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Abstract—We develop an Autoregressive Moving Average ~ An ARMA model was suggested by [1] in the context
(ARMA) model for decoding hand motion from neural firing  of decoding a center-out reaching task. They extended the
data and provide a simple method for estimating the parameters method to model a non-linear relationship between firing

of the model. Results show that this method produces more t d hand fi ing S t Vector R -
accurate reconstructions of hand position than the previous rates an anad maotions using support vector kegression.

Kalman filter and linear regression methods. The ARMA model ~Here we apply the simpler ARMA model to a more complex
combines the best properties of both these methods, producing task involving arbitrary 2D hand motions. We show that a

reconstructed hand trajectories that are smooth and accura.  very simple algorithm suffices to estimate the parameters of
;h's simple fteCh”'lq‘.Je Is Co”r‘]p“.tat'ona”yl eff'kc'e”t making it the ARMA process, and that the resulting decoding method
ppropriate for real-time prosthetic control tasks. results in reconstructions that are highly correlated éotthe
|. INTRODUCTION hand trajectory. We explore the choice of parameters and pro

One of the primary problems in the development of pracvide a quantitative comparison between the ARMA process,
tical neural motor prostheses is the formulation of aceurafinear regression, and the Kalman filter. We found that the
methods for decoding neural signals. Here we focus on ttsémple ARMA process provides smooth reconstructions that
problem of reconstructing the trajectory of a primate handre more accurate than those of previous methods.
given the extracellularly recorded firing activity of a pepu
lation of neurons in the arm area of primary motor cortex. Il. METHODS
Various machine learning techniques, mathematical mpdelg Recording

and decoding algorithms have been applied to this problem i .
[1]-[7]. The simplest and most common of these is the linear Our experiments here use previously recorded and reported

regression method which represents hand position at a givefite [9] in which a Bionic Technologies LLC (BTL) 100-
time instant as a linear combination of population firinggat €lectrode silicon array [10] was implanted in the arm area

over some preceding time interval [2], [3], [6]. While simple®f the primary motor cortex of anacaca mulatta monkey.
and relatively accurate, the resulting reconstructiomgire 1€ Monkey was trained to move a two-joint planar manip-
post hoc smoothing to be practical in a neural prosthesis [gf!andum to control a feedback cursor on a computer screen.
Alternatively, Bayesian decoding methods have been usef}€ Position of the manipulandum and the neural activity
including the Kalman filter [4] and particle filter [5], [7]nl Were recqrded S|multa_neously, and the neural activity was
contrast to the linear regression method, Bayesian methogiémmed into 70-ms bins. The task the monkey performed

include an explicit temporal smoothness term that model¥@s & “pinball” task [4] in which he moved the cursor to hit
the prior probability of hand motion. The Kalman filter is@ target on the screen, and when he succeeded, a new target

particularly appropriate for prosthetic applicationsegivits appeared. Neural s!gnals were detected on 42 eIectroctdes,'an
accuracy and efficiency (for both training and decoding® 5|mple thresholqllng operation was used to detect action
[8]. Unlike the linear regression method which uses a |argg0tentlgls. The sp|kgs on each electrode were treated as one
history of firing data to reconstruct hand motion at evergPotentially) multi-unit channel of data. In [11] it was fiod
time instant, conditional independence assumptions in thgat multi-unit data provided decoding accuracy on a paln wit
standard Kalman filter restrict it to using only the currenfh® best single unit data obtained by human spike sorting.
firing rates of the neurons. While the hand trajectoriedN€ dataset was divided into separate training and tesgiisg s
decoded with the Kalman filter do not require post ho®f approximately 6.2 minutes and one minute respectively.
smoothing, they still lack the smoothness of natural hang Li R
motion [8]. - Lihear Regr
Here we develop a simple Autoregressive Moving Average The linear regression method is the most common method
(ARMA) process for the neural decoding task that combinessed for motor cortical decoding and assumes that the
the linear regression method with the smoothness term ofirrent hand state (position, velocity, and acceleratiar)
the Kalman filter. By using more data at each time instartie represented as a linear combination of the current firing
than the Kalman filter, accuracy is improved, and by addintates of a population of neurons. Least-squares regression
a spatial smoothing term to the linear regression methogderformed to determine the coefficients (the “filter”) foisth
smooth trajectories are obtained without post hoc smogthinlinear combination based on training data, and the filter is

ession



then used on testing data to decode the state at each tihistory of firing rates and the preceding hand states, given
instant [2], [6]. The linear relationship is described by by
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Xy = Axij + FZL,C

(2
) ) . where A € RP>*P™ (D is the dimensionality of the state
where X is a state matrix containing théx:,y;) hand vectorx) and F € RP*Nk and k and m are parameters

positions at time instants=1...7', Z is a matrix of fiing  getermining how many previous time steps (of hand state

rates of theN' = 42 multi-units over the same time period, ng neural firing respectively) to include in the calculatio

andF is the linear filter matrix relating hand positions andx§—1 € RPmx1 s a column vector containing the concate-

.. .. . —m

firing activity. In particular, nation of the states from times—m to ¢ — 1, andz!_, €
RNEX1 s a column vector containing the concatenation of

X =7ZF

rr yr the firing rates for all neurons from times— & to ¢t. We
X — Ir-1 Yr-1 call this an Autoregressive Moving Average (ARMA)(k)
’ process [12].
T n The parameters to be estimated in this model Arand
F. We alternate learning these (beginning withusing the
1 1 9 n same method as linear regression:
fT fT—k gT .
7 = AT-1 AP—k—1 AT-1 2P -1 F = (2")" (X, — AX,) 3)
: : : : ’ A = (XT)*(X, - FZ) @)
% h % 1 ! DxT—1 j i i 5
whereX, € R”* is a matrix of states from times 2
fri  fu (T being the total number of time step®),c RV**7T-1is a
fra  fya firing rate matrix where each column_ is of the_ fo_njlk as
F— ) . described above, ar; € RP™*T-1 is a matrix in which
: . each column is of the fornx}~} as described above.
fﬂ}kN fyka Initially, we set A to a matrix of zeros and learf (note
1 2

that this is simply the standard linear regression method).

wherez, represents the handposition at timet (analogous
for y), 2! represents the firing rate of neurémat time ¢,
fx, represents the'” filter coefficient forz (same fory),
and thef,’s represent constant offset terms. Note thés

To determine when convergence has occurred, we use the
mean squared error of the training data [4]. Convergence has
occurred when the difference between the previous iteratio
error and the current error is less than some paranmaeter

a constant representing a time window of neural firing rategur experiments, we used= 0.001.

to be considered. Also, the column of onesXnprovides

D. Kalman Filter

a constant bias term. This model can easily be expanded to

include velocity and acceleration.
We solve forF by minimizing the squared errgfX —
ZF |2 which gives the solution for the filter matrik as

F=(Z"2)"'2"X =72"X

where Z* is the pseudo-inverse d&. The hand position

x: = (x4, y¢) at a particular time instant can be reconstructed

as
x; =z ,F

wherez!_, € R'*N* is a vector representing /atime bin
history of neural firing preceding time instanfa row of the
Z matrix above).

C. Autoregressive Moving Average (ARMA) Model

The Kalman filter has been proposed for decoding motor
cortical data [4]. Like the above methods it assumes a
linear relationship between neural firing and hand kinecsati
(though formulated as a generative model) and like the
ARMA model assumes the hand motion evolves linearly, as
follows:

X =Ax;_1+WwW

®)
(6)

wherew ~ N(0,W) and q ~ N(0,Q). A recursive
Bayesian method is used to predict given z;. While the
reader is referred to [4] for details, it is worth noting that
the Kalman filter reconstructs hand kinematics as

Xt = Athl + Kt(Zt — H(Athl))

z; = Hx; +q

The linear filter models how hand position is related tavere K; is the Kalman gain matrix. Note that the first term

neural activity over some time interval, but it does not exis the same as in the ARMA model but is restricted to using
plicitly model anything about how hands move. The motioronly the previous time instant due to a first order Markov
of the hand is constrained by physics and the properties aésumption used to derive the filter. Note also that the gkcon
the body, and therefore evolves smoothly over time. Conseerm is a linear function of the difference between the firing
guently we add an additional term to the linear regressiomates and the predicted firing ratédd,Ax;_;. In contrast,
method to model this smoothness assumption; that is, ttiee ARMA model uses a linear function of the firing rates
current state is represented as a linear combination oftllemselves.
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ARMA Model 0 3.388 1.433 | 0.820 | 0.923
2 3.364 1.507 | 0.825| 0.926 Fig. 1. Comparison of actual and reconstructed trajectoingushe
ARMA(1, 7) model. The solid line shows the actual trajectoryd ahe
dashed line shows the reconstructed trajectory. Sevendbihistory in the
E L firing rate were used, and the state was a six-dimensionabiveghtaining
- Lag

position, velocity, and acceleration #andy.

The introduction of lag has been shown to improve the
results of the Kalman filter [4]. To implement a lag, we shift ] ]
the data so that, corresponds ta;_, for some lag, rather Well as the ARMA process, although it greatly improves the
thanz,. We ran experiments both with no lag £ 0), and Performance of the Kalman filter. The Kalmgn filter has_ been
with a constant lag of 2 time bins (140ms), which has beefiown to be further improved by implementing non-uniform
shown to provide good results for the Kalman filter [4]. 129 (SO that each neuron has its own lag) [4], but we do not

consider that model here.
I1l. RESULTS Additionally, we investigated the state vector. In pardcu

Table | shows a comparison of the mean squared err¥f€ tried decoding with ARMA using only the position,
and correlation coefficients for each decoding method. F&S OPPosed to the position, velocity, and accelerations Thi
linear regression, a time history of thirteen time bins waBrovided mixed results; the correlation coefficient wasdow
used (varying from one to twenty we found that thirteen hal/ithout the extra terms (0.823 in and 0.923 iny), but the
the lowest error and highest correlation coefficients). lln amean squared error was slightly less (3.31%iand 1.457
cases, position, velocity, and acceleration were included N ¥), suggesting that the extra data may not be necessary.
the state vector. Finally, we examined the training time required for each

The ARMA model decoding produced not only the highesmethod. Training the Kalman filter is insignificant, whilesth
correlation coefficients, but also the lowest mean squaréi@€ar filter and the ARMA process both are highly dependent
error. Fig. 1 shows a comparison of the actual and recof the number of history bins used. The ARMA process is
structed trajectories for the ARMA method. Fig. 2(a) show&Is0 dependent on the choice of the convergence parameter
the mean squared error with respect to the number of histofy in that the smaller is, the longer it takes to converge.
bins included in the firing rate, varied from one to twentyVVe found that for 13 history bins, the linear filter took
and Fig. 2(b) shows the correlation coefficients in the sanfPProximately 20 seconds to train, while for seven history
case. The lowest mean squared error and highest correlatfyiS ande = 0.001, the ARMA process took approximately
coefficients appeared at seven bins of firing rate histons th SiX minutes. Setting equal to 0.01 cuts the training time in
that is what was used for the rest of our experiments.  half, while still providing good results (MSE 3.865 inand

When history was added in the state term (i.el469 iny, CC 0.796 inz and 0.921 iny). Although this
ARMA(m, k) wherem > 1), the error increased and thetraining is S|gn|f|cantly Iopger than that of t.he qther methp
correlation coefficient decreased. We believe this to be ddeiS Still feasible, especially since decoding incomingada
to over-fitting, since the error on the training data wadS €ssentially instantaneous once training is completn(8.
very small, while the error on the testing data increase decode a single time instant, as opposed to 0.7ms for the
dramatically. A constraint on the norm @f might eliminate Kalman filter).
this problem.

We compared the mean squared error and correlation
coefficients for the ARMA model with and without lag, and We found that the ARMA model provided more accurate
found that they were effectively the same. Table Il shows theeural decoding results (lower mean squared error and highe
effect of lag on ARMA and the other models. The lag seemsorrelation coefficients) than either the linear regrassio
to make little difference in the linear regression method asiethod or the Kalman filter. These results suggest that the

IV. DISCUSSION
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Fig. 2. The number of history bins in the firing rate term wasedfrom one to twenty, and the mean squared error and caoelepefficients between
the reconstruction and the true trajectory were calculatedandy. In both cases, the top graph shows thdimension and the bottom thedimension.
(a) shows the mean squared error, and (b) shows the corretadifficients.

advantage over the linear filter is that the model include®r providing the data for our research, F. Wood and C. Jenk-
information about the previous state as well as neural firingns for many useful discussions, A. Shaikhouni for first
The Kalman filter also uses information about the motioisuggesting an ARMA process, and A. Anagnostopoulos for
of the hand and the firing rate, but in common usage helpful hints.
is constrained by a first-order Markov assumption, so that

neural data from only a single time instant is considered at

each time step. [1] L. Shpigelman, K. Crammer, R. Paz, E. Vaadia, and Y. Singer,

Th timizati thod dt timat t f “A temporal kernel-based model for tracking hand-movementsfro
€ opumization metnod used (o estimate parameters 10r g 5 activities,"Advances in NIPS, vol. 17, 2004, to appear.

the ARMA process is simple and fast for small histories.[2] M. Serruya, N. Hatsopoulos, M. Fellows, L. Paninski, and
The training time increases as the number of history bins J. Donoghue, *Robustness of neuroprosthetic decodingritigts,’

. d th nvergence parameier reduced Biological Cybernetics, vol. 88, pp. 219-228, Feb. 2003.
Increases and as the co _e g ) p ) * [3] J. Wessberg and M. Nicolelis, “Optimizing a linear algbm for real-
However, once the model is trained, decoding can be per- time robotic control using chronic cortical ensemble reaugdi in
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