Competitiveness via Doubling

Marek Chrobak Claire Kenyon-Mathieu
Department of Computer Science Computer Science Department
University of California, Riverside Brown University

1 Introduction

We discuss what we refer to, tentatively, as the “doubling” method for designing online and offline
approximation algorithms. The rough idea is to use geometrically increasing estimates on the optimal
solution to produce fragments of the algorithm’s solution. The term “doubling” is a little misleading,
for often factors other than 2 are used, and suggestions for a better name will be appreciated.

It is not easy to formulate a precise, yet also general and elegant description of this method. In
this expositary paper, we illustrate this method by discussing several applications where doubling is
used, and these examples should be sufficient to elucidate the underlying idea. (This is not meant
to be a comprehensive survey; we suspect that there are many more examples of doubling-based
approximation algorithms in the literature.)

The online bidding problem [15] described in the next section is an attempt to formalize the
doubling method. Online bidding captures many but not all applications of the doubling method,
excluding, for example, the cow-path problem (especially the randomized case) and its extensions.
We hope that this paper will clarify the relationship between similar solutions to apparently quite
different problems, and will help to make doubling a standard tool for designing approximation
algorithms.

2 Online Bidding

In online bidding [15], faced with some unknown integer threshold w, a player submits a sequence
(dg) of bids until one is greater than or equal to u, paying the sum of its bids. Any strategy is defined
by its sequence of bids, and its competitive ratio is

{do—i—dl—l-’”—i-dk
max
u,k u

: dk_1<u§dk}. (1)

What is the best sequence (dg)? A natural approach is to double the bid each time, that is dy = 2°
for £ > 0. The worst case in (1) is when u = di_1, and routine calculations show that this strategy’s
competitive ratio is 4, which also turns out to be optimal in the deterministic setting.

Express the ratio (1) as the product of (3, d¢)/di by di/u. We can do better with random-
ization, by choosing the bid sequence (dy) at random so that di/u is, in expectation, less than the
worst case dy/dp_1. Let dy = ael, where o = eX with X uniformly distributed in [0,1). The first
term of the product is (3", de)/dx ~ > ;spe " = 1/(1 —e™!). For the second term, observe that

and dy/u is distributed as eX, with X uniform in [0,1), and so its expectation is fol eXdX =e— 1.
Hence the algorithm is e-competitive, and this is optimal [15].

In some applications, the unknown threshold and the bids are constrained to be in a fixed universe
U: in this paper, expressions (4) and (12) are such examples. It is simple to adapt the algorithms
to such cases: to define dy, choose the largest element of U which is less than or equal to 2¢ in the
deterministic case and less than or equal to ae’ in the randomized case.

3 Cow-Path Problem

The cow-path problem is a classical problem in online algorithms and search theory, studied since
the 60’s [7, 6], and discussed earlier in this column in the December’03 and June’04 issues. (See also
[19] for some recent results and more references.) A cow faces a fence, infinite in both directions,
attempting to find a hole in order to get to the green pasture on the other side. The cow’s strategy
specifies the path traveled in search of the hole and the goal is to minimize the distance traveled.

Any reasonable strategy will have the cow gradually extend the explored interval of the fence,
alternatively to the left and right. We think of the fence as the real line, and assume the start
position is 0 and that the hole’s position is integer. Such a strategy is then defined by an infinite
sequence (dy) of turning points: go right for distance dy, then back to the origin, left for distance dy,
back to the origin, right for distance ds, and so on, until the hole is found, say at distance u from
the origin. The total travel distance is 2dy + 2d; + - - + 2dp_1 + u, where di_o < u < dj, so the
competitive ratio is

u,k

{2(d0—|—d1—|—---+dk_1)+u
max
u

D dp_o <u§dk}. (2)

What is the best sequence (d;)? We try doubling again, setting d; = 2¢ for £ > 0. This gives
competitive ratio at most 9. (Indeed, (2) is 1 plus twice the ratio (1), since in both cases to determine
the ratio we choose the minimum w.) In fact, it turns out that no better ratio can be achieved by a
deterministic strategy [22, 4, 36].

We can reduce this ratio with randomization. Note that for any algorithm, its “mirror image”
algorithm that reverses left and right moves has the same competitive ratio. Also, picking one of
those two at random can only improve the ratio. So, without loss of generality, we can assume that
the algorithm starts by going first left or right with probability % each. If we restrict attention to
algorithms such that the sequence (dy) is monotone, then, for di_o < u < dj_1, with probability %
the hole is on the side of the path of length dj_1, and so the competitive ratio is

max

{E[Q(do 4+t dp_o + %dk—l)] +u
u,k

” sdp_o <u< dk—l}- (3)

Let v =~ 3.591 be the solution of the equation yIn~y = v+ 1. The algorithm chooses first a number
a =X, where X € [0,1) is chosen uniformly at random. The ¢’th turning point is d; = a*. With
this strategy the competitive ratio is v+ 1 ~ 4.591, and this is optimal [22, 30].

Again, it is easy to adapt the algorithm to the case where it is constrained to choose its bids from
among a fixed universe U: to define dy, choose the largest element of U which is less than or equal
to 2¢ in the deterministic case and less than or equal to oy’ in the randomized case.

4 Minimum Latency Tours

Blum et al [9], and later Goemans and Kleinberg [23, 24], study the minimum latency problem
(MLP). Given a path vjvs,... in a metric space, the latency of v; on this path is the length of the
prefix path vivs...v;. The objective is to find a path that starts at a specified point v, visits all
vertices in a metric space (e.g., a traveling salesman tour), and minimizes the total latency (sum of
the individual point latencies). Needless to mention, MLP is NP-hard.

Consider another variation of traveling salesman called k-TSP. Given an integer k£ and a point
v1, we seek a minimum k-tour, that is a tour T} starting and ending at v; that visits at least k
different points and has minimum length dj. If the metric space is a weighted tree (the distances are
path lengths in this tree), k-tours can be computed in polynomial time with dynamic programming
[9]. This is an interesting case since the minimum latency problem is NP-hard even for weighted
trees [37].

The minimum latency algorithm from [9] chooses a certain sequence jo,j1,...,jm = n, and
outputs the concatenation @ = Tj,Tj,...Tj,,. Some vertices may be visited many times (in fact, some
trees may be traversed repeatedly) but that’s okay — for the purpose of computing the latency we
only count the first visit. The latency of the kth visited vertex is at most dj, + dj, + - -+ d;, where
k< ;.

On the other hand, k-tours also give us an estimate on the optimum latency. Indeed, suppose
S = v1vav3... is some optimal solution of MLP. Traversing the first k vertices on S forth and back, we

get a k-tour vivs...U,Vg_1...v1 which, by the optimality of T}, has length at least di. So the latency
of vy, in S is at least %dk, and if we denote by U the set {dx,1 < k < n}, the approximation ratio is

bounded by
max{djo_’_djll_‘_“'—i_dji : dji1<Udei}. (4)
ueU,k 5'&

We observe that the ratio (4) is exactly twice that of the online bidding (1), implying a deterministic
8-approximation [9] on weighed trees (and a randomized 2e-approximation.)

Goemans and Kleinberg [23, 24] improve on [9] by traversing the partial tours more efficiently
and by using randomization. As before, we consider the concatenated tour @ = T}, 7T}, ... T}, , but
now, in () we traverse each Tj either clockwise or counter-clockwise, choosing the direction that
produces a smaller contribution to the total latency. Note that @) is at least as good as the tour R
which chooses the clockwise or counter-clockwise direction uniformly at random. In R, the average
latency of the kth vertex visited is at most dj, +---+d;,_, + %djm so the competitive ratio is bounded
by

d: 4+ +d;. _|_ld..
max{ & At 2N <u< dji}‘ (5)
uel,i iu

Applying the doubling method to choose the j;s yields a deterministic 6-approximation algorithm.
Observe that ratio (5) is just one less than the cow-path ratio (3), so the ratio is ~ 3.591 [23, 24].

We don’t actually need randomization to get this ratio, for it is not hard to show that there are
at most n sequences that can result from different choices of «, so we can simply try all of them.
Indeed, as a ranges from 1 to v, the sequence changes only when some dj exactly equals a times
some power of 7; but for each fixed di, this happens exactly once, hence there are at most n changes
and therefore at most n sequences. With some care, this optimal « can be, in fact, found in time
O(nlogn). (Goemans and Kleinberg [23, 24] gave a different approach to eliminate randomization.)

Summarizing, the method we outlined above yields a polynomial-time & 3.591-approximation
algorithm — ¢f we can compute optimal k-tours in polynomial time. Thus it applies directly to
weighted trees. For general metric spaces, this approach allows us to convert any polynomial-time
c-approximation algorithm for k-TSP into a polynomial-time 8c-approximation algorithm for MLP.
Although no approximation algorithms for k-TSP were known at the time when [9] was published,
Blum et al were able to refine this idea to obtain a 72-approximation algorithm for MLP. The ratio has
been gradually reduced over time by using better approximations for k-spanning trees, culminating
in the 2003 work of Chaudhuri et al [13], who achieved the approximation ratio of ~ 3.591 — same
as for weighted trees.

5 Non-Clairvoyant Scheduling

Now we turn to online scheduling. Motwani, Phillips, and Torng [34, 35] study preemptive scheduling
of jobs in the non-clairvoyant setting where a processing time only becomes known upon completion
of the job; the objective function is to minimize the sum of completion times. We will focus on the
case of 1-processor scheduling with all jobs released simultaneously at time 0. We will also assume
that each job’s processing time is at least 1.

The RoundRobin algorithm works in rounds, and in each round it assigns a unit of time to each
pending job. As shown in [34, 35], RoundRobin is 2-competitive and (for unlimited n) no better
ratio is possible even with randomization. This might seem to completely solve the problem — but
not quite. In RoundRobin, a job of length u can be preempted O(u) times, which is certainly an
undesirable feature when a preemption involves a costly context switch. Can we achieve constant-
competitiveness with fewer preemptions?

The geometric algorithm (let’s call it GeomRR) proposed in [34, 35] works in phases numbered
0,1,2,..., where, in phase ¢, each unfinished job is allocated time d;. Clearly, a job of length wu is
preempted now only k times, where dy +ds + -+ +dp_1 <u <d; + -+ + dp.

Let u1 < ug < -+ < u, denote the processing times. Given a schedule, for every pair of jobs
{i,7}, let P;; denote the mutual delays, that is, the times at which one of the two jobs is being
processed while the other one is not yet finished. We can write the sum of completion times as
Youi > (i, Pij- For a given pair {i,7}, assume u; < u;. Clearly, even the optimal schedule must
have P;; > u;. In the GeomRR’s schedule, let k be such that dy +do +---+dp—1 <u; < dy+---+dy.

Then job j delays job i by at most dy + - -+ + di, and job i delays job j by at most u;. Thus, using

the notation dj, = dy + dy + - - - + dj, we have that the competitive ratio of GeomRR is bounded by

d/
H&E};X{ k;_u D)y <u§d;€}. (6)

For any > 1, the sequence d, = B¢ gives competitive ratio 1 + 3. Here, again, we can do better
with randomization. First notice that with random ordering of the jobs within the rounds, with
probability % job j comes after job ¢ and therefore only delays ¢ by dj_,. Hence the randomized
competitive ratio is bounded by

max

u,k

{E[% 1+ 3, + Ul
u

Choose a number a = 3%, where X € [0,1) is chosen uniformly at random, and let dj, = af¥. Since
fol BXdX = (B —1)/In 3, this algorithm has competitive ratio 1 + (3 + 1)(8 — 1)/(281n 3). Both
algorithms, deterministic and randomized, provide a smooth tradeoff between the competitiveness
and the number of preemptions: with § — 1, the competitive ratio approaches 2, while the number
of preemptions for jobs of length u increases as O(logg u).

6 Scheduling with Min-Sum Criteria

We continue with online job scheduling, although the setting now is quite different from that in
Section 5. Specifically, jobs have release dates and arrive online: their existence is revealed only
when they are released. At that time, their processing time p; and weight w; is also given. The
objective is to minimize the weighted sum of completion times, Z;‘L:I w;Cj. The technique we will
describe applies to a variety of settings: for example, there can be one or many processors, identical
or not, and preemption may or may not be allowed.

The algorithm proposed by Hall et al [28, 27] executes jobs during phases as follows. Fix an
increasing sequence (dy) such that dy — dy_1 > dy_1. Phase ¢ starts at time dy_; and ends at time
dy; the algorithm (somehow) selects, from among the jobs pending at time d;_1, a maximum-weight
subset that can be processed between dy_1 and dy, and executes them in arbitrary order.

For the analysis, let W, denote the total weight of the jobs scheduled by this algorithm by time
dyp. Letting W denote the total weight, we have:

S wiCi < Y (We—Wemr)de = > (de — do—y)(W — We_y).
j=1 ¢ ¢

Since dy_1 —dy—_g > dy—o, Wy_1 is at least as large as the weight W, , of jobs scheduled in the optimal
schedule by time dy_s. Thus:

Zw]C < Z de — de)(W = Wiy) = Z(We Wi)de = Zzwad@rh

7=1 J4 l g€l

where Iy denotes the set of jobs completed in the optimal schedule in time (dy_1,dy]. On the other
hand, the optimal schedule has value >, >
by:

jer, w;C;. Thus the competitive ratio can be bounded

max

(c5):4; u,l

{Zj w;idp;+1

j WiCj

d
tdg oy < ¢ < dgj} < max{% diy <u< dg}. (8)
J

The doubling method yields a deterministic 4-approximation [28] (with dy = 2¢) and a randomized
~ 2.891-approximation [11] (with dy = a2’ where a = 2% and X chosen uniformly at random from

[0,1)).
An easy improvement: the algorithm can schedule the jobs in phase ¢ (by taking the better of

one ordering and its reverse ordering) so that their average weighted completion time is (dy_1 +dy)/2
instead of the crude upper bound dp; this variant leads to the bound

$do+ 3dpq
u

max
u,l

sdp_q <u§dg}, (9)

yielding, by the doubling method, a deterministic 3-approximation [28] and a randomized ~ 2.16-
approximation.

Unfortunately, because of the “somehow” step, this algorithm, as described, is not polynomial-
time. We have effectively reduced our online min-sum problem with release times, to an offline
makespan problem without release dates: given a deadline D and a set of jobs released at time 0,
construct a schedule with makespan at most D that maximizes the total weight of completed jobs.
Now, suppose that there exists a “dual-p-approximation” algorithm DualPack for that problem — it
outputs a schedule with makespan at most pD and with total weight at least as large as that of an
optimal schedule with makespan D. We can then modify the algorithm so that during phase ¢ it
uses DualPack with D = dy — dy_1 to schedule the next batch in the interval [pd;_1, pdy), and the
resulting approximation ratio will simply be multiplied by p.

For example, in the setting of one-processor non-preemptive scheduling, Hall et al [28, 27] give
a DualPack with ratio (1 + €), which, incorporated into the framework above, immediately yields an
online polynomial time deterministic algorithm with competitive ratio 3-+e¢ (see also [14].) Numerous
improvements and extensions of the doubling method in the context of min-sum scheduling method
appeared subsequently in the literature, see, for example, [10, 16]. For one processor, a 2-competitive
algorithm, that does not use doubling, was recently given in [1], and this ratio is optimal [29].

7 List Scheduling on Related Machines

The list scheduling problem is a classical online problem first studied by Graham [26] in 1960’s. The
input consists of a list of jobs of varying processing times that need to be assigned to m machines.
The jobs are processed one by one. At step j, the size p; of job j is revealed and we need to assign
it to a machine. The objective is to minimize the makespan, that is, the maximum machine load
(sum of job processing times assigned to this machine). List scheduling differs from the “real-time”
online scheduling model discussed in Sections 5 and 6 in that the decision time is unrelated to the
job execution time.

We focus here on the version Q|pmin|C,,., — namely the case of preemptive scheduling on related
machines, where each machine can run at a different speed. Ebernlendr and Sgall [20] provide two
online algorithms for this problem: a 4-competitive deterministic algorithm and an e-competitive
randomized algorithm. Their work is based on earlier ideas from [3, 8, 5]. (See also [21] for some
recent improvements.)

The key observation is that knowing the optimal makespan C?__ helps. In fact, [20, 21] give a
“semi-online” algorithm InTime(7T) that is 1-competitive (that is, it computes an optimal schedule)
if it so happens that C* = T.

max

In the truly online case we don’t know C*_ so, instead, we use a sequence (dy) of geometrically

increasing estimates, i.e., such that dyy 1 —dp > dy. In phase £ = 0,1, 2, ... we assume that the optimal
makespan is dy and we apply InTime(dy) to the remaining jobs, attempting to schedule them in the
time interval [dy,dp11). If InTime(dy) fails, that is, a job arrives that cannot be squeezed into this
interval, we know that C*

max

> dyyq — dp > dy, so we increase our estimate to dg41, and continue.

For the analysis, suppose that di_1 < C* < dg, for some integer k > 1. The algorithm will

max

produce a schedule with makespan at most Z?:o dy, and so the competitive ratio is bounded by

{do—i—dl—l—"'—l-dk
max
u,k U

sdp_q <u§dk}. (10)

Notice that this is simply the online bidding ratio (1), so the deterministic competitive ratio is
bounded by 4 and the randomized competitive ratio is bounded by e.

We focused in this section on the preemptive case, but a fair amount of work has been done on
the non-preemptive case as well, see [3, 8, 5] and references therein.

8 Incremental and Hierarchical Clustering

We now consider the k-clustering problem, where we want to partition a given set X of points in a
metric space into k clusters C1, ..., Ck so as to minimize the maximum cluster diameter (the maximum
distance between any two points in a cluster).

In the incremental version studied by Charikar et al [12], we wish to maintain a k-clustering of
X while new points are inserted into X over time. The online algorithm is not allowed to divide
existing clusters. When a new point is inserted into X, it can be either added to an existing cluster
or it can become a new, singleton cluster. Additionally, at any time, the algorithm can merge some
clusters into one. Besides efficiency and simplicity, these restrictions guarantee that the produced
clustering will have a tree-like hierarchical structure useful for certain applications.

The incremental k-clustering algorithm in [12] uses a sequence dy, £ = 0,1,.... At each step it
has up to k clusters C,...C,, each with a designated center ¢; € C;. The algorithm works in phases,
and in phase £ = 0,1,2, ..., it will satisfy the invariant that the distance between any two centers is
greater than dp.

Initially, each of the first k points becomes its own cluster. Without loss of generality, assume
that the minimum distance between the first k points is greater than 1. During the fth phase,

whenever a new point x arrives, we attempt first to add it to an existing cluster. If there is a center
¢; at distance at most dy from x, we add x to C;. Otherwise, if there are fewer than k clusters, we
create a new cluster {x}. In the remaining case, we cannot preserve the invariant for this phase
anymore and the phase ends. To prepare for the next phase, we create a temporary (k + 1)st cluster
{z}, and to reduce the number of clusters we merge some, as follows: Greedily find a maximal set
J of centers whose pairwise distances are greater than dyy1. For each other center ¢; ¢ J there is a
center ¢; € J at distance at most dy41. We merge C; into C}, with ¢; becoming the center of the new
cluster. When we are done, all inter-center distances are greater than dyy1. So now we are ready to
start the new phase £ + 1. (Except if no merging occurred, in which case phase ¢ + 1 will be empty
and we go directly to the next phase, etc.)

To analyze this algorithm, define the radius of C; to be the maximum distance between ¢; and a
point in C;. Note that at the beginning of phase £ the k + 1 centers are all at distance greater than
dy_1 from each other, which implies that the diameter of the optimal k-clustering must be greater
than dy_;. The merges at the end of phase ¢ — 1 increased the maximum radius by at most dy, so
the maximum radius during phase £ is at most dy + da + - - - + dy, and the maximum diameter is at
most twice that. The competitive ratio is therefore bounded by

{2(d0+d1+”’+dk)
u

max

L D dp_q <u§dk}. (11)

Again, this is simply twice the online bidding ratio (1), and thus the above method yields a determin-
istic 8-competitive algorithm and a randomized (2e)-competitive algorithm. (The same technique
works if we measure the cluster size by the radius instead of the diameter.)

Dasgupta and Long [18] have a similar hierarchical clustering algorithm. They are initially given
all the points. First, they order them according to a farthest point traversal [25]: po is the point
farthest from p;, at distance x1, ps is the point farthest from {pi,ps}, at distance xs, etc. This
naturally induces a tree structure 7' rooted at p;. Given an increasing sequence (dy), Define a new
tree T” by setting p;’s parent to be its closest ancestor p; in T such that z; and x; are separated some
element of the sequence: x; > dy > x; for some £. The k-clustering is the partition into connected
components obtained from 7" be removing the edges from ps, ..., pry1 to their parents.

Again, it is not hard to prove that the diameter of the k-clustering is at most 2(dy +da+- - - +dy),
and that the optimal k-clustering has diameter greater than dy_1, hence this, via online bidding again,
leads to a deterministic 8-competitive algorithm and a randomized (2e)-competitive algorithm. The
algorithms of [12] and of [18] can be formally related in some settings [17].

9 Incremental Medians

Given an integer k and a metric space, we want to find a set F' of k points called facilities for which
the sum of distances between each point and its closest facility in F' is minimized. Naturally, this
can be thought of as another version of k-clustering.

In the incremental version studied by Mettu and Plaxton [32, 33], the metric space is given
offline, but the number £ is not specified in advance. Instead, authorizations for additional facilities

arrive over time, and each time the incremental algorithm can add another facility to those chosen
previously. In other words, the task is to compute an incremental sequence F; C Iy C ... C F}, of
facility sets, where |Fj| < k for all k. The competitive ratio is the maximum, over all k, of the cost
of Fy divided by the optimum k-median cost. (We stress that the term “incremental” is used here
in a very different sense than in Section 8.)

This problem has recently been studied by Lin et al [31] and by Chrobak et al [15], who, inde-
pendently, improved the first constant ratio of ~ 30 from [32, 33] to 8, in the deterministic case, and
to 2e in the randomized case.

Let dy denote the optimum k-median cost and let F}; be the corresponding optimal set. Note
that (dy) is a monotone non-increasing sequence. Here is an algorithm for oblivious median. Given
a subsequence d; = d;; > di, > -+ > d;, = dpy, the algorithm construct the ordering backwards
starting with the set F}, of all facilities and removing facilities in batches as follows. Given the current
set Fi. ., of at most i;41 facilities, the algorithm defines F;; C F; , by taking, for each f € F;;,
the facility closest to f in F;, ;. The output is any ordering that starts with the facilities in Fj,,
continues with the additional facilities in Fj,, then Fj;, and so on until F; .

For the analysis, using the triangle inequality, it is not hard to prove that the cost of Fj; exceeds
the cost of Fj,, by at most 2d;;. For i; <k <'i;1, the cost of the distances to the first £ facilities
is at most the cost of distances to F;;. Hence the approximation ratio is bounded by

2y, + 2, + - +2d
dg

max o<k < z‘j+1}. (12)

Up to reversing the sequence (dj) (say, by defining dj, = d,,,—), (12) is the same as the ratio (1)
for the online bidding, giving a deterministic 8-approximation and a randomized (2e)-approximation
algorithms.

Of course, to achieve these ratios we need to compute dj, for each k£ — an NP-hard problem. But
instead of the optimal medians F}; we can use c-approximate medians in the above method; this
simply increases the approximation ratio by a factor of c¢. In particular, since k-medians can be
approximated with ratio (3 + €) in polynomial time [2], we obtain polynomial time algorithms with
ratio 24 + € (deterministic) and 6e + € (randomized).

With a somewhat more sophisticated approach, [31] were able to improve the ratio to 16 in
deterministic polynomial time. They also provide a number of extensions to other related clustering-
like problems, as well as a generalization of their approach in terms of searching in partially ordered
sets. Other versions of incremental k-medians are considered in [15].

References

[1] E. Anderson and C. Potts. Online scheduling of a single machine machine to minimize total weighted
completion time. Mathematics of Operations Research, 29:686-697, 2004.

[2] A. Archer, R. Rajagopalan, and D. Shmoys. Lagrangian relaxation for the k-median problem: new
insights and continuity properties. In Proc. 11th European Symp. on Algorithms (ESA), pages 31-42
2003.

3]

J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing with applications to
machine scheduling and virtual circuit routing. J. ACM, 44:486-504, 1997.

R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Inform. and Comput., 106:234-252,
1993.

A. Bar-Noy, A. Freund, and J. Naor. New algorithms for related machines with temporary jobs. J. Sched.,
3:259-272, 2000.

A. Beck. On the linear search problem. Naval Research Logistics Quarterly, 2:221-228, 1964.
R. Bellman. An optimal search problem. SIAM Review, 5:274, 1963.

P. Berman, M. Charikar, and M. Karpinski. On-line load balancing for related machines. J. Algorithms,
35:108-121, 2000.

A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan. The minimum
latency problem. In Proc. 26th Symp. Theory of Computing (STOC), pages 163-171. ACM, 1994.

S. Chakrabarti and S. Muthukrishnan. Resource scheduling for parallel databases and scientific comput-
ing. In Proc. 8th Symp. on Parallel Algorithms and Architectures (SPAA), pages 329-335, 1996.

S. Chakrabarti, C. A. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein. Improved scheduling
algorithms for minsum criteria. In Proc. 23rd International Colloquium on Automata, Languages, and
Programming (ICALP), volume 1099 of Lecture Notes in Comput. Sci., pages 646-657. Springer, 1996.

M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic information
retrieval. In Proc. 29th Symp. Theory of Computing (STOC), pages 626-635. ACM, 1997.

K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency tours. In Proc.
44th Symp. Foundations of Computer Science (FOCS), pages 36-45, 2003.

C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques for average completion
time scheduling. In Proc. 8th Symp. on Discrete Algorithms (SODA), pages 609-618. ACM/SIAM, 1997.

M. Chrobak, C. Kenyon, J. Noga, and N. Young. Online medians via online bidding. In Proc. 7th Latin
American Theoretical Informatics Symp. (LATIN), volume 3887 of Lecture Notes in Comput. Sci., pages
311-322, 2006.

F. Chudak and D. B. Shmoys. Approximation algorithms for precedence-constrained scheduling problems
on parallel machines that run at different speeds. J. Algorithms, 30:323-343, 1999.

A. Das and C. Kenyon. On hierarchical diameter-clustering and the supplier problems. In Proc. WAOA 06,
Jth Workshop on Approzimation and Online Algorithms, September 2006, Zurich, Switzerland, LNCS,
Springer, 2006.

S. Dasgupta and P. Long. Performance guarantees for hierarchical clustering. Journal of Computer and
System Sciences, 70(4):555-569, 2005.

E. D. Demaine, S. P. Fekete, and S. Gal. Online searching with turn cost, 2004.

T. Ebenlendr and J. Sgall. Optimal and online preemptive scheduling on uniformly related machines. In
Proc. 21st Symp. on Theoretical Aspects of Computer Science (STACS), volume 2996 of Lecture Notes in
Comput. Sci., pages 199-210. Springer, 2004.

T. Ebenlendr, J. Sgall, and W. Jawor. Preemptive online scheduling: Optimal algorithms for all speeds.
In Proc. 13th European Symp. on Algorithms (ESA), volume 4168 of Lecture Notes in Comput. Sci., pages
327-339. Springer, 2006.

10

[22]
[23]

[24]

S. Gal. Search Games. Academic Press, 1980.

M. Goemans and J. Kleinberg. An improved approximation ratio for the minimum latency problem. In
Proc. Tth Symp. on Discrete Algorithms (SODA), pages 152-158. ACM /STAM, 1996.

M. Goemans and J. Kleinberg. An improved approximation ratio for the minimum latency problem.
Mathematical Programming, 82:111-124, 1998.

T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Comput. Sci.,
38:293-306, 1985.

R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical J., 45:1563-1581,
1966.

L. Hall, D. Shmoys, and J. Wein. Scheduling to minimize average completion time: Off-line and on-line
algorithms. In Proc. 7th Symp. on Discrete Algorithms (SODA), pages 142-151. ACM/STAM, 1996.

L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average completion time:
Off-line and on-line approximation algorithms. Math. Oper. Res., 22:513-544, 1997.

J. A. Hoogeveen and A. P. A. Vestjens. Optimal on-line algorithms for single-machine scheduling. In
Proc. 5th Conf. Integer Programming and Combinatorial Optimization (IPCO), volume 1084 of Lecture
Notes in Comput. Sci., pages 404-414. Springer, 1996.

M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: An optimal randomized
algorithm for the cow-path problem. In Proc. 4th Symp. on Discrete Algorithms (SODA), pages 441-447.
ACM/STAM, 1993.

G. Lin, C. Nagarajan, R. Rajamaran, and D. Williamson. A general approach for incremental approxi-
mation and hierarchical clustering. In Proc. 17th Symp. on Discrete Algorithms (SODA). ACM/SIAM,
2006.

R. R. Mettu and C. G. Plaxton. The online median problem. In Proc. 41st Symp. Foundations of
Computer Science (FOCS), pages 339-348. IEEE, 2000.

R. R. Mettu and C. G. Plaxton. The online median problem. SIAM J. Comput., 32:816-832, 2003.

R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. In Proc. 4th Symp. on Discrete
Algorithms (SODA), pages 422-431. ACM/SIAM, 1993.

R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. Theoret. Comput. Sci., 130:17-47,
1994.

C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoret. Comput. Sci., 84:127—
150, 1991.

R. Sitters. The minimum latency problem is NP-hard for weighted trees. In Proc. 9th Integer Programming
and Combinatorial Optimization Conference, 2002.

11

