

THE MACHINE INSIDE

"VOYAGES OF DISCOVERY"

ELIE BIENENSTOCK, MICHAEL J. BLACK, MIJAIL SERRUYA, & DAVID SHEINBERG

BROWN UNIVERSITY

Applied Mathematics Computer Science

Why study the brain?

BRAINS IN ACTION

FACE RECOGNITION

M2VTS Multimodal Face Database

TRANSLATION

French:

Les places américaines sont également attendues en baisse.

"The translation you are seeing was produced automatically by **state-of-theart technology** without the intervention of human translators"

English:

The American places are also awaited in fall.

XEROX ALTO 1973

Dell workstation, 2001

BRAIN-LIKE COMPUTERS

"If I could find ... a code which translates the relation between the reading of the encephalograph and the mental image ...the brain could communicate with me." Curt Siodmak, 1942

"Mad" scientist

NEURAL PROSTHETICS

NEURAL PROSTHETICS

Why is studying the brain difficult?

3D TOPOLOGY IN PHYSICS

gallium arsenide

interactions between constituents of **physical** systems take place in 3-D topology

3D TOPOLOGY IN BIOLOGY

four stages of folding of poly-leucine into an alpha-helix and insertion into a membrane

interactions take place in 3-D topology
simulation on supercomputer takes months

A. Pohorille and C. Henze, NASA Advanced Supercomputing Facility

*n*D TOPOLOGY OF CORTEX

EXPLOSION OF CORTEX

VISUALIZING THE PLAYERS

BRAIN VERSUS COMPUTER

Computational Elements

100,000,000,000 Neurons

100,000,000 Transistors

Speed (operations/second/element)

30-300

 $1.5 * 10^9$

MOORE'S LAW

MASSIVE CONNECTIVITY

LONG DISTANCE CALLS

Conturo et al., 1999

Cortex would be:

- a world of about 10¹¹ people,
- each person communicating through a direct highspeed private line with about 10³ friends,
- about half of one's friends living in the same city,
- but many living in other continents ...

DEGREES OF SYNAPTIC SEPARATION

1D graph

random graph

"small-world" graph

(Duncan Watts, Steven Strogatz)

How do you study the brain?

THE EEG

SINGLE UNIT ACTIVITY

CELL ENSEMBLES

PATTERNS IN MUSIC

LANGUAGE OF THE BRAIN

Language of the brain.

Interpretation

"Translation"

Language of the computer.

AMBIGUOUS SIGNALS

INFERENCE

THE MATHEMATICS OF MIND

 $p(\mathbf{g} | \mathbf{f}) = \prod_{\mathbf{v}} (\kappa p(f_v | g_v) \prod_{i=1}^{\eta} p(g_v | g_{\mathbf{v}_i}))$

Brain Science Today

ALGORITHMS FOR VISION

DECODING NEURAL MESSAGES

NEURAL REPRESENTATIONS

ACTIVE VISUAL PROCESSING

NEURONS AND BEHAVIOR

MODELING NEURAL FUNCTION

Monitor

Tablet

Simultaneously record hand position, velocity, and neural activity in motor cortex.

MODELING NEURAL FUNCTION

NEURAL ACTIVITY

Is there some "true" underlying response function?

MODELING NEURAL ACTIVITY

Cell 3

INFERENCE FROM ACTIVITY

INFERENCE FROM ACTIVITY

A NEURAL PROSTHETIC

NEURAL-PROSTHETIC LIMBS

Our Goals

MUSIC OF THE BRAIN

Notes

Chords

Composition rules

THE MAN WHO MISTOOK HIS COMPUTER FOR A HAND

• Hybrid, brain-computer, systems.

• new physical pathways for interacting with the world

 the computer learns about the brain while the brain is constantly changing

• Metaphor:

• from "desktop" to "body part".

OUR BODIES OURSELVES?

• Service robots under neural control.

• Sensation and action at a distance.

• Stimulating the brain.

Ethics, liminality, fear, and the "uncanny".

Probotics/Jim Judkis

FUTURE

Music

Mechanism

Machine

THANKS

J. P. Donoghue, Neuroscience **N. Hatsopoulos**, *Neuroscience* W. Patterson, Engineering A. Nurmikko, Engineering G. Friehs, Brown Medical School S. Geman, Division of Applied Mathematics **Y. Gao**, *Division of Applied Mathematics* M. Fellows, Neuroscience L. Paninski, NYU, Center for Neural Science N.K. Logothetis, Max Planck Institute, Tuebingen