
Motor Cortical Decoding Using an Autoregressive Moving Average Model

Jessica Fisher and Michael J. Black
Department of Computer Science, Brown University

Providence, Rhode Island 02912
Email: {jfisher, black}@cs.brown.edu

Abstract— We develop an Autoregressive Moving Average
(ARMA) model for decoding hand motion from neural firing
data and provide a simple method for estimating the parameters
of the model. Results show that this method produces more
accurate reconstructions of hand position than the previous
Kalman filter and linear regression methods. The ARMA model
combines the best properties of both these methods, producing
reconstructed hand trajectories that are smooth and accurate.
This simple technique is computationally efficient making it
appropriate for real-time prosthetic control tasks.

I. I NTRODUCTION

One of the primary problems in the development of prac-
tical neural motor prostheses is the formulation of accurate
methods for decoding neural signals. Here we focus on the
problem of reconstructing the trajectory of a primate hand
given the extracellularly recorded firing activity of a popu-
lation of neurons in the arm area of primary motor cortex.
Various machine learning techniques, mathematical models,
and decoding algorithms have been applied to this problem
[1]–[7]. The simplest and most common of these is the linear
regression method which represents hand position at a given
time instant as a linear combination of population firing rates
over some preceding time interval [2], [3], [6]. While simple
and relatively accurate, the resulting reconstructions require
post hoc smoothing to be practical in a neural prosthesis [8].

Alternatively, Bayesian decoding methods have been used,
including the Kalman filter [4] and particle filter [5], [7]. In
contrast to the linear regression method, Bayesian methods
include an explicit temporal smoothness term that models
the prior probability of hand motion. The Kalman filter is
particularly appropriate for prosthetic applications given its
accuracy and efficiency (for both training and decoding)
[8]. Unlike the linear regression method which uses a large
history of firing data to reconstruct hand motion at every
time instant, conditional independence assumptions in the
standard Kalman filter restrict it to using only the current
firing rates of the neurons. While the hand trajectories
decoded with the Kalman filter do not require post hoc
smoothing, they still lack the smoothness of natural hand
motion [8].

Here we develop a simple Autoregressive Moving Average
(ARMA) process for the neural decoding task that combines
the linear regression method with the smoothness term of
the Kalman filter. By using more data at each time instant
than the Kalman filter, accuracy is improved, and by adding
a spatial smoothing term to the linear regression method,
smooth trajectories are obtained without post hoc smoothing.

An ARMA model was suggested by [1] in the context
of decoding a center-out reaching task. They extended the
method to model a non-linear relationship between firing
rates and hand motions using Support Vector Regression.
Here we apply the simpler ARMA model to a more complex
task involving arbitrary 2D hand motions. We show that a
very simple algorithm suffices to estimate the parameters of
the ARMA process, and that the resulting decoding method
results in reconstructions that are highly correlated to the true
hand trajectory. We explore the choice of parameters and pro-
vide a quantitative comparison between the ARMA process,
linear regression, and the Kalman filter. We found that the
simple ARMA process provides smooth reconstructions that
are more accurate than those of previous methods.

II. M ETHODS

A. Recording

Our experiments here use previously recorded and reported
data [9] in which a Bionic Technologies LLC (BTL) 100-
electrode silicon array [10] was implanted in the arm area
of the primary motor cortex of amacaca mulatta monkey.
The monkey was trained to move a two-joint planar manip-
ulandum to control a feedback cursor on a computer screen.
The position of the manipulandum and the neural activity
were recorded simultaneously, and the neural activity was
summed into 70-ms bins. The task the monkey performed
was a “pinball” task [4] in which he moved the cursor to hit
a target on the screen, and when he succeeded, a new target
appeared. Neural signals were detected on 42 electrodes, and
a simple thresholding operation was used to detect action
potentials. The spikes on each electrode were treated as one
(potentially) multi-unit channel of data. In [11] it was found
that multi-unit data provided decoding accuracy on a par with
the best single unit data obtained by human spike sorting.
The dataset was divided into separate training and testing sets
of approximately 6.2 minutes and one minute respectively.

B. Linear Regression

The linear regression method is the most common method
used for motor cortical decoding and assumes that the
current hand state (position, velocity, and acceleration)can
be represented as a linear combination of the current firing
rates of a population of neurons. Least-squares regressionis
performed to determine the coefficients (the “filter”) for this
linear combination based on training data, and the filter is



then used on testing data to decode the state at each time
instant [2], [6]. The linear relationship is described by

X = ZF (1)

where X is a state matrix containing the(xt, yt) hand
positions at time instantst = 1 . . . T , Z is a matrix of firing
rates of theN = 42 multi-units over the same time period,
andF is the linear filter matrix relating hand positions and
firing activity. In particular,

X =











xT yT

xT−1 yT−1

...
...

x1 y1











,

Z =











z1
T ... z1

T−k z2
T ... zn

T−k 1
z1
T−1

... z1
T−k−1

z2
T−1

... zn
T−k−1

1
...

...
...

...
...

...
...

z1
k ... z1

1 z2
k ... zn

1 1











,

F =















fx1 fy1

fx2 fy2

...
...

fxkN fykN

f1 f2















wherext represents the handx position at timet (analogous
for y), zi

t represents the firing rate of neuroni at time t,
fxp represents thepth filter coefficient forx (same fory),
and thefp’s represent constant offset terms. Note thatk is
a constant representing a time window of neural firing rates
to be considered. Also, the column of ones inX provides
a constant bias term. This model can easily be expanded to
include velocity and acceleration.

We solve forF by minimizing the squared error‖X −
ZF‖2

2 which gives the solution for the filter matrixF as

F = (ZT Z)−1ZT X = Z+X

where Z+ is the pseudo-inverse ofZ. The hand position
xt = (xt, yt) at a particular time instant can be reconstructed
as

xt = zt
t−kF

wherezt
t−k ∈ <1×Nk is a vector representing ak time bin

history of neural firing preceding time instantt (a row of the
Z matrix above).

C. Autoregressive Moving Average (ARMA) Model

The linear filter models how hand position is related to
neural activity over some time interval, but it does not ex-
plicitly model anything about how hands move. The motion
of the hand is constrained by physics and the properties of
the body, and therefore evolves smoothly over time. Conse-
quently we add an additional term to the linear regression
method to model this smoothness assumption; that is, the
current state is represented as a linear combination of a

history of firing rates and the preceding hand states, given
by

xt = Axt−1

t−m + Fzt
t−k (2)

whereA ∈ <D×Dm (D is the dimensionality of the state
vector x) and F ∈ <D×Nk, and k and m are parameters
determining how many previous time steps (of hand state
and neural firing respectively) to include in the calculation.
xt−1

t−m ∈ <Dm×1 is a column vector containing the concate-
nation of the states from timest − m to t − 1, andzt

t−k ∈
<Nk×1 is a column vector containing the concatenation of
the firing rates for all neurons from timest − k to t. We
call this an Autoregressive Moving Average (ARMA)(m, k)
process [12].

The parameters to be estimated in this model areA and
F. We alternate learning these (beginning withF) using the
same method as linear regression:

F = (ZT )+(X2 − AX1) (3)

A = (XT
1 )+(X2 − FZ) (4)

whereX2 ∈ <D×T−1 is a matrix of states from times 2 toT
(T being the total number of time steps),Z ∈ <Nk×T−1 is a
firing rate matrix where each column is of the formzt

t−k as
described above, andX1 ∈ <Dm×T−1 is a matrix in which
each column is of the formxt−1

t−m as described above.
Initially, we setA to a matrix of zeros and learnF (note

that this is simply the standard linear regression method).
To determine when convergence has occurred, we use the
mean squared error of the training data [4]. Convergence has
occurred when the difference between the previous iteration’s
error and the current error is less than some parameterε. In
our experiments, we usedε = 0.001.

D. Kalman Filter

The Kalman filter has been proposed for decoding motor
cortical data [4]. Like the above methods it assumes a
linear relationship between neural firing and hand kinematics
(though formulated as a generative model) and like the
ARMA model assumes the hand motion evolves linearly, as
follows:

xt = Axt−1 + w (5)

zt = Hxt + q (6)

where w ∼ N(0,W) and q ∼ N(0,Q). A recursive
Bayesian method is used to predictxt given zt. While the
reader is referred to [4] for details, it is worth noting that
the Kalman filter reconstructs hand kinematics as

xt = Axt−1 + Kt(zt − H(Axt−1))

wereKt is the Kalman gain matrix. Note that the first term
is the same as in the ARMA model but is restricted to using
only the previous time instant due to a first order Markov
assumption used to derive the filter. Note also that the second
term is a linear function of the difference between the firing
rates and the predicted firing rates,HAxt−1. In contrast,
the ARMA model uses a linear function of the firing rates
themselves.



TABLE I

COMPARISON OF MEAN SQUARED ERROR AND CORRELATION

COEFFICIENTS FORX AND Y POSITION AMONG DIFFERENT DECODING

METHODS.

Method MSE X MSE Y CC X CC Y

Linear Regression 5.398 1.861 0.769 0.901
Kalman Filter 4.281 1.806 0.804 0.914
ARMA Model 3.364 1.507 0.825 0.926

TABLE II

EFFECTS OF CONSTANT LAG OF2 TIME BINS ON THE THREE MODELS

Method Lag MSE X MSE Y CC X CC Y

Linear Regression 0 5.394 1.857 0.769 0.901
2 5.398 1.861 0.769 0.901

Kalman Filter 0 5.788 1.903 0.726 0.902
2 4.281 1.806 0.804 0.914

ARMA Model 0 3.388 1.433 0.820 0.923
2 3.364 1.507 0.825 0.926

E. Lag

The introduction of lag has been shown to improve the
results of the Kalman filter [4]. To implement a lag, we shift
the data so thatxt corresponds tozt−` for some lag̀ , rather
than zt. We ran experiments both with no lag (` = 0), and
with a constant lag of 2 time bins (140ms), which has been
shown to provide good results for the Kalman filter [4].

III. R ESULTS

Table I shows a comparison of the mean squared error
and correlation coefficients for each decoding method. For
linear regression, a time history of thirteen time bins was
used (varying from one to twenty we found that thirteen had
the lowest error and highest correlation coefficients). In all
cases, position, velocity, and acceleration were includedin
the state vector.

The ARMA model decoding produced not only the highest
correlation coefficients, but also the lowest mean squared
error. Fig. 1 shows a comparison of the actual and recon-
structed trajectories for the ARMA method. Fig. 2(a) shows
the mean squared error with respect to the number of history
bins included in the firing rate, varied from one to twenty,
and Fig. 2(b) shows the correlation coefficients in the same
case. The lowest mean squared error and highest correlation
coefficients appeared at seven bins of firing rate history, thus
that is what was used for the rest of our experiments.

When history was added in the state term (i.e.,
ARMA(m, k) where m > 1), the error increased and the
correlation coefficient decreased. We believe this to be due
to over-fitting, since the error on the training data was
very small, while the error on the testing data increased
dramatically. A constraint on the norm ofA might eliminate
this problem.

We compared the mean squared error and correlation
coefficients for the ARMA model with and without lag, and
found that they were effectively the same. Table II shows the
effect of lag on ARMA and the other models. The lag seems
to make little difference in the linear regression method as

0 50 100 150 200 250 300 350
5

10

15

20

X

Comparison of Actual and Reconstructed Trajectory for Seven History Bins

0 50 100 150 200 250 300 350

0

5

10

15

Y

time step

reconstruction
original

Fig. 1. Comparison of actual and reconstructed trajectory using the
ARMA(1, 7) model. The solid line shows the actual trajectory and the
dashed line shows the reconstructed trajectory. Seven binsof history in the
firing rate were used, and the state was a six-dimensional vector containing
position, velocity, and acceleration inx andy.

well as the ARMA process, although it greatly improves the
performance of the Kalman filter. The Kalman filter has been
shown to be further improved by implementing non-uniform
lag (so that each neuron has its own lag) [4], but we do not
consider that model here.

Additionally, we investigated the state vector. In particular,
we tried decoding with ARMA using only the position,
as opposed to the position, velocity, and acceleration. This
provided mixed results; the correlation coefficient was lower
without the extra terms (0.823 inx and 0.923 iny), but the
mean squared error was slightly less (3.313 inx and 1.457
in y), suggesting that the extra data may not be necessary.

Finally, we examined the training time required for each
method. Training the Kalman filter is insignificant, while the
linear filter and the ARMA process both are highly dependent
on the number of history bins used. The ARMA process is
also dependent on the choice of the convergence parameter
ε, in that the smallerε is, the longer it takes to converge.
We found that for 13 history bins, the linear filter took
approximately 20 seconds to train, while for seven history
bins andε = 0.001, the ARMA process took approximately
six minutes. Settingε equal to 0.01 cuts the training time in
half, while still providing good results (MSE 3.865 inx and
1.469 in y, CC 0.796 inx and 0.921 iny). Although this
training is significantly longer than that of the other methods,
it is still feasible, especially since decoding incoming data
is essentially instantaneous once training is complete (0.1ms
to decode a single time instant, as opposed to 0.7ms for the
Kalman filter).

IV. D ISCUSSION

We found that the ARMA model provided more accurate
neural decoding results (lower mean squared error and higher
correlation coefficients) than either the linear regression
method or the Kalman filter. These results suggest that the



0 2 4 6 8 10 12 14 16 18 20
3

4

5

6

7
Mean Squared Error in X and Y Dimensions for Varying History Lengths

M
S

E
 X

0 2 4 6 8 10 12 14 16 18 20
1

2

3

4

5

Number of History Bins

M
S

E
 Y

0 2 4 6 8 10 12 14 16 18 20
0.2

0.4

0.6

0.8

1

C
C

 X

Correlation Coefficient in X and Y Dimensions over Varying History Length

0 2 4 6 8 10 12 14 16 18 20
0.2

0.4

0.6

0.8

1

Number of History Bins

C
C

 Y

(a) Mean Squared Error (b) Correlation Coefficient

Fig. 2. The number of history bins in the firing rate term was varied from one to twenty, and the mean squared error and correlation coefficients between
the reconstruction and the true trajectory were calculatedin x andy. In both cases, the top graph shows thex dimension and the bottom they dimension.
(a) shows the mean squared error, and (b) shows the correlation coefficients.

advantage over the linear filter is that the model includes
information about the previous state as well as neural firing.
The Kalman filter also uses information about the motion
of the hand and the firing rate, but in common usage it
is constrained by a first-order Markov assumption, so that
neural data from only a single time instant is considered at
each time step.

The optimization method used to estimate parameters for
the ARMA process is simple and fast for small histories.
The training time increases as the number of history bins
increases and as the convergence parameterε is reduced.
However, once the model is trained, decoding can be per-
formed on-line.

A restriction of the ARMA process is its linearity. By
changing the linear relationship with the firing rate to a
nonlinear function or a kernel (as in [1]), better results may
yet be achieved. Additionally, the Kalman filter with non-
uniform lag has been shown to provide results similar to that
of the ARMA process [4] but the ARMA method is much
simpler to understand and use. In general, the improvement
the ARMA process provides over the other popular decoding
methods is significant, considering the simplicity of the
method.

A more sophisticated model of Support Vector Regression
has been developed for motor cortical data, but on a simpler
center-out task [1]. Adapting this SVM model to the sequen-
tial random tracking task used here may provide even better
results. Finally, these methods should be explored with more
datasets and in on-line experiments.

ACKNOWLEDGMENT

This work was supported by NIH-NINDS R01 NS 50967-
01 as part of the NSF/NIH Collaborative Research in Com-
putational Neuroscience Program, and by Brown University.
The authors thank M. Serruya, M. Fellows, and J. Donoghue

for providing the data for our research, F. Wood and C. Jenk-
ins for many useful discussions, A. Shaikhouni for first
suggesting an ARMA process, and A. Anagnostopoulos for
helpful hints.

REFERENCES

[1] L. Shpigelman, K. Crammer, R. Paz, E. Vaadia, and Y. Singer,
“A temporal kernel-based model for tracking hand-movements from
neural activities,”Advances in NIPS, vol. 17, 2004, to appear.

[2] M. Serruya, N. Hatsopoulos, M. Fellows, L. Paninski, and
J. Donoghue, “Robustness of neuroprosthetic decoding algorithms,”
Biological Cybernetics, vol. 88, pp. 219–228, Feb. 2003.

[3] J. Wessberg and M. Nicolelis, “Optimizing a linear algorithm for real-
time robotic control using chronic cortical ensemble recordings in
monkeys,”J Cog Neuro, vol. 16, no. 6, pp. 1022–1035, 2004.

[4] W. Wu, M. Black, Y. Gao, E. Bienenstock, M. Serruya, A. Shaikhouni,
and J. Donoghue, “Neural decoding of cursor motion using a kalman
filter,” Advances in NIPS, vol. 15, pp. 133–140, 2003.

[5] A. Brockwell, A. Rojas, and R. Kass, “Recursive bayesiandecoding
of motor cortical signals by particle filtering,”J Neurophysiol, vol. 91,
pp. 1899 – 1907, Apr 2004.

[6] J. Carmena, M. Lebedev, R. Crist, J. O’Doherty, D. Santucci, D. Dim-
itrov, P. Patil, C. Henriquez, and M. Nicolelis, “Learning to control a
brain-machine interface for reaching and grasping by primates,” Public
Library of Science Biology, vol. 1, no. 2, pp. 193–208, 2003.

[7] Y. Gao, M. Black, E. Bienenstock, S. Shoham, and J. Donoghue,
“Probabilistic inference of arm motion from neural activityin motor
cortex,” Advances in NIPS, vol. 14, pp. 221–228, 2002.

[8] W. Wu, A. Shaikhouni, J. Donoghue, and M. Black, “Closed-loop
neural control of cursor motion using a kalman filter,”Proc. IEEE
EMBS, pp. 4126–4129, Sep 2004.

[9] M. Serruya, N. Hatsopoulos, L. Paninski, M. Fellows, and
J. Donoghue, “Brain-machine interface: Instant neural control of a
movement signal,”Nature, vol. 408, pp. 361–365, 2000.

[10] E. Maynard, C. Nordhausen, and R. Normann, “The Utah intracortical
electrode array: A recording structure for potential brain-computer
interfaces,” Electroencephalography and Clinical Neurophysiology,
vol. 102, pp. 228–239, 1997.

[11] F. Wood, M. Fellows, J. Donoghue, and M. Black, “Automatic spike
sorting for neural decoding,”Proc. IEEE EMBS, pp. 4009–4012, Sep
2004.

[12] J. Hamilton,Time Series Analysis. Princeton, New Jersey: Princeton
University Press, 1994.


