

THE MAN WHO MISTOOK HIS COMPUTER FOR A HAND

Neural Control of Robotic Devices

ELIE BIENENSTOCK, MICHAEL J. BLACK, John Donoghue, Yun Gao, Mijail Serruya

BROWN UNIVERSITY

Applied Mathematics Computer Science Neuroscience

XEROX ALTO 1973

Dell workstation, 2001

"If I could find ... a code which translates the relation between the reading of the encephalograph and the mental image ...the brain could communicate with me." Curt Siodmak, 1942

NEURAL PROSTHETICS

NEURAL PROSTHETICS

NEURAL PROSTHETICS

VISUALIZING THE PLAYERS

BRAIN VERSUS COMPUTER

Computational Elements

100,000,000,000 Neurons

50,000,000 Transistors (P IV)

Speed (operations/second/element)

30-300

1.5 * 109

MASSIVE CONNECTIVITY

LONG DISTANCE CALLS

Conturo et al., 1999

THE EEG

SINGLE UNIT ACTIVITY

CELL ENSEBLES

100 electrodes, 400µm separation 4x4 mm

Implanted in the MI arm area of motor cortex

- lacks strict somatopy

Neural Implant

Chronically implanted. Stable recording for 2-3 years (but not necessarily the same cells every day)

LANGUAGE OF THE BRAIN

Language of the brain.

Interpretation

"Translation"

Language of the computer.

Ambiguous Signals

INFERENCE

GOALS

- * Model neural activity in motor cortex.
- * Explore how the brain codes information.
- * Model the statistical relationship between neural activity and action.
- * Develop new statistical methods for analyzing neural codes.
- * Build prosthetic devices to assist the severely disabled.
- * Explore new output devices that can be controlled by brains.

Monitor

ARM MOTION

Distribution of training motions:

MODELING NEURAL FUNCTION

direction θ (radians)

MODELING NEURAL FUNCTION

NEURAL ACTIVITY

Is there some "true" underlying response function?

NON-PARAMETRIC MODEL

- $f_{\mathbf{v}}$: Observed mean firing rate for velocity v
- g_{v} : True mean firing rate for velocity v
- $\mathbf{v} = [r, \boldsymbol{q}]^T$

 $f_{\mathbf{v}}$ is a noisy realization of the model $g_{\mathbf{v}}$ Infer $g_{\mathbf{v}}$ from $f_{\mathbf{v}}$ using Bayesian inference.

$$p(\mathbf{g} | \mathbf{f}) = \prod_{\mathbf{v}} (\mathbf{k} p(f_{v} | g_{v})) \prod_{i=1}^{h} p(g_{v} | g_{v_{i}}))$$

likelihood spatial prior

LIKELIHOOD

Observed firing rate modeled a sample from

Poisson:

$$p_P(f \mid g) = \frac{1}{f!} g^f e^{-g}$$

Spatial Prior

Markov Random Field assumption

$$p(g_v \mid \mathbf{g}) = \prod_{i=1}^{\mathbf{h}} p(g_v \mid g_{v_i})$$

OPTIMIZATION

Many ways to maximize over g_v

$$p(\mathbf{g} | \mathbf{f}) = \mathbf{k} \prod_{v} p(f_{v} | g_{v}) p(g_{v} | \mathbf{g})$$

- Simulated annealing, etc.
- We exploit an approximate deterministic regularization method.
 - Take the negative log of $p(\mathbf{g} | \mathbf{f})$
 - Minimize using gradient descent
 - Not ideal (loopy propagation, see Yedidia, Freeman, & Weiss, NIPS'00).

Poisson+Robust

INFERENCE FROM ACTIVITY

INFERENCE FROM ACTIVITY

GOALS

sound probabilistic inference

🗣 causal

• estimate over short time intervals to reduce lag

• cope with non-linear dynamics of hand motion

- cope with ambiguities (multi-modal distributions)
- more realistic firing models (Poisson or Poisson+refractory period [Kass&Venture, Neural Comp. '01])
- support higher level analysis of activities

BAYESIAN INFERENCE

BAYESIAN INFERENCE

$$p(\mathbf{s}_{t} | \mathbf{C}_{t}) = \mathbf{k}_{2} p(\mathbf{c}_{t} | \mathbf{s}_{t}) \frac{p(\mathbf{s}_{t} | \mathbf{C}_{t-1})}{prior}$$

$$p(\mathbf{s}_{t} | \mathbf{C}_{t-1}) = \int p(\mathbf{s}_{t} | \mathbf{s}_{t-1}) p(\mathbf{s}_{t-1} | \mathbf{C}_{t-1}) d\mathbf{s}_{t-1}$$
Temporal dynamics (constant velocity)

PARTICLE FILTER

Represent posterior with a discrete set of N states and their normalized likelihood.

PARTICLE FILTER

Isard & Blake '96

1000 "SYNTHETIC" CELLS

A NEURAL PROSTHETIC

NEURAL-PROSTHETIC LIMBS

Hybrid Systems

Connecting Brains to Robots, Reger et al, Artificial Life, 2000.

BRAIN/MACHINE HYBRIDS

• Explore biological sensory/control systems with artificial systems.

Develop computational models of biological control.

- Re-map input modalities.
- Opportunity for robotic prostheses.
- Augment limited neural control with autonomy (eg. obstacle avoidance).

OUR BODIES OURSELVES?

• Service robots under neural control.

• Sensation and action at a distance.

• Stimulating the brain.

Ethics, liminality, fear, and the "uncanny".

Probotics/Jim Judkis

THANKS

D. Sheinberg, *Neuroscience* **N. Hatsopoulos**, *Neuroscience* **W. Patterson**, *Engineering* A. Nurmikko, Engineering **G. Friehs**, Brown Medical School **S. Geman**, *Division of Applied Mathematics* **M. Fellows**, *Neuroscience* L. Paninski, NYU, Center for Neural Science **N.K. Logothetis**, *Max Planck Institute*, *Tuebingen*