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Abstract. Computer-mediated connections between human motor cortical neurons and assistive devices 

promise to improve or restore lost function in people with paralysis.  Recently, a pilot clinical study of an 

intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-

dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, 

however, was not sufficiently accurate for reliable use in many common computer control tasks.  Here we 

studied several central design choices for such a system including the kinematic representation for cursor 

movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and 

the cursor control task used during training for optimizing the parameters of the decoding method. In two 
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tetraplegic participants, we found that controlling a cursor’s velocity resulted in more accurate closed-loop 

control than controlling its position directly and that cursor velocity control was achieved more rapidly than 

position control.  Control quality was further improved over conventional linear filters by using a 

probabilistic method, the Kalman filter, to decode human motor cortical activity.  Performance assessment 

based on standard metrics used for evaluation of a wide range of pointing devices demonstrated significantly 

improved cursor control with velocity rather than position decoding. 

 

1. Introduction 
Injury or disease affecting subcortical, brainstem, spinal, or neuromuscular motor pathways, can 
result in paralysis while leaving cerebral function intact.  A neural interface system (NIS) is a 
brain-computer interface that provides alternative connections between neurons and assistive 
devices and thus has the potential to restore lost function.  Several studies in able-bodied non-
human primates have demonstrated that extracellular neural activity from a population of neurons in 
the motor areas of cerebral cortex can be converted into a continuous control signal for the 
operation of computers or robotic devices [1-8] (see [9-12] for review). Central to the function of an 
NIS is an algorithm for decoding neural activity into a stable, reliable control signal.  In a recent 
study, Hochberg et al. [13] demonstrated that paralyzed humans could operate an NIS that 
translated motor cortical neural activity into a two-dimensional (2D) computer cursor position.  
That report found that neural signals related to movement remained in the arm area of human motor 
cortex years after spinal cord injury and that these signals could be activated by imagined or 
attempted movement, essential requirements for the operation of an NIS.  Two-dimensional (2D) 
cursor control, along with prosthetic hand and robotic arm control, was derived using a linear filter 
decoding method that computed 2D cursor position from a linear combination of neural population 
firing rates over a short time history [14]. 

While demonstrating the ability for a tetraplegic human to control a neural cursor well enough to 
operate a simplified computer interface, the quality of cursor control reported in the Hochberg et al.  
study [13] was typically not at the level achieved by able-bodied users of standard computer 
pointing devices.  In particular, the cursor trajectories were longer and more curved than the 
typical straight-line movements of able-bodied users.  Further, it was difficult for the user to stop 
the cursor at a target location and to maintain a fixed position. Our goal is to improve NIS function 
while shedding light on key issues in the design of any NIS including: 1) the features of intended 
movement (e.g. kinematic representation) that are most natural for cursor control; 2) how training of 
the neural decoding algorithm affects cursor control accuracy; 3) the statistical stationarity of neural 
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tuning properties between training and testing; 4) quantification of the control accuracy obtained 
using different features and decoding algorithms (in terms of cursor trajectory accuracy and target 
acquisition rate); and 5) the effect of the choice of decoding algorithm on performance.  For two 
participants in our ongoing pilot clinical trial, investigation of each of these issues is described 
below.  A central question addressed here is whether cursor position or velocity provides a more 
natural movement “feature” for accurate neural cursor control.  Specifically we address this 
question in the context of closed-loop neural cursor control using the motor cortical population 
activity generated by the intended (as opposed to “performed”) actions of humans with tetraplegia.  

Numerous studies have shown that neuronal spiking activity in the primary motor cortex (MI) is 
correlated with arm kinematic and dynamic parameters including limb forces, joint torques, hand 
direction, hand speed and hand position [14-22]. Hand position and velocity have both been used 
(together and separately) for closed-loop neural cursor control in able-bodied non-human primates 
using a variety of decoding algorithms including the population vector method [5], linear filtering 
[1-4, 23], and Kalman filtering [24-25]. Whether cursor position or velocity is more appropriate for 
neural control by a tetraplegic human has not been firmly established (see [26] for a recent offline 
analysis). Understanding the implications of this choice of kinematic representation on cursor 
control performance is critical for the development of a useful NIS. 

Many previous closed-loop cursor control experiments in monkeys relied on training data 
containing simultaneously recorded hand movements and neural activity to train neural decoding 
algorithms. In a human with tetraplegia, training of the NIS must be achieved in the absence of 
physical movement. Hochberg et al. [13] proposed a combination of open-loop and closed-loop 
filter training that enabled subjects to gain control of cursor position. We extended this training 
procedure to enable the control of cursor velocity.  

In the present study, in two tetraplegic humans, we compared the neural cursor control 
performance of two decoding approaches based on position or velocity control with two different 
decoding algorithms. We first quantified the position and velocity tuning of motor cortical neurons 
during imagined cursor movement.  We then quantified closed-loop neural cursor control with 
both position and velocity decoding using metrics defined in the ISO 9241-9 standard for evaluating 
pointing device performance [27].  Additionally we measured other relevant aspects of cursor 
control and movement including deviation from the desired trajectory, movement direction changes 
and movement variability [28] in order to provide a comprehensive set of measures by which 
control can be compared across studies, across clinical disorders and across decoding approaches. 
Finally, we evaluated two decoding algorithms to test the relative importance of the kinematic 
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representation versus the specific decoder.  Here we compared the linear filter [29] which was used 
in Hochberg et al. [13] and the Kalman filter [30] which showed good performance in previous non-
human primate studies [24-25].  

It is also worth noting that the experiments reported here show the feasibility of neural cursor 
control by a paralyzed human using an intracortical NIS more than one year post implant. 

 

2. Methods 
 
2.1 Participants 
Clinical trial sessions 7  of the BrainGate NIS (Cyberkinetics Neurotechnology Systems, Inc. 
(CYKN)) were conducted by Cyberkinetics technicians with two participants with tetraplegia 
(paralysis of both arms and both legs). Participant S3 is a 54 year old woman who had thrombosis 
of the basilar artery and extensive pontine infarction nine years prior to trial recruitment. Participant 
A1 was a 37 year old man with amyotrophic lateral sclerosis (ALS, motor neuron disease), recruited 
to the trial six years after being diagnosed with ALS. Both participants were right hand dominant, 
and the intracortical array was placed in the left precentral gyrus in the region of the arm 
representation [13]. 

 
2.2 Recording 
During the sessions, neural signals were recorded from the motor cortex of the participants using a 
chronically-implanted 96-channel Cyberkinetics microelectrode array and the BrainGate NIS. After 
digitization (30 kHz per channel) real-time, amplitude-thresholding software (see Suner et al. [31] 
for details) was utilized to discriminate different waveshapes on each channel. Putative single 
neurons and apparent multi-neuron activity with consistent waveforms [31] (both referred to here as 
‘units’) were accepted or rejected for inclusion in the study at the beginning of each session based 
on visual inspection of the isolated waveforms with no further criteria applied to identify single 
neurons. We did not analyze the nature of these units in detail but some were clearly defined single 
units, some contained multiple cells with waveforms that could not be confidently segregated from 
each other and some were low-amplitude intermixed signals that modulated with the task. During 

                                            
7  A pilot clinical study of the BrainGate Neural Interface System was initiated by Cyberkinetics 

Neurotechnology Systems, Inc under a Food and Drug Administration (FDA) Investigational Device 

Exemption (IDE) and with Institutional Review Board (IRB) approvals; the studies began in May, 2004. 
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recording, subjects viewed a computer monitor that displayed task information related to various 
cursor control tasks as described below. 

We refer to each session with the notation: <participant>-<days since implant>; for example S3-
40 is the session for participant S3 on day 40 after implantation.  Sessions analyzed in the present 
study fell into one of three categories based on the type of training task and the decoding algorithm, 

referred to as <kinematic model><decoding method><task>. PLP sessions tested Position decoding 
using a Linear filter trained with a Pursuit tracking task; VKC sessions tested Velocity decoding 
using a Kalman filter trained with the Center out task; and VLKC sessions tested Velocity decoding 
using Linear and Kalman filters trained on the same day with the Center out task. The various tasks 
are described in detail below. The analyses here are based on all complete sessions between 40 and 
418 days after implant in S3 and 85 to 224 days after implant in A1 for which the decoding and 
cursor control evaluation methods studied here were used.   

 
Table 1. Categorization of the recording sessions based on decoding algorithms and training task. 

Session group label: 
kinematic model, 

decoding method, task 

Session index  
(unit count) 

Decoding 
algorithm 

Training task 

Position, Linear filter, 
pursuit tracking (PLP) 

S3-40 (179), S3-48 (159), 
S3-54 (147); A1-85 (103), 
A1-91 (117) 

Position-based 
linear filter 

Random pursuit-
tracking task 

Velocity, Kalman filter, 
Center out (VKC) 

S3-254 (46), S3-261 (80), 
S3-280 (13), S3-282 (20), 
S3-285 (15), S3-287 (33), 
A1-197 (102), A1-216 
(70), A1-224 (85) 

Velocity-based 
Kalman filter 

Center-out-back 
task 

Velocity, Linear/Kalman, 
Center out (VLKC) 

S3-408 (25), S3-412 (28), 
S3-418 (21) 

Velocity-based 
linear and Kalman 
filters 

Center-out-back 
task 

 
 

2.3. Training 

 

2.3.1. Training procedure. A main purpose of “training” in our clinical study was to set the 
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parameters of the decoding algorithms such that they define an optimal mapping between neural 

activity and cursor control signals. A training procedure was developed previously (see Hochberg et 

al. [13]) to simultaneously obtain neural activity patterns and cursor kinematics to enable the 

estimation of the decoding algorithm parameters without accompanying limb movements. In this 

procedure, a training cursor (TC) was displayed on a computer monitor and moved to generate 

cursor trajectories (details below).  During this presentation, the participants were instructed to 

imagine moving their arm or hand as if they were controlling the TC.  Neural signals recorded 

during this imagined movement together with the TC kinematics (position or velocity) were used to 

train the decoding algorithms.  

The overall training procedure was composed of a series of short recording periods, called 

“blocks,” each of which lasted 1-1.5 min. We devised two types of training blocks: open-loop (OL) 

and closed-loop (CL) blocks. In OL blocks, the TC and the target were shown together on the 

monitor. The number of OL blocks varied over session groups: four 1-min OL blocks for PLP 

sessions, two (mean 2, s.d. ±1) 1.2-min blocks for VKC sessions and three 1.5-min blocks for 

VLKC sessions. We used the data from the OL blocks to train an initial decoding algorithm. 

The OL blocks were followed by several closed-loop (CL) blocks in which a feedback cursor 

(FC) was simultaneously displayed on the monitor with the TC.  The FC motion was determined 

using the decoding algorithm trained from the OL trials.  The presentation of the FC provided 

additional information through visual feedback to the subjects about how well their intended actions 

were being decoded. FC presentation was motivated by an assumption that the participants might 

adjust their neural activity to improve cursor control by seeing the error between the FC and TC. 

The decoding algorithm was re-trained at the end of every other CL block to incrementally update 

the parameters. Four 1-min CL blocks were used in PLP sessions, six (mean 6, s.d. ±2) 1.2-min 

blocks in VKC sessions and four 1.5-min blocks in VLKC sessions. See Figure 1a for an illustration 

of the procedure of OL and CL training. 

In PLP recording sessions, the TC was moved manually by the technician. In VKC and VLKC 

sessions, the TC was moved by a computer-generated bell-shaped velocity profile (Figure 1b) to 

provide the participants with well-defined velocity training patterns. The participants rested 

between blocks for a short period (~ 1 min on average). 

2.3.2. Cursor movement tasks for training decoding algorithms. Two different training tasks were 
used depending on the representation of cursor kinematics (position or velocity): position-based 
decoders were trained using a random target pursuit-tracking task [13-14] while velocity-based 
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decoders were trained using a center-out-and-back (to center) task [32-33]. Note that during training 
a TC was always present on the screen. This made these training tasks more similar to pursuit 
tracking than step tracking. However, during testing, only the NC was present under closed loop 
control and the tasks can be seen as step-tracking tasks. 

In the random pursuit-tracking task, the TC moved from a starting location towards a target that 
was randomly placed on the screen. When the TC intersected the target, an audio feedback cue was 
provided and the next target immediately appeared at another random location, keeping only one 
target at a time on the monitor. This task had the important property of spanning much of the space 
of screen positions, which provided the decoder learning method with a wide range of cursor 
position samples (see Figure 1c for example of TC positions). The target and the TC occupied 
90×90 pixels (visual angle: 3.8º) and 60×60 pixels (2.5º) of the screen, respectively, where the total 
screen size was 800×600 pixels (17” monitor). The distance from the participants’ eyes to the center 
of the monitor was approximately 59cm and the visual angle of the workspace on the screen was 
approximately 34.08º. The size of the FC during CL blocks occupied 102×126 pixels (4.3º×5.3º). 

In the center-out-back task, four peripheral targets (0º, 90º, 180º and 270º) and one center target 
were displayed on the screen. The TC started at the center target, holding there for 1.2s, and then 
began moving to one of four peripheral targets which was highlighted. When the TC reached the 
target it remained there for 0.5s before tracing its path back to the center target. The point-to-point 
TC movement followed a bell-shaped computer-generated speed profile (Figure 1b) that spanned T 
seconds. The reaching time, T, varied across the session in the range [1.5s, 4.5s]. A single center-
out-back TC trial took (1.7 + 2T) seconds. The target location was pseudo-randomly selected by a 
predetermined program. We used the center-out-back task instead of the standard center-out task 
with re-centering. In this latter task, a cursor moves smoothly from the center to peripheral targets 
but then jumps automatically back to the center target. This procedure causes cursor position and 
velocity to be highly correlated with each other. In contrast, the center-out-back task enables us to 
sample two opposite cursor velocities for each cursor position. This makes it easier to uncover 
whether a modulated neural activity is related to position and/or velocity. In the earlier sessions 
including S3-{254, 261, 280, 282} and A1-{197, 216}, the target, the TC and the FC occupied 
90×90 (3.8º), 60×60 (2.5º) and 60×60 (2.5º) pixels, respectively. The distance from the center to the 
target was 210 pixels (8.9º). In the later sessions including S3-{285, 287, 408, 412, 418} and A1-
224, the sizes of the target, the TC and the FC were reduced to 48×48 (2.0º), 40×40 (1.3º) and 
40×40 (1.3º) pixels, respectively. The distance from center was increased to 255 pixels (10.8º) for 
vertical targets and 300 (12.7º) for horizontal targets to more completely cover the screen space. 
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2.4. Neural cursor control testing tasks 
A closed-loop center-out-back task was used to evaluate neural cursor control performance. This 
testing task shared a basic structure with the center-out-back training task, however differed in 
several respects (see below). The NC was not automatically re-centered, making this task closer to 
normal continuous computer mouse activities than the standard, re-centering, center-out task [34].  

The center-out-back testing task used in PLP and VKC sessions was the same as the one used in 
Hochberg et al. [13]. A target (120×120 pixels; visual angle: 5.1º) was positioned at one of four 
fixed locations (0°, 90°, 180°, 270°) with the distance of 210 pixels (8.9º) from the center and the 
participant was asked to control the NC (60x60 pixels; 2.5°) to acquire the target. If the NC reached 
the target and dwelled on it longer than a preset period (500ms), the target was deemed to be 
acquired and audio and visual feedback was given for 1s. If a timeout period (7s) elapsed before 
target acquisition, another audio feedback cue was provided indicating failed target acquisition 
(with no change of the target icon). After target acquisition or failure due to timeout, the target was 
relocated to the screen center and the participant had to move the NC to acquire it before starting 
the next target acquisition trial. There was no time limit for this center target acquisition. Data 
collected during center-target acquisition is not analyzed in this study. 

In VLKC sessions, a more challenging center-out-back testing task was used. There were eight 
peripheral targets and one center target presented on the screen. Smaller targets were located further 
from the center: the sizes of the targets and the NC were 48×48 (2.0º) and 40×40 (1.7º) pixels, 
respectively, and the distances from center to the targets were 255 pixels (10.8º) for vertical 
direction and 300 (12.7º) for horizontal direction, respectively. A trial could end without success not 
only when the timeout period was exceeded but also when a false target was acquired. The timeout 
period was 10s for this task. Compared to the above four-target testing task, this task increased the 
index of task difficulty (ID) [27] by 2.5 times, increased the number of targets, and added another 
failure condition by allowing the potential selection of false targets.  
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Figure 1. Training paradigm. (a) Illustrations of a series of open-loop (OL) training (left), closed-loop (CL) 

training (middle) and testing blocks (right). In the OL block (1-1.5 min period of recording), the training 

cursor (TC) was moved by a technician or a computer program to reach a target. After one to four OL blocks, 

CL training blocks included a feedback cursor (FC), controlled by decoded neural signals in real time, that 

was also displayed on the monitor to provide visual feedback to the participants. In testing blocks, the 

participants volitionally controlled a neural cursor (NC) to reach and dwell (for 500ms) on targets. (b) An 

example of the computer-generated speed profile for the TC. Here, a speed value of 0.1/sec represents moving 

10% of the screen height per second. Across all the sessions included in this study, the speed profile duration 

varied from 1.5s to 4.5s. (c) An example of the TC positions collected for 8 min during the random pursuit-

tracking task used for training the position-based decoding algorithm (from the session S3-40). The screen 

space was normalized to [-0.6 0.6] in the horizontal axis (denoted X here) and [-0.5 0.5] in the vertical axis 

(Y). 

 

2.5. Decoding algorithms 
Decoding is the process of converting recorded neural signals (e.g. firing rates) into cursor 
movement. In this study, we compared two decoding algorithms: linear filtering versus Kalman 
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filtering. 

Let xt be a D×1 vector of cursor kinematics such as position [px, py]T or velocity [vx, vy]T in the x 
(horizontal) or y (vertical) direction sampled at a discrete time instant t. D = 2 in this study as we 
decode the 2D cursor kinematics, yet the decoding algorithms presented here can be extended for 

the cases with D > 2. Note that decoding velocity (i.e. xt = [vx vy]T) is equivalent to decoding 
direction and speed in the polar space. Let zt be an N×1 vector of firing rates of N units observed at t. 
Firing rates for each unit were approximated using spike counts computed in fixed, non-overlapping, 
time bins. The bin size was set as either 50ms for PLP sessions or 100ms for the remainder of the 
sessions. Decoding algorithms establish a causal relationship between these neural firing rates and 
the cursor kinematics such as position or velocity. 

 

2.5.1. Linear Filter. Using the linear filter, each dimension d of the current kinematic vector xt was 
predicted separately using a linear combination of the current and past firing rates, zt, zt-1, …, zt-L+1: 
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where L denotes the length of the firing history, εt is a random variable assumed to be white 

Gaussian noise with zero mean, bd is a scalar bias term for dimension d and wi,d is an N×1 vector of 
filter coefficients for dimension d and zt-i. Motivated by previous intracortical brain-computer 
interface (BCI) studies that took L to be approximately a one-second history of firing rates [1-4], 
here L was chosen to be 20 (bins) when 50-ms bins were used or 10 (bins) when 100-ms bins were 

used. The optimal linear weights ŵd = [ŵ0,d
T,…, ŵL-1,d

T]T were obtained using least squares 
regression to minimize the mean squared error between estimated and training cursor kinematics. 
 
2.5.2. Kalman Filter. The Kalman filter [35] is a Bayesian inference algorithm that recursively 
infers the cursor kinematics from the history of firing rates. In this formulation, inference of 

kinematic signals xt conditioned on the whole observation of firing rates with a possible time offset 
j, z1:t-j = {z1, z2, …, zt-j}, is performed through recursive Bayesian estimation [25]: 

 ∫= −−−−−−− 11:111:1 )|()|()|(1)|( tjtttttjtjtt dpppp xzxxxxzzx
κ

 (2)  

where κ is a normalization constant. In this estimation, the a posteriori probability p(xt | z1:t-j) at 
time t is inferred by updating the previous estimate p(xt-1 | z1:t-1-j) at t-1 using a system model p(xt | 
xt-1) and an observation model p(zt-j | xt) with neural data zt-j. The observation model describes how 
the observed firing rates at t-j (with a possibly non-zero lag offset j) are generated from kinematics 
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xt and the system model describes how the cursor kinematics evolve from t-1 to t. In the Kalman 
filtering algorithm, the observation model and the system model are approximated as linear 
Gaussian models 
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where H and A are time-invariant linear coefficient matrices for each model and qt and ωt are 
random vectors distributed with zero mean Gaussian noise with covariance matrices Q and Ω, 
respectively. G(·) here denotes a multi-variate Gaussian distribution. Note that zt and xt are centered 
to be zero mean vectors. The parameters H, A, Q and Ω are estimated from training data using a 
least squares method.  Given the learned model, decoded kinematics can be inferred at every time 
instance using a closed-form recursion. Details of the model training and use of the Kalman filter 
for neural decoding can be found in Wu et al. [24-25]. 

It is worth noting that both the linear filter and the Kalman filter integrate the neural signals over 
time. The linear filter achieves this by explicitly building a finite impulse response (FIR) filter with 
a 1s memory of the firing rate history where the FIR filter tends to pass the low frequency signal. 
The Kalman filter does this by the recursive equations, integrating the information from the history 
of neural signals (see [25] for comparison between two filters). A fundamental difference between 
the filters is that the Kalman filter is a Bayesian model that, in addition to modeling the relationship 
between the neural and movement signals, also incorporates a prior model of the cursor movement. 

 

2.6. Correlation analysis during open-loop training 
To evaluate the relationship between the firing rates and the TC kinematic parameters independent 
of a specific decoding method, we computed the Pearson correlation coefficient (CC) [36] between 
the firing rate for each unit and the TC kinematic parameters during the OL training blocks 
collected from multiple sessions where either the random pursuit-tracking or the center-out-back 
task was used. In our analysis, each unit’s firing rate was smoothed by a low-pass filter with a unit 
gain and a cutoff frequency at 0.2*fs. Here, fs represents a sampling frequency for the firing rate and 
is set to 10Hz (corresponding to the 100ms bin width). To account for latency between the TC 
movement and motor cortical activity, we computed the CC for each unit at time lags from j = 0s, 
0.1s, …2s where the lag j means the firing rate leads the kinematic signals by j seconds. We 
empirically searched for the optimal lag at which the CC was maximized. Note that we only 
explored non-negative lags to maintain a causal relationship between firing and movement. This is 
necessary as neural activity must precede action for effective closed-loop cursor control. 
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Specifically, let zi
t-j be the smoothed firing rate of unit i at the time instant t-j and xd

t be the dth 

dimension of the kinematic parameter vector xt. The CC between zi
t-j and xd

t was estimated from 
data using: 
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where z and sz (respectively, x  and sd) are the mean and standard deviation of zi
t-j (or xd

t ), and 

E[·] represents the expectation. Further, we used the absolute value such that |CC(i,d)| = 0 represents 
no correlation and |CC(i,d)| = 1 corresponds to perfect correlation (including perfect inverse 
correlation). The significance of the correlation for each unit was evaluated using a t-test (with 
significance determined at the 1% level). If a unit showed significant correlation with this test for 

the at least one dimension of xt at any lag j, then the unit was considered to be significantly 
correlated with xt.  
 

2.7. Decoding accuracy during closed-loop training 
To evaluate cursor decoding performance during CL training blocks we computed the CC between 
the TC and the FC kinematics in each block. Since the number of CL blocks varied across sessions, 
we evaluated only the first four CL blocks collected from each session. After finding an optimal lag 
as above, the CCs for each of the vertical and horizontal kinematic parameters were averaged.  We 
used Fisher’s transform [37] to estimate a 95% confidence interval for the CC estimated in each 
block. 
 

2.8. Evolution of directional tuning 
Velocity-based decoding specifically exploits the directional tuning of motor cortical units that 
persists in humans with tetraplegia [13, 26]. To investigate the consistency of this directional tuning 
we analyzed whether the directional tuning of individual units changed between training and testing 
epochs.  This analysis was applied to the recording sessions where velocity-based decoding was 
performed (6 sessions for S3 and 3 sessions for A1). In this analysis, we used a cosine tuning 
function [17] to fit the firing rates as a function of cursor direction. This approach has been widely 
used for studying neural tuning to arm/hand direction in non-human primates. For training epochs, 
we computed the tuning function using the TC direction. For testing epochs, where the TC was not 
present, we computed the tuning function with the intended direction that was defined as a direction 
from the current position of the NC to the designated target (see [26] for introduction of the 
intended direction). Using the cosine tuning function fit to the firing rates of individual units, we 
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computed the preferred direction (PD) and the tuning depth (TD) for each unit. The PD is a 
direction at which the fitted firing rate is maximal and the TD is the difference between the 
maximum and minimum values of the fitted firing rate. The confidence intervals of the estimated 
PD and TD were obtained with a bootstrap algorithm (bias corrected percentile method, 103 
bootstrap re-samples) [38]. The PD (or TD) of each unit was considered to have changed 
significantly between training and testing epochs if the 95% confidence interval of the PD (or TD) 
estimated during testing did not overlap the 95% interval estimated during training.  

  

2.9. Performance evaluation measures 

To quantify NC control performance, we applied performance measures used in the field of human 
computer interaction (HCI) to evaluate pointing devices. The measures are composed of two 
categories, including gross measures that evaluate the overall performance of a given task as 
defined in the ISO9241-9 standard [27], and more detailed measures that evaluate the spatio-
temporal properties of continuous point-to-point movements [28].  

Of the gross measures, we evaluated speed and accuracy of cursor control by computing mean 
movement time (MT) and error rate (ER) in target acquisition. MT was measured as the average 
time it took to reach and dwell on the target from a starting point. Here we measured MT for the 
trials only when the target was acquired. ER was defined as a percentage of the trials in which a 
designated target was not acquired. Note that in this study we do not report an information-theoretic 
throughput measure standardized by ISO9241-9 since it requires tasks with a range of task 
difficulties not present in our tests. 

We also computed four fine performance measures adopted from MacKenzie et al. [28], 
including orthogonal direction change (ODC), movement direction change (MDC), movement error 
(ME) and movement variability (MV); these are illustrated in Figure 2. Given a task axis defined as 
a straight line connecting the starting position to the target position, ODC measures how 
consistently the cursor moves towards a target by counting direction changes orthogonal to the task 
axis and MDC measures the straightness of the NC path by counting direction changes parallel to 
the task axis. ME measures how much the NC path deviates from the ideal straight line (i.e. task 
axis) by computing the average deviation of NC positions from the task axis:  

 ∑=
=

m

i
iy

m
ME

1

1  (5) 

where yi is a distance (positive or negative, see Figure 2) from the i-th sample point on the NC path 
to the task axis and m is the number of the NC samples from the starting point to the target. MV 
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measures the variability of the NC path by computing the standard deviation of yi: 
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Figure 2. Illustration of the NC path performance measures. (a) MDC counts the number of movement 

direction changes parallel to the task axis (for instance, MDC = 2 in this example). (b) ODC counts the 

number of direction change orthogonal to the task axis (ODC = 2). (c-d) ME measures movement deviation 

by computing the average of the absolute deviations |yi| from the task axis, and MV measures the standard 

deviation of yi. Two cases are illustrated in which both ME and MV are large (c) or ME is large but MV is 

small (d). (Illustration derived from MacKenzie et al. [28].) 

 

2.10. Chance performance  

We further evaluated neural cursor control performance in terms of decoding accuracy and target 

acquisition rates relative to chance as described below. These evaluations use estimates of chance 

performance and are dependent upon details of the task configuration and the decoding algorithm. 

Here we present methods of estimating two different chance performance measures: chance 

decoding accuracy during training and chance target acquisition rate during testing.  

The chance decoding accuracy during training was estimated by training and testing a decoder 

with shuffled data in which neural signals and the TC kinematics were shuffled to be uncorrelated. 

To create surrogate data, we first randomly selected K (> 2) training (OL or CL) blocks from a 
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single recording session. Then, we replaced the TC data of the first K-1 blocks with different TC 

data that were randomly selected from different recording sessions in which the same training task 

was used. A decoder was trained using the data in these K-1 blocks. The trained decoder was then 

used to decode the TC kinematics from neural signals for the Kth block. The CC between the 

estimated and the true TC kinematics in this testing block was measured. This procedure was 

repeated 103 times to obtain an average chance level for the CC. We estimated the chance level for 

each pair of the decoder and the associated training task (i.e. the position-based linear filter with 

random pursuit-tracking or the velocity-based Kalman filter with center-out-back).  

We also estimated chance performance for the closed-loop center-out-back target acquisition task 
(4 or 8 peripheral targets).  In an off-line analysis we characterized the chance target acquisition 
rate by estimating the probability that the target would have been acquired by accident if the 
participant were not aware of the actual target location but only knew that it should be one of four 
(or eight) possible target locations. Again, target selection was determined by whether the NC 
dwelled on a specific target for 500ms or more. If the NC were perfectly controlled, the baseline 
chance rate would be 25% for four targets (12.5% for eight). Depending on the characteristics of 
the NC decoding method, however, this baseline chance rate may not reflect the “true” rate of 
selecting a target by accident. If neural control produced straight but not perfect trajectories, the 
chance rate would likely be lower by an amount proportional to the target acquisition performance; 
for instance, if NC control with some decoding algorithm resulted in acquisition of 80% targets, the 
baseline chance rate would be adjusted to 20%. If, instead, the decoding algorithm yielded 
“unsteady” NC movements that could span a wide range of the computer screen, the NC could 
intersect and dwell on any of the target locations accidently. This could increase the chance rate for 
a particular decoder above the baseline; this rate can be computed by simulation. Any decoder-
specific changes to the baseline chance rate result in what we call the adjusted chance rate. In this 
case, the difference likely reflects the effect of unsteady NC behavior on target acquisition 
performance. Below “chance rate” is used to mean the adjusted chance rate. 

In this post-hoc analysis, we ran a computer simulation using the data recorded during 
performance of the target acquisition task. For each “simulated” trial, we used a true NC trajectory 
with a randomly placed target at one of four or eight possible locations; in this way we decoupled 
the observed NC trajectory from the original goal. The chance rate was computed as the percentage 
of the trials when the NC moved to the random target and dwelled on it for 500ms within the 
timeout period. For each decoder, we repeated this procedure 103 times to obtain the average chance 
rate. The simulated data were collected from specific session datasets for different decoders (see 
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Table 1): five PLP sessions for the position-based linear filter with 4 targets (total 400 target 
acquisition trials); nine VKC sessions for the velocity-based Kalman filter with 4 targets (521 
trials); and three VLKC sessions for the velocity-based linear and Kalman filters with 8 targets (90 
trials with the linear filter and 102 with the Kalman filter, respectively).  

The method defined above results in a chance rate that is generally higher than that used in 

Hochberg et al. [13].  For consistency and comparison with that earlier study we also measured the 

control chance rate (control rate) for the 4-target tasks (see [13] for details).  In this off-line 

analysis, both the correct target and a single false target (randomly selected from the three other 

targets) were placed on screen during each post-hoc trial. We measured the percentage of the trials 

in which the NC passed through (and dwelled on) the false target by accident before it reached the 

correct target. Note that we did not have to perform this off-line analysis for VLKC sessions since, 

for these sessions, all eight targets were shown simultaneously and a false target could be selected 

on-line if the NC dwelled on it; thus, this is already included in the error rate. 

Finally, we define a significant target acquisition rate (STAR) as the difference between the 

observed target acquisition rate and the control rate. This STAR quantifies what portion of the 

observed target acquisition rate is indeed achieved by intentionally moving the NC to the target. 

STAR is useful to compare cursor control performance when the control rate varies across different 

decoders on identical tasks. 

 

3. RESULTS 

We investigated the impact of several NIS design choices on neural cursor control by two 
participants with tetraplegia (S3 and A1). Both participants obtained neural control of a computer 
cursor during the performance of a four-direction radial target acquisition task and results are 
reported for 17 sessions ranging from 40 to 418 days after implantation of the array in which the 
center-out-back task was used to assess the performance (with variations as described in Methods).  
Neural activity was observed in all these sessions and the number of spiking units detected per 
session varied from 13 to 179 (mean 63.8, SD 61.9, 12 sessions) for S3 and from 85 to 117 (mean 
95.4, SD 18.2, 5 sessions) for A1, respectively. The units were isolated by utilizing signal 
processing and spike sorting methods applied previously in this ongoing trial [13]. 

In several experiments below we explored five important issues relevant to developing an NIS: 1) 
Tuning of neuronal units to cursor position and velocity during OL training; 2) The effects of OL 
and CL training on acquisition of cursor control with position or velocity; 3) The stability of 
directional tuning between training and testing; 4) The closed-loop performance of position-based 
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cursor decoding using the linear filter versus velocity-based decoding using the Kalman filter; 5) 
The importance of the kinematic representation versus the decoding algorithm for cursor control. 

 
3.1. Kinematic correlation analysis 
The CC between the firing rate and the kinematic parameters was measured for every unit recorded 
during the OL training blocks where the participants imagined arm/hand movements following the 
TC motion. During OL training neural activity should be related to the properties of any imagined 
movement (or, perhaps, the observed visual stimulus) and is independent of any particular decoding 
algorithm since no NC is presented. The analysis was performed with 1226 units recorded in both 
participants recorded over 17 recording sessions. 

 We first computed the optimal lag for each unit at which the CC was maximized. The 
distribution of the optimal lag over the neural population is shown in Figure 3a and reveals that for 
most units the CC was maximized at zero lag for both position and velocity. Based on this analysis 
we assume zero lag for all the Kalman filter decoders used in this study (namely, j = 0 in equation 
2). 

From the statistics of the CC measures, we found that the firing rates of the majority of units in 
both participants were more strongly correlated with cursor velocity than with position (Figure 3b-
d). The statistical test (see Methods 2.6) showed that 65.3% of units were significantly correlated (t-
test; p < 0.01) with both position and velocity, 5.7% with position alone and 24.7% with velocity 
alone. This result indicated that 95.7% of all the units detected by the microelectrode array in 
human motor cortex were significantly correlated with at least one of the TC kinematic parameters. 
The CC values for velocity were overall larger than those for position (p << 0.01; Wilcoxon rank 
sum test) as shown in Figure 3b. In 16 of 17 recording sessions, more units were significantly 
correlated with cursor velocity than position (Figure 3c). Furthermore, among all 1226 units, 69.9% 
units exhibited stronger correlation with velocity while only 25.9% units showed stronger 
correlation with position (Figure 3d). This stronger correlation with velocity was observed 
regardless of the training task: the random pursuit-tracking task for S3-{40, 48, 54} and A1-{85, 
91} or the center-out-back task for the remainder (see Table 1).  These findings suggest that, for 
these neuronal populations, a computer cursor may be better controlled by a person with tetraplegia 
if using a decoding method based on cursor velocity rather than cursor position.  
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Figure 3. Analysis of kinematic tuning during training. (a) Histograms showing the percentage of units 

with optimal lags ranging from 0 to 2s (1126 neuronal units from 17 recording sessions in two participants 

(S3 and A1)). (b) The correlation coefficients (CC) between individual firing rates and kinematic parameters – 

position (white) vs. velocity (gray) - during open-loop training blocks. The median of the CC values is 

represented by bars and 25% and 75% percentiles by vertical lines. (c) The percentage of units significantly 

correlated (Methods) with either position or velocity (p < 0.01; t-test). The number of units (N) recorded in 

each session is denoted in parentheses. (d) The percentage of units that showed stronger (and significant) 

correlation with one of position or velocity compared to the other. 

 

3.2. Effect of training procedures on cursor control 
We evaluated how cursor control was achieved through the training procedures presented in this 
study for different decoding algorithms. Two decoding algorithms were considered here including 
the position-based linear filter trained with the random pursuit-tracking task and the velocity-based 
Kalman filter trained with the center-out-back task. In particular, we studied how much OL training 
alone enabled cursor control for each decoding algorithm and how much CL training improved that 
performance. To quantify this, we computed the CC between the TC and the feedback cursor (FC) 
kinematic parameter (position or velocity depending on the algorithm used). We obtained the 
average CC (averaged over the horizontal and vertical axes at the optimal lag for each block, see 
Methods) for each of the first 4 CL blocks from 14 recording sessions (PLP and VKC) in both S3 
and A1. The optimal lag averaged over 14 sessions at which the CC was maximized was 0.47s (s.d. 
0.4s) which means that the TC led the FC by 0.47s. 

Figure 4 shows the comparison of the CC for the two decoding algorithms. In both participants 
the CC obtained with the position-based linear filter registered a much lower value in the first CL 
block and improved considerably during the remaining blocks. On the other hand, the CC obtained 
with the velocity-based Kalman filter reached over 0.5 in the first CL block and improved only 
slightly afterwards. Note that, in addition to having higher CC’s, the velocity-based decoding results 
in S3 were all obtained with fewer units than the position-based results (see Table 1). In our 
experiments, an average of 2.4-min of data (2 OL blocks) were required to train the velocity-based 
Kalman filter to achieve the CC > 0.5 and 8-min of data (4 OL + 4 CL blocks) were required to train 
the position-based linear filter to achieve similar accuracy. 

This result suggests that training the velocity-based Kalman filter with the (4-target) center-out-
back task required less training time compared to training the position-based linear filter with the 
random pursuit-tracking task. We did not investigate whether such rapid training was made possible 
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due to decoding velocity, which was more correlated with neural activity (Section 3.1), or using a 
relatively simpler center-out task, or both.  For practical NIS development however, we can 
conclude that less training time is required using the velocity-based Kalman filter with the center-
out-back task.  
 

position-based linear filter decoding velocity-based Kalman filter decoding 

(a) (b)

 
Figure 4. Decoding performance improvement with training. Evolution of the average CC between the TC 

and the FC trajectories of position or velocity during closed-loop (CL) training blocks for S3 (a) and A1 (b). 

CC = 1 represents perfect correlation between the TC and the FC. The CC was measured for the two groups 

of CL blocks separated based on the decoding method used: the position-based linear filter (white) and the 

velocity-based Kalman filter (gray). The bars to the left side of a vertical dashed line illustrate the chance 

level for decoding accuracy (Methods) for each decoding method. The bars and the vertical lines to the right 

side represent the average CC and the 95% confidence interval during each of the 1st to the 4th CL blocks.  

 

3.3. Evaluation of changes in directional tuning from training to testing 
Previous animal studies have sometimes shown significant changes in directional tuning of cells 
between open-loop and closed-loop neural control [4-5]. Consequently we sought to establish 
whether the directional tuning of cells was stable or changed between training and testing in 
tetraplegic humans using an NIS over a series of training and testing periods (total 30-60 min). 
Since here we focused on directional tuning change we analyze data from VKC sessions that 
explicitly decoded velocity (207 units in S3 from six sessions: S3-{254, 261, 280, 285, 286 and 
288} and 257 units in A1 from three sessions: A1-{197, 216 and 224}). A statistical analysis of 
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tuning change revealed one class of units that was consistent and another class that changed over 
time. 

Figure 5 illustrates three example units that were consistently tuned to the TC direction across 
training and testing (recorded from S3-261). From the last two CL training blocks of S3-261, we 
sampled the spike trains of three units within a 1s time window from the onset of the target 
appearance in one of four directions (0º, 90º, 180º, 270º). Nine spike trains per unit, per direction 
are shown in the left column of Figure 5. The arrows in the circle represent the estimated preferred 
direction (PD) of each unit. The right column of Figure 5 shows the directional tuning of these units 
during testing where the four-target center-out-back task was performed. Since the NC could move 
to any point on the 2D task space (i.e. computer screen), the intended direction was continuously 
distributed from 0º to 360º. Therefore, we divided the space of the intended direction into eight 
equally spaced angular bins centered at (0º, 45º, 90º, 135º, 180º, 225º, 270º, 315º). Nine 1s spike 
trains for each angular bin are presented here. Visual comparison of the spike raster plots between 
the left and the right columns of Figure 5 suggests that directional tuning of these units did not 
change substantially from training to testing. This also illustrates that even when trained using only 
four directional movements, spiking activities of these units were broadly tuned over a wider range 
of directions, thus enabling the NC to move in any direction after training.  In contrast, Figure 6 
illustrates two examples of the units (from A1-197) that changed their directional tuning between 
the training (left) and testing (right) periods. These units showed statistically significant changes in 
the PD from training to testing, although the tuning depth of these units in A1 (Figure 6) was not as 
large as those in S3 (Figure 5). We remark here that these results do not conclusively demonstrate 
that human motor cortical neurons exhibit rapid PD changes. Rather, Figures 5 and 6 show 
examples of the neuronal units that sustained or changed their preferred directions within a 2 h 
recording period.  

We preformed a statistical analysis of the tuning change for all 464 units (207 units in S3 and 257 
in A1) to find how many units changed or sustained directional tuning and how much their preferred 
directions and tuning depths were changed. First, the percentage of units that were significantly 
tuned to direction (F-test, p < 0.01) increased from 69.6% (144 units) during training to 80.2% (166 
units) during testing in S3 and from 35.0% (90 units) to 63.4% (163 units) in A1. Of those units that 
had been tuned during training (144 units in S3 and 90 in A1), 4.9% (7 units) in S3 and 24.4% (22 
units) in A1 lost directional tuning during testing. Of those units that were not tuned during training 
(63 units in S3 and 167 units in A1), 46.0% (29 units) in S3 and 56.9% in A1 (95 units) gained 
directional tuning during testing. Of those units that were tuned during training, 95.1% (137 units) 
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in S3 and 75.6% in A1 (68 units) remained directionally tuned from training to testing.  
Second, among those units that remained directionally tuned from training to testing, we 

evaluated how much their PD changed. Note that the PD was deemed to be significantly changed if 
the two 95% confidence intervals computed in training and testing respectively did not overlap (see 
Methods 2.8). We found that 72.9% (100 out of 137 units) in S3 and 42.7% (29 out of 68 units) in 
A1 showed no significant change in PD (95% confidence). For the other units in which the PD 
significantly changed, the average change in angle was 34.1º (s.d. 20.4º) for S3 and 99.7º (s.d. 
56.6º) for A1, respectively.  Figure 7 summarizes these results. 

Finally, we evaluated the change of the tuning depth of those units that remained directionally 
tuned (137 units in S3 and 68 in A1) between training and testing. We found that 24.8% (34 units) 
in S3 and 33.8% (23 units) in A1 changed their tuning depths significantly (95% confidence). 
Among these units, 82.4% (28 units) in S3 and 82.6% (19 units) in A1 increased the tuning depth 
and 17.6% (6 units) in S3 and 17.4% (4 units) in A1 decreased the tuning depth. On average, the 
tuning depth increased by 61.9% (s.d. 68.2%) from training to testing (over 34 units) in S3 and by 
130.8% (s.d. 122.1%, over 23 units) in A1, respectively; this increase in the tuning depth was 
statistically significant (paired t-test, p ≈ 7.8 × 10-6 for S3 and p ≈ 3.8 × 10-5 for A1). The increases 
in the tuning depth and in the number of tuned units during testing suggests that directional tuning 
in MI firing activity became stronger between training, where the participants imagined following 
the visually guided cursor movements, to testing, where they volitionally moved the cursor. 

 Although we did not perform an extended study of the relationship between consistency in 
tuning and cursor control performance, we posit that the larger number of tuning changes in the 
neuronal population of A1 might partially explain A1’s poorer cursor control performance relative 
to S3 (see the following section). 
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(a) Channel 1, unit 1 

(b) Channel 33, unit 1 

(c) Channel 86, unit 2 
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Figure 5. Consistent directional tuning between training and testing. Sample spike trains are shown for 

three example units in one session (S3-261), in which S3 performed the center-out-back task during training 

(left) and testing (right). Black tics in the raster plots show the times when neuronal spikes occurred after 

target onset.  Spike raster plots are arrayed according to the direction of movement (4 directions during 

training and 8 during testing). The arrows indicate the preferred directions estimated for each unit. The bars 

below the spike raster plots show the histogram of spikes for 1s in 100ms non-overlapping windows. 

(a) Channel 82, unit 1, A1-197 

(b) Channel 27, unit 1, A1-224 

Training Testing 

 
Figure 6.  Changes in directional tuning between training and testing. The spike trains of two sample 

units from A1-197 (a) and A1-224 (b) are shown. The left and right columns illustrate tuning during training 

and testing, respectively. The arrows indicate the estimated preferred direction (PD).  
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(b) Degree of change in PD for those units   (a) Tuning statistics of neural population 

   whose PD changed  

S3 

 
Figure 7. Statistics of directional tuning change. (a) The statistics of tuning across training and testing is 

illustrated in terms of the percentage of subsets of units with particular properties in S3 (over 6 sessions) and 

in A1 (over 3 sessions). The neural population was divided into four subsets including: units showing no 

directional tuning across the session, units directionally tuned only during training, units tuned only during 

testing, and units tuned during both training and testing. The last subset is further divided into smaller groups 

including: one showing significant PD changes and the other showing no PD change. (b) For units that 

changed PD, the bars indicate the percentage of units that changed by the indicated number of degrees (0-30, 

30-60, etc.) for S3 (blue) and A1 (red).  
 

 

3.4 The velocity-based Kalman filter versus the position-based linear filter 
Based on the tuning analysis above we compared on-line cursor control in tetraplegic humans using 
the velocity-based Kalman filter with the position-based linear filter adopted from Hochberg et al. 
[13].  We found that cursor control performance was significantly improved with the velocity-
based Kalman filter for both participants. We evaluated performance in the four-target acquisition 
task across those recording sessions in which the identical task configuration was used (9 sessions 
for S3, 5 for A1). The number of target acquisition assessment trials was 80 per session except S3-
285 (44 trials), S3-287 (73), A1-197 (30), A1-216 (12) and A1-224 (43). In each trial, the 
participants had to acquire the target before a 7s timeout. 

A1 

Not tuned Tuned (training) Tuned (testing) 
Always tuned PD unchanged PD changed 
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Figures 8-11 illustrate the performance of the two decoding methods.  The figures present the 
decoded NC paths starting from the center and moving to each of four peripheral targets for all 14 
recording sessions, along with the mean NC paths. These figures show that the NC paths decoded 
with the velocity-based Kalman filter were much straighter and smoother than those produced by 
the position-based linear filter in both participants. Note that the NC movements using the velocity-
based Kalman filter were achieved with fewer units: the ratios of the average unit counts for the 
position-based linear filter sessions compared with the later velocity-based Kalman filter sessions 
were 162:35 for S3 and 110:86 for A1.  

Using pointing device performance measures based on the ISO 9241-9 standard as well as other 
cursor control measures (see Methods), we quantified the performance of closed-loop neural cursor 
control for each participant, as summarized in Table 2. The control chance rate was 9.8% for the 
position-based linear filter, which was on a par with previously reported results in a different 
participant [13]. For the velocity-based Kalman filter, the control rate was 3.9%. This lower control 
rate suggests that the better controlled NC trajectories produced by the velocity-based Kalman filter 
reduced the chance of selecting an incorrect target; this is a significant advantage in a real task 
where many targets are simultaneously placed and false targets could be selected (see Methods for 
the estimation of the control rate).  

For S3, target acquisition accuracy improved using the velocity-based Kalman filter over using 
the position-based linear filter. S3 failed to acquire 52 out of 240 targets before the timeout (ER = 
21.7%) using the position-based linear filter over 3 sessions versus 60 out of 436 targets (ER = 
13.8%) using the velocity-based Kalman filter over 6 sessions, reducing the absolute value of ER by 
7.9%.  For the observed target acquisition rate (78.3%) using the position-based linear filter, the 
baseline chance rate for the 4-target center-out task was 19.6% (i.e. a quarter of the target 
acquisition rate). However, the adjusted chance rate obtained from simulation was 25.9%, higher 
than the baseline chance rate by 6.3%. This implies that there was a 6.3% chance that an incorrect 
target was selected by accident due to unsteady NC behavior. The baseline chance rate for the 
velocity-based Kalman filter (target acquisition rate = 86.2%) was 21.6%. The adjusted chance rate 
was 23.9%, 2.3% higher than the baseline chance rate. So, the chance of selecting an incorrect 
target was reduced with the velocity-based Kalman filter (see Methods for the estimation procedure 
of the chance rate). The significant target acquisition rate (STAR), which was obtained by 
subtracting the control rate from the target acquisition rate, was 68.5% (= 78.3 - 9.8) for the 
position-based linear filter versus 82.3% (= 86.2 – 3.9) for the velocity-based Kalman filter. Cursor 
movement was slightly slower when the velocity-based Kalman filter was used; overall mean 
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movement time (MT) increased by 0.49s (one-tailed t-test; p < 10-4). Note that MT was only 
assessed (and only defined) for successful target acquisition trials. Analysis of the NC movement 
paths from the starting point to the target demonstrated that NC movement decoded by the velocity-
based Kalman filter produced smoother trajectories compared to that decoded by the position-based 
linear filter. All four measurements of the cursor path accuracy, including orthogonal direction 
change (ODC), movement direction change (MDC), movement error (ME) and movement 
variability (MV), were significantly smaller using the velocity-based Kalman filter (one-tailed t-
test; p < 0.01).  

A1 missed 43 out of 160 targets (ER = 26.3%) using the position-based linear filter versus 27 out 
of 85 targets (ER = 31.8%) using the velocity-based Kalman filter, increasing overall ER by 4.9%. 
However, the chance rate was 7.6% higher than the baseline chance rate (18.3%) with the position-
based linear filter and 6.9% higher than the baseline chance rate (17.1%) with the velocity-based 
Kalman filter. This suggests that the effect of unstable NC control on target acquisition performance 
was similar for the two decoders for A1. The STAR was 63.9% (= 73.7 - 9.8) for the position-based 
linear filter versus 64.3% (= 68.2 – 3.9) for the velocity-based Kalman filter, again demonstrating a 
similar target acquisition performance achieved by volitional neural control. MT was reduced by 
0.03s using the velocity-based Kalman filter but this difference was not statistically significant 
(one-tailed t-test; p=0.45). All four fine measures characterizing the NC paths demonstrated that the 
NC movements decoded by the velocity-based Kalman filter were smoother (significantly smaller 
ODC, MDC, ME and MV; one-tailed t-test; p < 0.01) than using the position-based linear filter in 
participant A1.  

The longer MT with the velocity-based decoder could be attributed to two factors: slower cursor 
speed or difficulty in holding the cursor still to select the target. To test these two hypotheses, we 
compared the decoded speed (i.e. the length of the 2D decoded velocity vector) for the position-
based linear filter and the velocity-based Kalman filter. A comparison of the distributions of the 
decoded speed revealed that the position-based linear filter produced significantly (Wilcox rank sum, 
p << 0.1) faster cursor speeds than the velocity-based Kalman filter; the median speed was 64.9 
pixel/s for linear-position and 39.0 pixel/s for Kalman-velocity, respectively (Figure 12a). We 
further examined whether the decoded cursor speed was related to the spatial position of the cursor 
on the screen. To do so we divided the screen space into small regions and computed the mean 
speed within each region. We found that the cursor speed of the position-based linear filter was 
highest near the boundaries of the screen (Figure 12b) while the cursor speed of the velocity-based 
Kalman filter showed the highest speed between the center and the four targets and a lower speed 
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around the targets (Figure 12c). The latter is what we would expect for a target acquisition task. 
This comparison suggests that although cursor speed decoded with the velocity-based Kalman filter 
was relatively slow, it tended to be more accurately controlled in terms of performing the task. 
              

 

S3-40, 80 paths, N=179 S3-48, 80 paths, N=159 S3-54, 80 paths, N=147 

Figure 8. The NC movement paths decoded by the position-based linear filter in S3. The NC movement 

paths from the center to four radial targets performed by S3 using the position-based linear filter in three 

recording sessions (S3-40, S3-48 and S3-54). (top) 80 NC paths (20 per target) denoted by black lines are 

shown per session. The yellow squares approximately represent target positions and sizes. N denotes the 

number of recorded units. (bottom) The mean NC path towards each target is shown for each session. 

Different line colors denote the mean path for different targets: blue: 0º; gray: 90º; green: 180º; black: 270º. 

To obtain the mean path, all the NC paths per target were linearly interpolated to make each path (with 

different duration) have the same number of sample points. The mean path per target was then computed over 

these interpolated paths. Note that some mean paths did not reach the target.  This illustrates that for some 

trials, the NC failed to reach the target before timeout expired. 
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S3-254, 80 paths, N=46 S3-261, 80 paths, N=80 S3-280, 79 paths, N=13 

S3-285, 44 paths, N=15 S3-282, 80 paths, N=20 S3-287, 73 paths, N=33 

 
Figure 9. The NC movement paths decoded by the velocity-based Kalman filter in S3. The NC movement 

paths from the center to four radial targets performed by S3 using the velocity-based Kalman filter in six 

recording sessions (S3-254, S3-261, S3-280, S3-282, S3-285 and S3-287). 44-80 NC paths (10-20 per target) 

are shown together with the mean NC paths. N denotes the number of recorded units. 
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A1-85, 40 paths, N=103 A1-91, 40 paths, N=117 

 
Figure 10. The NC movement paths decoded by the position-based linear filter for A1. The NC movement 

paths performed by A1 using the position-based linear filter in two recording sessions (A1-85 and A1-91). 

(top) 40 NC paths (10 per target) are shown. (bottom) The mean NC path towards each target is shown for 

each session. 

 

A1-197, 30 paths, N=102 A1-216, 12 paths, N=70 A1-224, 43 paths, N=85 
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Figure 11. The NC movement paths decoded by the velocity-based Kalman filter for A1. The NC 

movement paths performed by A1 using the velocity-based Kalman filter in three recording sessions (A1-197, 

A1-216 and A1-224). (top) 12-43 NC paths (2-11 per target) are shown. (bottom) The mean NC path towards 

each target is shown for each session. 

 

(b) (c)

pic/s

240

120

(a) 

 

Figure 12. The distribution of neural cursor speed. (a) The NC speed distributions with position-based 

linear filter decoding (blue) or velocity-based Kalman filter decoding (red) are presented. The NC speed data 

were collected from nine sessions of S3 with approximately 40,000 time samples for each of position and 

velocity decoding. (b) Mean cursor speed is shown as a function of 2D cursor location for position-based 

decoding. Each pixel depicts the mean speed of the NC in that region of the screen. The highest cursor speeds 

are found at the periphery of the movement space near the targets.  (c) Mean cursor speed for velocity-based 

decoding is shown; the highest speeds are found in the center of the screen with lower speeds near the targets. 

For both (b) and (c), the dotted squares represent the target size and location. 

 

3.5 Contribution of kinematic parameters versus the decoding algorithm 
The performance evaluation presented above demonstrated that cursor control was improved using 
the velocity-based Kalman filter relative to the position-based linear filter. However, these results 
did not differentiate between the effects of the decoding algorithm (linear versus Kalman filter) and 
the kinematic parameter (position versus velocity). Therefore, we conducted three “VLKC” 
recording sessions with S3 (S3-408, S3-412 and S3-418) in which velocity-based linear and 
velocity-based Kalman filters were evaluated sequentially to specifically provide a comparison of 
the decoding algorithms only. In each session, either the Kalman or the linear filter was first trained 
and tested with the 8-target acquisition task. Then, the other filter was again trained and tested using 
the exactly same training (center-out-back) and testing tasks. Each filter had its own training blocks.   
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Table 2. Neural cursor control evaluation in two participants (S3 and A1) in performance of the 
four-target center-out task (see Methods 2.4 for the description of the testing task). N denotes the 
number of recorded neuronal units and Nc denotes the number of units that were significantly 
correlated with a given decoding kinematic variable (position or velocity; see Figure 3). The 
significant target acquisition rate (STAR: target acquisition rate – control rate) is also reported. The 
control rate was 9.8% for position decoding and 3.9% for velocity decoding. 

Trial 

Day 

N Nc MT 

(sec) 

STAR 

(%) 

ER 

(%) 

ODC 

 mean  sd 

MDC 

 mean  sd 

ME (mm) 

 mean  sd 

MV (mm) 

 mean  sd 

S3 – Position-based linear filter decoding 

40 179 126 2.87 67.7 22.5 10.1  6.3 9.6  5.5 33.7  14.5 32.7  16.7 

48 159 120 2.98 62.7 27.5 10.3  7.2 10.2  4.9 32.6  18.0 33.3  16.5 

54 147 110 3.06 75.2 15.0 9.3  6.2 10.0  6.2 32.8  13.0 31.8  14.0 

average 162 118 2.97 68.5 21.7 9.9  6.5 9.9  6.2 33.0  15.1 32.4  15.6 

S3 – Velocity-based Kalman filter decoding 

254 46 40 3.71 74.8 21.3 0.6  0.7 1.6  1.8 20.0  11.5 8.8  6.0 

261 80 65 3.29 92.3 3.8 0.5  0.6 1.9  1.6 17.1   9.8 7.9  4.3 

280 13 8 3.47 72.0 24.1 0.8  1.0 1.4  1.2 34.3  24.2 19.7  11.7 

282 20 13 3.71 82.3 13.8 0.8  0.9 1.9  1.5 21.2  11.3 12.6  7.1 

285 15 13 3.02 81.1 15.9 1.2  1.8 1.8  1.6 25.8  19.6 14.8  98 

287 33 27 3.40 92.0 4.1 0.7  0.9 1.6  1.4 23.0  15.3 14.3  8.9 

average 35 28 3.46 82.3 13.8 0.7  1.0 1.7  1.5 23.0  16.3 12.7  8.9 

A1 – Position-based linear filter decoding 

85  99 60 2.88 71.4 18.8 9.4  5.3 9.7  4.9 27.4  9.4 26.8  10.1 

91 112 72 3.55 55.2 35.0 10.2  6.7 11.3  6.0 42.5  23.0 41.1  22.9 

average 106 66 3.18 63.9 26.3 9.7  5.9 10.4  5.5 34.1  18.4 33.1  18.3 

A1 – Velocity-based Kalman filter decoding 

197 102 68 3.89 39.4 56.7 0.9  1.6 1.6  1.9 16.9   8.3 13.2  11.4 

216 70 43 3.95 62.8 33.3 0.8  1.0 2.0  1.8 21.0   8.7 12.6  7.7 

224 85 52 2.71 82.2 13.9 0.9  1.1 2.0  1.5 29.1  20.1 13.7  8.5 

average 94 60 3.15 64.3 31.8 0.9  1.2 1.9  1.6 25.3  17.5 12.8  7.6 
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During training we identified the neuronal units with firing rates > 1Hz during the first two open-
loop blocks and used them to build and test the decoding algorithms.  Hence, the number of units 
used for each filter could be slightly different even during the same day (see Table 3).  We changed 
the order of the decoding algorithm for each day: Kalman followed by linear filters for S3-408; and 
linear followed by Kalman filters for S3-412 and S3-418. Note that we were unable to test both 
decoding algorithms with position as the kinematic variable; S3 was unable to gain control of a 
cursor using position decoding in later trial sessions where an average of 35 units were recorded.  

Individual NC paths along with the mean path to each target are shown in Figure 13. The 
performance evaluation of each velocity-based filter is described in Table 3. Over three sessions, the 
performance using the velocity-based linear filter exhibited slower (higher MT; t-test, p<0.01) and 
less accurate (the absolute value of ER increased by 32.9%) NC control compared to the velocity-
based Kalman filter. A false target was never selected using the velocity-based linear filter (90 
trials) while false targets were selected three times out of 102 trials (2.9%) using the velocity-based 
Kalman filter. The STAR derived from the control rate was 51.1% for the linear filter and 71.1% for 
the Kalman filter, respectively. These results suggest that the Kalman filter enabled more rapid 
cursor control than the linear filter when both filters decoded cursor velocity, which led to better 
target acquisition performance for the Kalman filter within a fixed time limit. 

The NC showed a larger movement direction change (MDC) with the linear filter than with the 
Kalman filter (t-test, p<0.01) reflecting the “shaky” NC trajectories observed with the velocity-
based linear filter (see Figure 12). However, the slow NC movements of the linear filter did not 
register more orthogonal direction changes (ODC) than those by the Kalman filter (t-test, p>0.01), 
which indicates the NC decoded by the linear filter, although slower, moved forward in the correct 
direction. Movement variability (MV) and Movement error (ME) using the velocity-based linear 
filter were slightly (< 5mm) smaller than those using the velocity-based Kalman filter (t-test, 
p<0.01). These results indicate that the poorer target acquisition performance by the velocity-based 
linear filter was due to the fact that the NC moved too slowly to reach the target in a given time 
limit. Note that we trained both the linear and Kalman filters using cursor velocity and the 
parameters of these models were both optimal for decoding this velocity.  Consequently we did not 
apply any post-hoc gain to scale the decoded velocities. Such an approach might be used to increase 
cursor speed (for both decoders) and may be worth considering in clinical applications. Similarly, 
improved methods for decoding speed might be adopted. 

In this study, the linear filter was tested with both position and velocity kinematics. However, 
experiments examining the velocity-based linear filter employed a more difficult task than those for 
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the position-based linear filter; smaller targets were located at a larger distance from the center, 
which contributed to longer MT and, consequently, higher ER (due to timeout) for reaching and 
dwelling (see the performance of the velocity-based Kalman filter for different task setups in Tables 
2 and 3). Hence, it is nontrivial to directly compare performance between the position-based and 
velocity-based linear filters. However, we observed that even with the increased task difficulty and 
longer movement times, the velocity-based linear filter exhibited better ODC, MDC, ME and MV 
than the position-based linear filter; these measures are relatively independent of the target size and 
distance.  Therefore, with respect to these measures, the performance difference between using the 
velocity-based Kalman and the velocity-based linear filters was not as large as that between the 
velocity-based and position-based linear filters. This observation suggests that decoding appropriate 
kinematic parameters – i.e. velocity versus position – may play a more important role than the 
decoding algorithm itself in improving cursor control in an NIS. 

 
Table 3. Neural cursor control performance evaluation in S3 for the eight-target center-out task 
using velocity-based decoders. In each of three recording sessions, two velocity-based decoders 
were compared: the linear filter (LF) and the Kalman filter (KF). N is the number of neuronal units 
used to build the decoders. 

Trial N MT (sec) ER (%) ODC MDC ME (mm) MV (mm) 

Day LF KF LF KF LF KF LF KF LF KF LF KF LF KF 

408 25 25 7.80 5.79 35.5 10.0 2.3(1.8) 1.3(1.4) 5.4(1.6) 2.8(1.7) 11.0(7.6) 14.9(8.6) 8.4(3.7) 11.4(5.8)

412 29 28 7.51 5.88 39.4 44.8 1.3(1.3) 1.1(1.4) 4.3(2.1) 2.9(1.7) 13.3(6.3) 14.5(7.4) 8.0(2.7) 11.0(4.3)

418 22 21 8.04 6.42 76.9 12.1 2.8(1.7) 1.3(1.2) 5.8(2.6) 2.9(1.6) 11.4(5.5) 18.8(9.2) 8.6(2.7) 14.4(6.9)

Avg 25 25 7.71 6.01 48.9 26.0 1.9(1.7) 1.3(1.3) 4.9(2.0) 2.9(1.7) 12.1(6.7) 16.0(8.5) 8.2(3.1) 12.1(5.8)
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S3-408, 40 paths, N=25 S3-412, 29 paths, N=28 S3-418, 33 paths, N=21 
(b) 

(a) S3-418, 26 paths, N=22 S3-408, 31 paths, N=25 S3-412, 33 paths, N=29 

 
Figure 13. The NC paths decoded by the velocity-based Kalman filter and linear filter. The NC paths 

performed by S3 using the velocity-based decoders during the eight-target center-out task are shown. 

Performance results from three recording sessions (S3-408, S3-412 and S3-418) are shown where both the 

linear filter and the Kalman filter were sequentially tested. The individual NC paths and the mean path to each 

target made using either (a) the linear filter or (b) the Kalman filter are shown. Eight targets were located at 

{0º, 45º, 90º, 135º, 180º, 225º, 270º, and 315º). N denotes number of units used to build the decoding filter.  
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4. DISCUSSION 
We found that intracortical control of a computer cursor from MI in two humans with tetraplegia 
was improved when decoding cursor velocity with a Kalman filter rather than when decoding 
position with a linear filter. The Kalman velocity method provided smoother and more accurate 
cursor control than decoding position using the linear filter in two participants (one with brainstem 
stroke and the other with ALS) during a 4-target center-out task. The study (in S3) of the effect of 
the decoding algorithm on cursor control revealed that cursor speed was higher with the Kalman 
filter, which consequently led to a higher target acquisition rate within a 10 s timeout period 
compared to using the linear filter decoding velocity. The NC paths estimated by the Kalman filter 
were also less shaky than those produced by the linear filter, resulting in lower MDC measures. 
However, other fine measures of the NC path related to the variability and deviation from a straight 
line showed similar performance levels between the two algorithms.  Moreover, both methods 
exhibited superior performance to the case when position was decoded using the linear filter even 
though the position decoding sessions used many more units.   

Hence, from these results in two participants, we found that selection of kinematic parameters had 
a more profound impact on cursor control performance than the choice of the decoding algorithm. 
We further found that the participants achieved reasonable cursor control (after visually-guided 
open-loop training) more rapidly with the velocity-based Kalman filter decoding algorithm thus 
requiring less training time than the position-based linear filter algorithm. 

Our approach to decoding velocity (or, equivalently, direction and speed) from human motor 
cortex as a cursor control signal was based on many previous non-human primate studies of 
neuronal modulation. Those studies found modulation in MI neuronal firing activity to be related to 
movement direction during one-dimensional arm movements [39-40], multi-dimensional point-to-
point reaching movements [16-19,41] and drawing and pursuit-tracking movements [14,42]. In 
particular, the work of Taylor et al. [5] and following work [8,43] on real-time closed-loop cortical 
control of a prosthetic device (e.g. a robotic arm) by neurologically intact non-human primates 
established the feasibility of using velocity decoding from neural population activity to control 
prosthetic devices. Our finding that decoding velocity provided better cursor control than decoding 
position supports these previous findings and extends them to humans. Beyond previous work, the 
present study also shows that cursor velocity was better extracted from the motor cortical neurons 
during purely imagined (or attempted) movements in tetraplegic humans. This was evaluated with 
an explicit comparison between velocity and position decoding during closed-loop cursor control. 

Previous studies, as well as our own here, leave open the question as to what is the “best” control 
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variable to decode MI activity. For instance, we have observed during a single recording session in 
A1 that adding cursor acceleration to the kinematic parameters of the Kalman filter also resulted in 
superior performance when compared with position-based decoding (unpublished observation). In 
addition, when cursor position and velocity were decoded simultaneously by the Kalman filter, the 
performance was inferior to the case when only velocity was decoded (observed in multiple 
recording sessions in S3 and A1, with 67-90 units recorded). This suggests not only that choosing 
an appropriate kinematic representation of cursor movement may be important to achieve smooth 
cursor control (e.g. velocity vs. position), but also that exploring and modeling additional 
relationships between neural signals and cursor kinematics may lead to further improvements in 
cursor control. At this point, we conclude that an NIS that is informed by an analysis of neural 
population coding can result in improved cursor control. This approach should extend to other types 
of prosthetic devices such as robot arms as well. 

As in the first work by Hochberg et al. [13], selection of targets was performed by briefly holding 
the NC on the target (“dwell”).  Such an interface has serious limitations in practice and most 
commercial pointing devices have some specific mechanism for target selection (“clicking”).  Here 
we found that the chance rate for target selection with dwell could be high when there was only one 
selectable target on the screen.  The addition of multiple targets (as exist in most commercial 
software interfaces, such as common word processing software) increased the chance of a false 
selection making the need for a specific click function more important.  Implementing a discrete 
neural “click” is a topic of our current research; initial progress has been reported in Kim et al. [44]. 

In an earlier study of similar data from humans with tetraplegia, Truccolo et al. [26] found no 
significant difference between position and velocity tuning of MI neurons.  It is important to note 
that the Truccolo et al. analysis was performed on closed-loop (CL) blocks in which the subject 
viewed a decoded feedback cursor (FC) that was controlled by the position-based linear filter.  In 
contrast, during OL blocks, with no FC present, we found significantly more velocity tuned 
units.  It is possible that the position-based decoding model in the Truccolo et al. study biased the 
population toward position tuning thus reducing tuning to velocity.  This suggests an interesting 
direction for future study: does the use of a particular kinematic representation in the decoding 
method change the tuning properties of MI neurons? 

The design and evaluation of decoder training paradigms for a human NIS require more 
extensive study. For the sessions presented in this paper, two training tasks were used depending 
upon which kinematic parameter was being decoded. The center-out-back task, even with more than 
four targets, may not be appropriate for training a position-based decoder since the position samples 
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of the TC only cover a limited space of the screen. Rather, the random pursuit-tracking task 
provides a broader range of the TC position data for position-based decoder training.  Indeed, our 
preliminary on-line results indicated that a position-based decoder trained with the random pursuit-
tracking task yielded better cursor control than a position-based decoder trained with the center-out-
back task. On the other hand, performing the random pursuit (or step) tracking task may not 
dissociate velocity from position as effectively as the center-out-back task during a finite training 
period (up to ~ 10 min). We have not extensively studied the use of the random pursuit-tracking task 
to train a velocity-based decoder, but we anticipate longer training times. A key finding here was 
that the velocity-based decoder required very little training, as the first few OL training blocks (~ 
2.4 min) produced usable cursor control.  The question remains as to whether improved feedback 
methods or other filter (or participant) training protocols could further improve the accuracy of 
control, even without further improvements in decoding algorithms. 

It is important to notice that we did not present how to train the human user of an NIS in this 
study. It is unknown how a decoder training process affects the cognitive aspects of the human user. 
Although we speculate that there must be some types of “training” in the participants to achieve 
cursor control within or across the trial days, we have not systematically quantified them. However 
we foresee that human factors in training will become more important as we advance the NIS to 
enable the control of more complex effectors (e.g. robotic arms). Our future study will investigate 
this. 

In terms of decoding algorithms, both the linear filter and Kalman filter are simple (linear) 
methods that may not be optimal for neural cursor control.  In off-line analysis of non-human 
primate recordings, several authors have observed that more complex decoding methods can 
improve on these two standard techniques [45-49].  The improvement, however, may come with 
additional computational cost or the need for more training data and, consequently, longer training 
times.  Improved decoding algorithms that maintain the benefits of the Kalman filter are a topic of 
our current research. 

The variation of neural spiking activity (e.g. changes in tuning between training and testing; see 
Section 3.3) within a single day or across days suggests that the sources of such variation should be 
studied further. Some possible sources of variability include: (1) Some of the recorded neural 
waveforms were of low amplitude and consequently may have been difficult to sort into single units. 
For multi-units, changes in neural modulations could be due to changes in the relative rates of 
multiple cells rather than intrinsic changes to any given cell. (2) With multi-unit recordings, if 
waveforms from one cell are close to the threshold for acceptance, small fluctuations in the 
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waveform could change the overall multi-unit activity on a given electrode.  (3) There may be 
task-related variation in neural activity between training and testing. The change from viewing the 
TC to active closed-loop control of the NC might change the modulation of neural firing rates. This 
could exacerbate the issues related to multi-unit recordings mentioned above. (4) The visual 
feedback between training and testing also changed. In the testing sessions, only the NC was visible 
while in training both the FC and TC appeared at the same time. While the subject was instructed to 
imagine moving the TC during training, the presence of the FC might have altered their intended 
movement. (5) There may be intrinsic non-stationarity in the neural population that could also 
change the directional tuning. (6) There may be unmeasured and un-modeled electrical or 
mechanical factors that vary over time and change the nature of the recorded signals. For example, 
any changes in the array placement relative to the neural tissues could change the units recorded 
from one time to another. Based on our observations this appears very unlikely. 

It is commonly anticipated that, all else being equal, decoder performance can be improved with 
the addition of more spiking units [3,4,7,25]. The position-based linear filter decoding results 
reported for S3 were derived from recording sessions approximately 2 months after implantation, 
during which time the number of identifiable units or multi-units ranged from 147-179. On the other 
hand, the velocity-based Kalman filter decoding results were reported for the sessions conducted 
10-11 months after implantation during which time the number of units ranged from 13-80. During 
some recording sessions in this latter period, which were not presented in this report, we found that 
position-based decoding yielded completely inaccurate cursor movements so that no control of a 
cursor was achieved (position was decoded using both the linear filter or Kalman filter method). 
Consequently, in our analysis we compared position-based decoding with relatively high unit counts 
to velocity-based decoding with relatively low unit counts. Despite this difference in unit counts we 
found that velocity-based decoding was superior to position-based decoding.  Thus one primary 
advantage of velocity-based cursor control, regardless of the decoding method, was its ability to 
provide usable control with relatively small numbers of units.  With comparable unit counts we 
expect this difference in performance between position and velocity decoding to be even larger. 
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	2.2 Recording
	During the sessions, neural signals were recorded from the motor cortex of the participants using a chronically-implanted 96-channel Cyberkinetics microelectrode array and the BrainGate NIS. After digitization (30 kHz per channel) real-time, amplitude-thresholding software (see Suner et al. [31] for details) was utilized to discriminate different waveshapes on each channel. Putative single neurons and apparent multi-neuron activity with consistent waveforms [31] (both referred to here as ‘units’) were accepted or rejected for inclusion in the study at the beginning of each session based on visual inspection of the isolated waveforms with no further criteria applied to identify single neurons. We did not analyze the nature of these units in detail but some were clearly defined single units, some contained multiple cells with waveforms that could not be confidently segregated from each other and some were low-amplitude intermixed signals that modulated with the task. During recording, subjects viewed a computer monitor that displayed task information related to various cursor control tasks as described below.
	2.7. Decoding accuracy during closed-loop training
	2.9. Performance evaluation measures
	To quantify NC control performance, we applied performance measures used in the field of human computer interaction (HCI) to evaluate pointing devices. The measures are composed of two categories, including gross measures that evaluate the overall performance of a given task as defined in the ISO9241-9 standard [27], and more detailed measures that evaluate the spatio-temporal properties of continuous point-to-point movements [28]. 
	2.10. Chance performance 
	We also estimated chance performance for the closed-loop center-out-back target acquisition task (4 or 8 peripheral targets).  In an off-line analysis we characterized the chance target acquisition rate by estimating the probability that the target would have been acquired by accident if the participant were not aware of the actual target location but only knew that it should be one of four (or eight) possible target locations. Again, target selection was determined by whether the NC dwelled on a specific target for 500ms or more. If the NC were perfectly controlled, the baseline chance rate would be 25% for four targets (12.5% for eight). Depending on the characteristics of the NC decoding method, however, this baseline chance rate may not reflect the “true” rate of selecting a target by accident. If neural control produced straight but not perfect trajectories, the chance rate would likely be lower by an amount proportional to the target acquisition performance; for instance, if NC control with some decoding algorithm resulted in acquisition of 80% targets, the baseline chance rate would be adjusted to 20%. If, instead, the decoding algorithm yielded “unsteady” NC movements that could span a wide range of the computer screen, the NC could intersect and dwell on any of the target locations accidently. This could increase the chance rate for a particular decoder above the baseline; this rate can be computed by simulation. Any decoder-specific changes to the baseline chance rate result in what we call the adjusted chance rate. In this case, the difference likely reflects the effect of unsteady NC behavior on target acquisition performance. Below “chance rate” is used to mean the adjusted chance rate.
	In this post-hoc analysis, we ran a computer simulation using the data recorded during performance of the target acquisition task. For each “simulated” trial, we used a true NC trajectory with a randomly placed target at one of four or eight possible locations; in this way we decoupled the observed NC trajectory from the original goal. The chance rate was computed as the percentage of the trials when the NC moved to the random target and dwelled on it for 500ms within the timeout period. For each decoder, we repeated this procedure 103 times to obtain the average chance rate. The simulated data were collected from specific session datasets for different decoders (see Table 1): five PLP sessions for the position-based linear filter with 4 targets (total 400 target acquisition trials); nine VKC sessions for the velocity-based Kalman filter with 4 targets (521 trials); and three VLKC sessions for the velocity-based linear and Kalman filters with 8 targets (90 trials with the linear filter and 102 with the Kalman filter, respectively). 

