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Abstract

Probabilistic modeling of correlated neural population firing activity is
central to understanding the neural code and building practical decoding
algorithms. No parametric models currently exist for modeling multi-
variate correlated neural data and the high dimensional nature of the data
makes fully non-parametric methods impractical. To address these prob-
lems we propose an energy-based in which the joint probability of neural
activity is represented as a Gibbs model using learned functions of the
1D marginal histograms of the data. The parameters of the model are
learned using contrastive divergence and an optimization procedure for
finding appropriate marginal directions. We evaluate the method using
real data recorded from a population of motor cortical neurons. In partic-
ular, we model the joint probability of population spiking times and 2D
hand position and show that the likelihood of test data under our model is
significantly higher than under other models. These results suggest that
our model captures correlations in the firing activity. Our rich probabilis-
tic model of neural population activity is a step towards both measure-
ment of the importance of correlations in neural coding and improved
decoding of population activity.

1 Introduction

Modeling population activity is central to many problems in the analysis of neural data.
Traditional methods of analysis have used single cells and simple stimuli to make the prob-
lems tractable. Current multi-electrode technology, however, allows the activity of tens or
hundreds of cells to be recorded simultaneously along with with complex natural stimuli
or behavior. Probabilistic modeling of this data is challenging due to its high-dimensional
nature and the correlated firing activity of neural populations. One can view the problem as
one of learning the joint probability P (s, r) of a stimulus or behavior s and the firing activ-
ity of a neural population r. The neural activity may be in the form of firing rates or spike
times. Here we focus the latter more challenging problem of representing a multivariate
probability distribution over spike times.

Modeling P (s, r) is made challenging by the high dimensional, correlated, and non-
Gaussian nature of the data. The dimensionality means that we are unlikely to have suf-



ficient training data for a fully non-parametric model. On the other hand no parametric
models currently exist that capture the one-sided, skewed nature of typical correlated neu-
ral data. We do, however, have sufficient data to model the marginal statistics of the data.
With that observation we draw on the FRAME model developed by Zhu and Mumford for
image texture synthesis [1] to represent neural population activity.

The FRAME model represents P (s, r) in terms of its marginal histograms. In particular
we seek the maximum entropy distribution that matches the observed marginals of P (s, r).
The joint is represented by a Gibbs model that combines functions of these marginals and
we exploit the method of [2] to automatically choose the optimal marginal directions. To
learn the parameters of the model we exploit the technique of contrastive divergence [3, 4]
which has been used previously to learn the parameters of Product-of-Experts (PoE) models
[5]. We observe that the FRAME model can be viewed as a Product of Experts where the
experts are functions of the marginal histograms. The resulting model is more flexible than
the standard PoE formulation and allows us to model more complex, skewed distributions
observed in neural data.

We train and test the model on real data recorded from a monkey performing a motor con-
trol task; details of the task and the neural data are described in the following section.
We learn a variety of probabilistic models including full Gaussian, independent Gaussian,
product of t-distributions [4], independent non-parametric, and the FRAME model. We
evaluate the log likelihood of test data under the different models and show that the com-
plete FRAME model outperforms the other methods (note that “complete” here means the
model uses the same number of marginal directions as there are dimensions in the data).

The use of energy-based models such as FRAME for modeling neural data appears novel
and promising, and the results reported here are easily extended to other cortical areas.
There is a need in the community for such probabilistic models of multi-variate spiking
processes. For example Bell and Para [6] formulate a simple model of correlated spiking
but acknowledge that what they would really like, and do not have, is what they call a
“maximum spikelihood” model. This neural modeling problem represents a new applica-
tion of energy-based models and consequently suggests extensions of the basic methods.
Finally, there is a need for rich probabilistic models of this type in the Bayesian decoding
of neural activity [7].

2 Methods

The data used in this study consists of simultaneously recorded spike times from a pop-
ulation of M1 motor neurons recorded in monkeys trained to perform a manual tracking
task [8, 9]. The monkey viewed a computer monitor displaying a target and a feedback
cursor. The task involved moving a 2D manipulandum so that a cursor controlled by the
manipulandum came into contact with a target. The monkey was rewarded when the target
was acquired, a new target appeared and the process repeated. Several papers [9, 11, 10]
have reported successfully decoding the cursor kinematics from this data using firing rates
estimated from binned spike counts.

The activity of a population of cells was recorded at a rate of 30kHz then sorted using
an automated spike sorting method; from this we randomly selected five cells with which
to demonstrate our method. We take s = [x, y] to be the position of the manipulandum
recorded every 50ms and R = [r1, r2, . . . , rN ] to be the length of time passed since
each of J spikes in the past for N neurons (where we have dropped the time index k for
simplicity). As shown in Fig. 1, ri = [t
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t
(j)
i with each being the time elapsed since the jth past spike. Our training data consists of

4000 points sampled at 50ms intervals with a history of 3 past spikes (J = 3) per neuron.
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Figure 1: Representation of the data. Hand position at time k, sk = [xk, yk], is regularly
sampled every 50ms. Spiking activity (shown as vertical bars) is retained at full data
acquisition precision (30khz). Sections of spike trains from four cells are shown. The
response of a single cell, i, is represented by the time intervals to the three preceding
spikes; that is, ri,k = [t

(1)
i,k , t
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i,k , t

(3)
i,k ].

Our test data is 1000 points of the same.

Various empirical marginals of the data (shown in Fig 2) illustrate that the data are not
well fit by canonical symmetric parametric distributions because the data is asymmetric
and skewed. For such data traditional parametric models may not work well so instead we
apply the FRAME model of [1] to this modeling problem. FRAME is a semi-parametric
energy based model of the following form:

Let dk = [sk, rk], where sk and rk are defined as above and indexed by time. Let D =
[d1, . . . ,dN ] be a matrix of N such points. We define

P (dk) =
1

Z(Θ)
e−

∑

e
λT

e
φ(ωT

e
dk) (1)

where ωe is a vector that projects the datum dk onto a 1-D subspace, φ : R → I
b is a

“histogramming” function that produces a vector with a single 1 in a single bin per da-
tum according to the projected value of that datum, λe ∈ R

b is a weight vector, Z is a
normalization constant sometimes called the partition function (as it is a function of the
model parameters), b is the granularity of the histogram, and e is the number of “experts”.
Taken together, λT

e φ(·) can be thought of as a discrete representation of a function. In this
view λT

e φ(ωT
e dk) is an energy function computed over a marginal of the data. Models of

this form are constrained maximum entropy models, and in this case by adjusting λe the
model marginal projection onto ωe is constrained to be identical (ideally) to the empirical
marginal over the same projection. Fig. 3 illustrates the model.

To relate this to current PoE models, if λT
e φ(·) were replaced with a log Student-t function

then this FRAME model would take the same form as the Product-of-Student-t formula-
tion of [12]. Distributions of this form are called Gibbs or energy-based distributions as
∑

e λT
e φ(ωT

e dk) is analogous to the energy in a Boltzmann distribution. Minimizing the
this energy is equivalent to maximizing the log likelihood.



Figure 2: Histograms of various projections of single cell data. The top row are histograms
of the values of t(1), t(2), t(3), x, and y respectively. The bottom row are random projections
from the same data. All these figures illustrate skew or one-sidedness, and motivate our
choice of a semi-parametric Gibbs model.
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Figure 3: (left) Illustration of the projection and weighting of a single point d: Here, the
data point d is projected onto the projection direction ω. The isosurfaces from a hypothet-
ical distribution p(d) are shown in dotted gray. (right) Illustration of the projection and
binning of d: The upper plot shows the empirical marginal (in dotted gray) as obtained
from the projection illustrated in the left figure. The function φ(·) takes a real valued pro-
jection and produces a vector of fixed length with a single 1 in the bin that is mapped to
that range of the projection. This discretization of the projection is indicated by the spac-
ing of the downward pointing arrows. The resulting vector is weighted by λ to produce an
energy. This process is repeated for each of the projection directions in the model. The con-
straints induced by multiple projections result in a distribution very close to the empirical
distribution.

Our model is parameterized by Θ = {{λe, ωe} : 1 < e < E} where E is the total number
of projections (or “experts”). We use gradient ascent on the log likelihood to train the λe’s.
As φ(·) is not differentiable, the ωe’s must be specified or learned in another way.

2.1 Learning the λ’s

Standard gradient ascent becomes intractable for large numbers of cells because comput-
ing the partition function and its gradient becomes intractable. The gradient of the log
probability with respect to λ1..E is

∇Θλ
log P (dk) = [

δ log P (dk)

δλ1
, . . . ,

δ log P (dk)

δλE

]. (2)

Besides not being able to normalize the distribution, the right hand term of the partial

δ log P (dk)

δλe

= −
∑

i
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δ log Z(Θ)

δλe



typically has no closed-form solution and is very hard to compute.

Markov chain Monte Carlo (MCMC) techniques can be used to learn such models. Con-
trastive divergence [4] is an efficient learning algorithm for energy based models that ap-
proximates the gradient as

δ log P (dk)

δλe

∝

〈

δlogfe

δλe

〉

P 0

−

〈

δlogfe

δλe

〉

P m

Θ

(3)

where P 0 is the training data and P m
Θ are samples drawn according to the model. The

key is that the sampler is started at the training data and does not need to be run until
convergence, which typically would take much more time. The superscript indicates that
we use m regular Metropolis sampling steps [13] to draw samples from the model for
contrastive divergence training (m = 50 in our experiments).

The intuition behind this approximation is that samples drawn from the model should have
the same statistics as the training data. Maximizing the log probability of training data is
equivalent to minimizing the Kullback Leibler (KL) divergence between the model and the
true distribution. Contrastive divergence attempts to minimize the difference in KL diver-
gence between the model one step towards equilibrium and the training data. Intuitively
this means that the contrastive divergence opposes any tendency for the model to diverge
from the true distribution.

2.2 Learning the ω’s

Because φ(·) is not differentiable, we turn to the feature pursuit method of [2] to learn
the projection directions ω1..E . This approach involves successively searching for a new
projection in a direction where a model with the new projection would differ maximally
from the model without. Their approach involves approximating the expected projection
using a Parzen window method with Gaussian kernels. Gradient search on a KL-divergence
objective function is used to find each subsequent projection. We refer readers to [2] for
details.

It was suggested by [2] that there are many local optima in this feature pursuit. Our ex-
perience tends to support this claim. In fact, it may be that feature pursuit is not entirely
necessary. Related work [14] has shown that random projections may perform as well as
trained projections in certain high-dimensional problems. Additionally, in our experience,
the most important aspect of the feature selection algorithm is how many feature pursuit
starting points are considered. It may be as effective (and certainly more efficient) to sim-
ply guess a large number of projections and estimate the marginal KL-divergence for them
all, selecting the largest as the new projection.

2.3 Normalizing the distribution

Generally speaking, the partition function is intractible to compute as it involves integration
over the entire domain of the joint; however, in the case where E (the number of experts)
is the same as the dimensionality of d then the partition function is tractable. Each expert
can be normalized individually. The per-expert normalization is

Ze =
∑

b

s(b)
e e−λ(b)

e

where b indexes the elements of λe and s
(b)
e is the width of the bth bin of the eth histogram-

ming function. Using the change of variables rule

Z = |det(Ω)|
∏

e

Ze



POT IG G RF I FP
-31849 -30893 -23573 -23108 -19155 -12509

Table 1: Log likelihoods of test data. The test data consists of the spiking activity of 5 cells
and x, y position behavioral variables as illustrated in Fig. 1. Log likelihoods are reported
for various models: POT: Product of Student-t, IG: diagonal covariance Gaussian, G: full
covariance Gaussian, RF: random filter FRAME, I: 5 independent FRAME models, one
per cell, and FP: feature pursuit FRAME

Empirical FRAME Gaussian PoT

Figure 4: This figure illustrates the modeling power of the semi-parametric Gibbs distribu-
tion over a number of symmetric, fully parametric distributions. Each row shows normal-
ized 2-d histograms of samples projected onto a plane. The first column is the training data,
column two is the Gibbs distribution, column three is a Gaussian distribution, and column
four is a Product-of-Student-t distribution.

where the square matrix Ω = [ω1ω2 . . . ωE ]. This is not possible when the number of
experts exceeds or is smaller than the dimensionality of the data.

3 Results

We trained several models on several datasets. We show results for complete models of the
joint neuronal response of 5 real motor cortex cells plus x, y hand kinematics (3 past spikes
for each cell plus 2 behavior variables equals a 17 dimension dataset). A complete model
has the same number of experts as dimensions.

Table 1 shows the log likelihood of test data under several models: Product of Student-
t, a diagonal covariance multidimensional Gaussian (independent), multivariate Gaussian,
a complete FRAME model with random projection directions, a product of 5 complete
FRAME single cell models with learned projections, and a complete FRAME model with
learned projection directions. Because these all are complete models, we are able to com-
pute the partition function of each. Each model was trained on 4000 points and the log
likelihood was computed using 1000 distinct test points.

In Fig. 4 we show histograms of samples drawn from a full covariance Gaussian and
energy-based models with two times more projection directions than the data dimension-
ality. These figures illustrate the modeling power of our approach in that it represents the
irregularities common to real neural data better than Gaussian and other symmetric distri-
butions.

Note that the model using random marginal directions does not model the data as well as



one using optimized directions; this is not surprising. It may well be the case, however, that
with many more random directions such a model would perform significantly better. This
overcomplete case however is unnormalized and hence cannot be directly compared here.

4 Discussion

In this work we demonstrated an approach for using Gibbs distributions to model the joint
spiking activity of a population of cells and an associated behavior. We developed a novel
application of contrastive divergence for learning a FRAME model which can be viewed
as a semi-parametric Product-of-Experts model. We showed that our model outperformed
other models in representing complex monkey motor cortical spiking data.

Previous methods for probabilistically modeling spiking process have focused on modeling
the firing rates of a population in terms of a conditional intensity function (firing rate condi-
tioned on various correlates and previous spiking) [15, 16, 17, 18, 19]. These functions are
often formulated in terms of log-linear models and hence resemble our approach. Here we
take a more direct approach of modeling the joint probability using energy-based models
and exploit contrastive divergence for learning

Information theoretic analysis of spiking populations calls for modeling high dimensional
joint and conditional distributions. In the work of [20, 21, 22], these distributions are used
to study encoding models, in particular the importance of correlation in the neural code.
Our models are directly applicable to this pursuit. Given an experimental design with a
relatively low dimension stimulus, where the entropy of that stimulus can be accurately
computed, our models are applicable without modification.

Our approach may also be applied to neural decoding. A straightforward extension of our
model could include hand positions (or other kinematic variables) at multiple time instants.
Decoding algorithms that exploits these joint models by maximizing the likelihood of the
observed firing activity over an entire data set remain to be developed. Note that it may
be possible to produce more accurate models of the un-normalized joint probability by
increasing the number of marginals. To exploit these overcomplete models, algorithms that
do not require normalized probabilities are required (particle filtering is a good example).

Not surprisingly the FRAME model performed better on the non-symmetric neural data
than the related, but symmetric, Product-of-Student-t model. We have begun exploring
more flexible and asymmetric experts which would offer advantages over discrete his-
togramming inherent to the FRAME model.
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