion
information. The �gure shows the estimate for a single static image after 25 iterations
of the annealing algorithm. As with the Canny edges, the results correspond to intensity
markings.

Figure 5d shows the results for the same image when a joint intensity and motion
model is used. The results are from a two image sequence after 25 iterations. Compare
the boundaries corresponding to the right and left edges of the can. In �gure 5c the
similarity of intensity between the can and the background results in smoothing across
the object boundary. When motion information is added in �gure 5d the object boundary
is detected (�gure 5e) and smoothing does not occur across it.

Figures 5f{5l show the results of incrementally processing the full ten image sequence.
Figure 5f shows the last image in the sequence. The horizontal and vertical motion is
shown in �gures 5g and 5h respectively. Dark areas indicate leftward or upward motion
and similarly, bright areas indicate motion to the right and down. Figure 5i shows the
intensity estimates of the patches and �gure 5j shows the discontinuities. Figure 5k shows
the detected motion boundaries, while �gure 5l shows the classi�cation of the boundaries
as occluding (bright areas) or disoccluding (dark areas). Figure 6 shows the evolution of
the features over the ten image sequence. The estimates start out noisy and are re�ned
over time. Only �ve iterations of the annealing algorithm were used between each pair
of frames. The processing time for each frame was approximately 30 seconds.

The Coke Sequence2 The second image sequence contains 38 images of size 128�128
pixels. Figures 7a and b show the �rst and last images in the sequence respectively.
Figure 7c shows the image features at the end of the image sequence. Unlike standard
segmentation, these features have been tracked over the length of the sequence. Figure
7d shows only features which are likely to correspond to surface boundaries. The pencils
and metal bracket are correctly interpreted as physically signi�cant while the sweater is
interpreted as purely surface marking. Notice that the Coke can boundary is incorrectly
interpreted as surface marking. This is a result of small interframe displacements; the
motion of the can boundary is not signi�cant enough to classify it as structural with
the current scheme. Figure 8 shows the evolution of the image features over time. The
segmentation improves as the features are tracked over the image sequence. Five iter-
ations of the annealing algorithm were used between frames with a processing time of
approximately one minute per frame.

1 This image sequence was provided by Joachim Heel.
2 This sequence was provided by Dr.Banavar Sridhar at the NASA Ames Research Center.
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Fig. 5. Feature Extraction: a) First image in the Pepsi can sequence. b) Edges in the image
extracted with the Canny edge operator. c) Intensity based segmentation without motion. d)
Segmentation using joint intensity and motion model. e) Structural features in the scene. f) Last
image in the sequence. g) Horizontal component of image motion. h)Vertical component of image
motion. i) Reconstructed intensity image. j) Final patch boundaries. k) Motion boundaries. l)
Occlusion and disocclusion boundaries.

Fig. 6. Incremental Feature Extraction. The images show the evolution (left to right, top
to bottom) of features over a ten image sequence.
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Fig. 7. The Coke Sequence. a, b) �rst and last images in the sequence, c) image features at
the end of the sequence, d) those features which are likely to have a physical interpretation.

Fig. 8. Incremental Feature Extraction. The sequence shows the evolution (left to right,
top to bottom) of features at every third image in the 38 image sequence.

5 Issues and Future Work

There are a number of issues to be addressed regarding the approach described. First, the
current implementation employs only simple �rst order models of intensity and motion.
To cope with textured surfaces more complicated image segmentation models will be
required.

A second issue which must be addressed is one shared by many minimization ap-
proaches; that is the parameter estimation problem. The construction of an objective
function with weights controlling the importance of the various terms is often based on
intuition or empirical studies. The problem becomes more pronounced as the complexity



of the model increases. Experiments with the current model indicate that it is relatively
insensitive to changes in the parameters.

6 Conclusion

We have presented an incremental approach to extracting stable perceptual features over
time. The approach formulates a model of surface patches in terms of constraints on
intensity and motion while accounting for discontinuities. An incremental minimization
scheme is used to segment the scene over a sequence of images.

The approach has advantages over traditional segmentation and motion estimation
techniques. In particular, it is incremental and dynamic. This allows segmentation and
motion estimation to be performed over time, while reducing the amount of computation
between frames and increasing robustness.

Additionally, the approach provides information about the structural properties of the
scene. While intensity based segmentation alone provides information about the spatial
structure of the image, motion provides information about object boundaries. Combining
the two types of information provides a richer description of the scene.
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