
Competitiveness via Doubling

Marek Chrobak Claire Kenyon-Mathieu

Department of Computer Science Computer Science Department

University of California, Riverside Brown University

1 Introduction

We discuss what we refer to, tentatively, as the “doubling” method for designing online and offline

approximation algorithms. The rough idea is to use geometrically increasing estimates on the optimal

solution to produce fragments of the algorithm’s solution. The term “doubling” is a little misleading,

for often factors other than 2 are used, and suggestions for a better name will be appreciated.

It is not easy to formulate a precise, yet also general and elegant description of this method. In

this expositary paper, we illustrate this method by discussing several applications where doubling is

used, and these examples should be sufficient to elucidate the underlying idea. (This is not meant

to be a comprehensive survey; we suspect that there are many more examples of doubling-based

approximation algorithms in the literature.)

The online bidding problem [15] described in the next section is an attempt to formalize the

doubling method. Online bidding captures many but not all applications of the doubling method,

excluding, for example, the cow-path problem (especially the randomized case) and its extensions.

We hope that this paper will clarify the relationship between similar solutions to apparently quite

different problems, and will help to make doubling a standard tool for designing approximation

algorithms.

2 Online Bidding

In online bidding [15], faced with some unknown integer threshold u, a player submits a sequence

(dℓ) of bids until one is greater than or equal to u, paying the sum of its bids. Any strategy is defined

by its sequence of bids, and its competitive ratio is

max
u,k

{

d0 + d1 + · · · + dk

u
: dk−1 < u ≤ dk

}

. (1)

What is the best sequence (dℓ)? A natural approach is to double the bid each time, that is dℓ = 2ℓ

for ℓ ≥ 0. The worst case in (1) is when u = dk−1, and routine calculations show that this strategy’s

competitive ratio is 4, which also turns out to be optimal in the deterministic setting.

Express the ratio (1) as the product of (
∑

ℓ≤k dℓ)/dk by dk/u. We can do better with random-

ization, by choosing the bid sequence (dℓ) at random so that dk/u is, in expectation, less than the

worst case dk/dk−1. Let dℓ = αeℓ, where α = eX with X uniformly distributed in [0, 1). The first

term of the product is (
∑

ℓ≤k dℓ)/dk ∼
∑

i≥0 e−i = 1/(1 − e−1). For the second term, observe that

1

and dk/u is distributed as eX , with X uniform in [0, 1), and so its expectation is
∫ 1
0 eXdX = e − 1.

Hence the algorithm is e-competitive, and this is optimal [15].

In some applications, the unknown threshold and the bids are constrained to be in a fixed universe

U : in this paper, expressions (4) and (12) are such examples. It is simple to adapt the algorithms

to such cases: to define dℓ, choose the largest element of U which is less than or equal to 2ℓ in the

deterministic case and less than or equal to αeℓ in the randomized case.

3 Cow-Path Problem

The cow-path problem is a classical problem in online algorithms and search theory, studied since

the 60’s [7, 6], and discussed earlier in this column in the December’03 and June’04 issues. (See also

[19] for some recent results and more references.) A cow faces a fence, infinite in both directions,

attempting to find a hole in order to get to the green pasture on the other side. The cow’s strategy

specifies the path traveled in search of the hole and the goal is to minimize the distance traveled.

Any reasonable strategy will have the cow gradually extend the explored interval of the fence,

alternatively to the left and right. We think of the fence as the real line, and assume the start

position is 0 and that the hole’s position is integer. Such a strategy is then defined by an infinite

sequence (dℓ) of turning points: go right for distance d0, then back to the origin, left for distance d1,

back to the origin, right for distance d2, and so on, until the hole is found, say at distance u from

the origin. The total travel distance is 2d0 + 2d1 + · · · + 2dk−1 + u, where dk−2 < u ≤ dk, so the

competitive ratio is

max
u,k

{

2(d0 + d1 + · · · + dk−1) + u

u
: dk−2 < u ≤ dk

}

. (2)

What is the best sequence (dℓ)? We try doubling again, setting dℓ = 2ℓ for ℓ ≥ 0. This gives

competitive ratio at most 9. (Indeed, (2) is 1 plus twice the ratio (1), since in both cases to determine

the ratio we choose the minimum u.) In fact, it turns out that no better ratio can be achieved by a

deterministic strategy [22, 4, 36].

We can reduce this ratio with randomization. Note that for any algorithm, its “mirror image”

algorithm that reverses left and right moves has the same competitive ratio. Also, picking one of

those two at random can only improve the ratio. So, without loss of generality, we can assume that

the algorithm starts by going first left or right with probability 1
2 each. If we restrict attention to

algorithms such that the sequence (dℓ) is monotone, then, for dk−2 < u ≤ dk−1, with probability 1
2

the hole is on the side of the path of length dk−1, and so the competitive ratio is

max
u,k

{

E[2(d0 + · · · + dk−2 + 1
2dk−1)] + u

u
: dk−2 < u ≤ dk−1

}

. (3)

Let γ ≈ 3.591 be the solution of the equation γ ln γ = γ+1. The algorithm chooses first a number

α = γX , where X ∈ [0, 1) is chosen uniformly at random. The ℓ’th turning point is dℓ = αγℓ. With

this strategy the competitive ratio is γ + 1 ≈ 4.591, and this is optimal [22, 30].

2

Again, it is easy to adapt the algorithm to the case where it is constrained to choose its bids from

among a fixed universe U : to define dℓ, choose the largest element of U which is less than or equal

to 2ℓ in the deterministic case and less than or equal to αγℓ in the randomized case.

4 Minimum Latency Tours

Blum et al [9], and later Goemans and Kleinberg [23, 24], study the minimum latency problem

(MLP). Given a path v1v2, ... in a metric space, the latency of vi on this path is the length of the

prefix path v1v2...vi. The objective is to find a path that starts at a specified point v1, visits all

vertices in a metric space (e.g., a traveling salesman tour), and minimizes the total latency (sum of

the individual point latencies). Needless to mention, MLP is NP-hard.

Consider another variation of traveling salesman called k-TSP. Given an integer k and a point

v1, we seek a minimum k-tour, that is a tour Tk starting and ending at v1 that visits at least k

different points and has minimum length dk. If the metric space is a weighted tree (the distances are

path lengths in this tree), k-tours can be computed in polynomial time with dynamic programming

[9]. This is an interesting case since the minimum latency problem is NP-hard even for weighted

trees [37].

The minimum latency algorithm from [9] chooses a certain sequence j0, j1, . . . , jm = n, and

outputs the concatenation Q = Tj0Tj1...Tjm . Some vertices may be visited many times (in fact, some

trees may be traversed repeatedly) but that’s okay – for the purpose of computing the latency we

only count the first visit. The latency of the kth visited vertex is at most dj0 + dj1 + · · ·+ dji
where

k ≤ ji.

On the other hand, k-tours also give us an estimate on the optimum latency. Indeed, suppose

S = v1v2v3... is some optimal solution of MLP. Traversing the first k vertices on S forth and back, we

get a k-tour v1v2...vkvk−1...v1 which, by the optimality of Tk, has length at least dk. So the latency

of vk in S is at least 1
2dk, and if we denote by U the set {dk, 1 ≤ k ≤ n}, the approximation ratio is

bounded by

max
u∈U,k

{

dj0 + dj1 + · · · + dji

1
2u

: dji−1
< u ≤ dji

}

. (4)

We observe that the ratio (4) is exactly twice that of the online bidding (1), implying a deterministic

8-approximation [9] on weighed trees (and a randomized 2e-approximation.)

Goemans and Kleinberg [23, 24] improve on [9] by traversing the partial tours more efficiently

and by using randomization. As before, we consider the concatenated tour Q = Tj0Tj1 . . . Tjm , but

now, in Q we traverse each Tj either clockwise or counter-clockwise, choosing the direction that

produces a smaller contribution to the total latency. Note that Q is at least as good as the tour R

which chooses the clockwise or counter-clockwise direction uniformly at random. In R, the average

latency of the kth vertex visited is at most dj0 + · · ·+dji−1
+ 1

2dji
, so the competitive ratio is bounded

by

max
u∈U,i

{

dj0 + · · · + dji−1
+ 1

2dji

1
2u

: dji−1
< u ≤ dji

}

. (5)

3

Applying the doubling method to choose the jis yields a deterministic 6-approximation algorithm.

Observe that ratio (5) is just one less than the cow-path ratio (3), so the ratio is ≈ 3.591 [23, 24].

We don’t actually need randomization to get this ratio, for it is not hard to show that there are

at most n sequences that can result from different choices of α, so we can simply try all of them.

Indeed, as α ranges from 1 to γ, the sequence changes only when some dk exactly equals α times

some power of γ; but for each fixed dk, this happens exactly once, hence there are at most n changes

and therefore at most n sequences. With some care, this optimal α can be, in fact, found in time

O(n log n). (Goemans and Kleinberg [23, 24] gave a different approach to eliminate randomization.)

Summarizing, the method we outlined above yields a polynomial-time ≈ 3.591-approximation

algorithm – if we can compute optimal k-tours in polynomial time. Thus it applies directly to

weighted trees. For general metric spaces, this approach allows us to convert any polynomial-time

c-approximation algorithm for k-TSP into a polynomial-time 8c-approximation algorithm for MLP.

Although no approximation algorithms for k-TSP were known at the time when [9] was published,

Blum et al were able to refine this idea to obtain a 72-approximation algorithm for MLP. The ratio has

been gradually reduced over time by using better approximations for k-spanning trees, culminating

in the 2003 work of Chaudhuri et al [13], who achieved the approximation ratio of ≈ 3.591 – same

as for weighted trees.

5 Non-Clairvoyant Scheduling

Now we turn to online scheduling. Motwani, Phillips, and Torng [34, 35] study preemptive scheduling

of jobs in the non-clairvoyant setting where a processing time only becomes known upon completion

of the job; the objective function is to minimize the sum of completion times. We will focus on the

case of 1-processor scheduling with all jobs released simultaneously at time 0. We will also assume

that each job’s processing time is at least 1.

The RoundRobin algorithm works in rounds, and in each round it assigns a unit of time to each

pending job. As shown in [34, 35], RoundRobin is 2-competitive and (for unlimited n) no better

ratio is possible even with randomization. This might seem to completely solve the problem — but

not quite. In RoundRobin, a job of length u can be preempted Θ(u) times, which is certainly an

undesirable feature when a preemption involves a costly context switch. Can we achieve constant-

competitiveness with fewer preemptions?

The geometric algorithm (let’s call it GeomRR) proposed in [34, 35] works in phases numbered

0, 1, 2, ..., where, in phase ℓ, each unfinished job is allocated time dℓ. Clearly, a job of length u is

preempted now only k times, where d1 + d2 + · · · + dk−1 < u ≤ d1 + · · · + dk.

Let u1 ≤ u2 ≤ · · · ≤ un denote the processing times. Given a schedule, for every pair of jobs

{i, j}, let Pij denote the mutual delays, that is, the times at which one of the two jobs is being

processed while the other one is not yet finished. We can write the sum of completion times as
∑

i ui +
∑

{i,j} Pij. For a given pair {i, j}, assume ui ≤ uj . Clearly, even the optimal schedule must

have Pij ≥ ui. In the GeomRR’s schedule, let k be such that d1 +d2 + · · ·+dk−1 < ui ≤ d1 + · · ·+dk.

Then job j delays job i by at most d1 + · · · + dk, and job i delays job j by at most ui. Thus, using

4

the notation d′k = d1 + d2 + · · · + dk, we have that the competitive ratio of GeomRR is bounded by

max
u,k

{

d′k + u

u
: d′k−1 < u ≤ d′k

}

. (6)

For any β > 1, the sequence d′ℓ = βℓ gives competitive ratio 1 + β. Here, again, we can do better

with randomization. First notice that with random ordering of the jobs within the rounds, with

probability 1
2 job j comes after job i and therefore only delays i by d′k−1. Hence the randomized

competitive ratio is bounded by

max
u,k

{

E[12d′k−1 + 1
2d′k + u]

u
: d′k−1 < u ≤ d′k

}

. (7)

Choose a number α = βX , where X ∈ [0, 1) is chosen uniformly at random, and let d′k = αβk. Since
∫ 1
0 βXdX = (β − 1)/ ln β, this algorithm has competitive ratio 1 + (β + 1)(β − 1)/(2β ln β). Both

algorithms, deterministic and randomized, provide a smooth tradeoff between the competitiveness

and the number of preemptions: with β → 1, the competitive ratio approaches 2, while the number

of preemptions for jobs of length u increases as O(logβ u).

6 Scheduling with Min-Sum Criteria

We continue with online job scheduling, although the setting now is quite different from that in

Section 5. Specifically, jobs have release dates and arrive online: their existence is revealed only

when they are released. At that time, their processing time pj and weight wj is also given. The

objective is to minimize the weighted sum of completion times,
∑n

j=1 wjCj. The technique we will

describe applies to a variety of settings: for example, there can be one or many processors, identical

or not, and preemption may or may not be allowed.

The algorithm proposed by Hall et al [28, 27] executes jobs during phases as follows. Fix an

increasing sequence (dℓ) such that dℓ − dℓ−1 ≥ dℓ−1. Phase ℓ starts at time dℓ−1 and ends at time

dℓ; the algorithm (somehow) selects, from among the jobs pending at time dℓ−1, a maximum-weight

subset that can be processed between dℓ−1 and dℓ, and executes them in arbitrary order.

For the analysis, let Wℓ denote the total weight of the jobs scheduled by this algorithm by time

dℓ. Letting W denote the total weight, we have:

n
∑

j=1

wjCj ≤
∑

ℓ

(Wℓ − Wℓ−1)dℓ =
∑

ℓ

(dℓ − dℓ−1)(W − Wℓ−1).

Since dℓ−1−dℓ−2 ≥ dℓ−2, Wℓ−1 is at least as large as the weight W ∗
ℓ−2 of jobs scheduled in the optimal

schedule by time dℓ−2. Thus:

n
∑

j=1

wjCj ≤
∑

ℓ

(dℓ − dℓ−1)(W − W ∗
ℓ−2) =

∑

ℓ

(W ∗
ℓ − W ∗

ℓ−1)dℓ+1 =
∑

ℓ

∑

j∈Iℓ

wjdℓ+1,

5

where Iℓ denotes the set of jobs completed in the optimal schedule in time (dℓ−1, dℓ]. On the other

hand, the optimal schedule has value
∑

ℓ

∑

j∈Iℓ
wjC

∗
j . Thus the competitive ratio can be bounded

by:

max
(cj),ℓj

{

∑

j wjdℓj+1
∑

j wjcj

: dℓj−1 < cj ≤ dℓj

}

≤ max
u,ℓ

{

dℓ+1

u
: dℓ−1 < u ≤ dℓ

}

. (8)

The doubling method yields a deterministic 4-approximation [28] (with dℓ = 2ℓ) and a randomized

≈ 2.891-approximation [11] (with dℓ = α2ℓ where α = 2X and X chosen uniformly at random from

[0, 1)).

An easy improvement: the algorithm can schedule the jobs in phase ℓ (by taking the better of

one ordering and its reverse ordering) so that their average weighted completion time is (dℓ−1 +dℓ)/2

instead of the crude upper bound dℓ; this variant leads to the bound

max
u,ℓ

{

1
2dℓ + 1

2dℓ+1

u
: dℓ−1 < u ≤ dℓ

}

, (9)

yielding, by the doubling method, a deterministic 3-approximation [28] and a randomized ≈ 2.16-

approximation.

Unfortunately, because of the “somehow” step, this algorithm, as described, is not polynomial-

time. We have effectively reduced our online min-sum problem with release times, to an offline

makespan problem without release dates: given a deadline D and a set of jobs released at time 0,

construct a schedule with makespan at most D that maximizes the total weight of completed jobs.

Now, suppose that there exists a “dual-ρ-approximation” algorithm DualPack for that problem – it

outputs a schedule with makespan at most ρD and with total weight at least as large as that of an

optimal schedule with makespan D. We can then modify the algorithm so that during phase ℓ it

uses DualPack with D = dℓ − dℓ−1 to schedule the next batch in the interval [ρdℓ−1, ρdℓ), and the

resulting approximation ratio will simply be multiplied by ρ.

For example, in the setting of one-processor non-preemptive scheduling, Hall et al [28, 27] give

a DualPack with ratio (1 + ǫ), which, incorporated into the framework above, immediately yields an

online polynomial time deterministic algorithm with competitive ratio 3+ǫ (see also [14].) Numerous

improvements and extensions of the doubling method in the context of min-sum scheduling method

appeared subsequently in the literature, see, for example, [10, 16]. For one processor, a 2-competitive

algorithm, that does not use doubling, was recently given in [1], and this ratio is optimal [29].

7 List Scheduling on Related Machines

The list scheduling problem is a classical online problem first studied by Graham [26] in 1960’s. The

input consists of a list of jobs of varying processing times that need to be assigned to m machines.

The jobs are processed one by one. At step j, the size pj of job j is revealed and we need to assign

it to a machine. The objective is to minimize the makespan, that is, the maximum machine load

(sum of job processing times assigned to this machine). List scheduling differs from the “real-time”

online scheduling model discussed in Sections 5 and 6 in that the decision time is unrelated to the

job execution time.

6

We focus here on the version Q|pmtn|Cmax – namely the case of preemptive scheduling on related

machines, where each machine can run at a different speed. Ebernlendr and Sgall [20] provide two

online algorithms for this problem: a 4-competitive deterministic algorithm and an e-competitive

randomized algorithm. Their work is based on earlier ideas from [3, 8, 5]. (See also [21] for some

recent improvements.)

The key observation is that knowing the optimal makespan C∗
max

helps. In fact, [20, 21] give a

“semi-online” algorithm InTime(T) that is 1-competitive (that is, it computes an optimal schedule)

if it so happens that C∗
max

= T .

In the truly online case we don’t know C∗
max

so, instead, we use a sequence (dℓ) of geometrically

increasing estimates, i.e., such that dℓ+1−dℓ ≥ dℓ. In phase ℓ = 0, 1, 2, ... we assume that the optimal

makespan is dℓ and we apply InTime(dℓ) to the remaining jobs, attempting to schedule them in the

time interval [dℓ, dℓ+1). If InTime(dℓ) fails, that is, a job arrives that cannot be squeezed into this

interval, we know that C∗
max

> dℓ+1 − dℓ ≥ dℓ, so we increase our estimate to dℓ+1, and continue.

For the analysis, suppose that dk−1 < C∗
max

≤ dk, for some integer k ≥ 1. The algorithm will

produce a schedule with makespan at most
∑k

ℓ=0 dℓ, and so the competitive ratio is bounded by

max
u,k

{

d0 + d1 + · · · + dk

u
: dk−1 < u ≤ dk

}

. (10)

Notice that this is simply the online bidding ratio (1), so the deterministic competitive ratio is

bounded by 4 and the randomized competitive ratio is bounded by e.

We focused in this section on the preemptive case, but a fair amount of work has been done on

the non-preemptive case as well, see [3, 8, 5] and references therein.

8 Incremental and Hierarchical Clustering

We now consider the k-clustering problem, where we want to partition a given set X of points in a

metric space into k clusters C1, ..., Ck so as to minimize the maximum cluster diameter (the maximum

distance between any two points in a cluster).

In the incremental version studied by Charikar et al [12], we wish to maintain a k-clustering of

X while new points are inserted into X over time. The online algorithm is not allowed to divide

existing clusters. When a new point is inserted into X, it can be either added to an existing cluster

or it can become a new, singleton cluster. Additionally, at any time, the algorithm can merge some

clusters into one. Besides efficiency and simplicity, these restrictions guarantee that the produced

clustering will have a tree-like hierarchical structure useful for certain applications.

The incremental k-clustering algorithm in [12] uses a sequence dℓ, ℓ = 0, 1, At each step it

has up to k clusters C1, ...Ch, each with a designated center ci ∈ Ci. The algorithm works in phases,

and in phase ℓ = 0, 1, 2, ..., it will satisfy the invariant that the distance between any two centers is

greater than dℓ.

Initially, each of the first k points becomes its own cluster. Without loss of generality, assume

that the minimum distance between the first k points is greater than 1. During the ℓth phase,

7

whenever a new point x arrives, we attempt first to add it to an existing cluster. If there is a center

ci at distance at most dℓ from x, we add x to Ci. Otherwise, if there are fewer than k clusters, we

create a new cluster {x}. In the remaining case, we cannot preserve the invariant for this phase

anymore and the phase ends. To prepare for the next phase, we create a temporary (k + 1)st cluster

{x}, and to reduce the number of clusters we merge some, as follows: Greedily find a maximal set

J of centers whose pairwise distances are greater than dℓ+1. For each other center ci /∈ J there is a

center cj ∈ J at distance at most dℓ+1. We merge Ci into Cj, with cj becoming the center of the new

cluster. When we are done, all inter-center distances are greater than dℓ+1. So now we are ready to

start the new phase ℓ + 1. (Except if no merging occurred, in which case phase ℓ + 1 will be empty

and we go directly to the next phase, etc.)

To analyze this algorithm, define the radius of Ci to be the maximum distance between ci and a

point in Ci. Note that at the beginning of phase ℓ the k + 1 centers are all at distance greater than

dℓ−1 from each other, which implies that the diameter of the optimal k-clustering must be greater

than dℓ−1. The merges at the end of phase ℓ − 1 increased the maximum radius by at most dℓ, so

the maximum radius during phase ℓ is at most d1 + d2 + · · · + dℓ, and the maximum diameter is at

most twice that. The competitive ratio is therefore bounded by

max
u,k

{

2(d0 + d1 + · · · + dk)

u
: dk−1 < u ≤ dk

}

. (11)

Again, this is simply twice the online bidding ratio (1), and thus the above method yields a determin-

istic 8-competitive algorithm and a randomized (2e)-competitive algorithm. (The same technique

works if we measure the cluster size by the radius instead of the diameter.)

Dasgupta and Long [18] have a similar hierarchical clustering algorithm. They are initially given

all the points. First, they order them according to a farthest point traversal [25]: p2 is the point

farthest from p1, at distance x1, p3 is the point farthest from {p1, p2}, at distance x2, etc. This

naturally induces a tree structure T rooted at p1. Given an increasing sequence (dℓ), Define a new

tree T ′ by setting pi’s parent to be its closest ancestor pj in T such that xi and xj are separated some

element of the sequence: xj > dℓ ≥ xi for some ℓ. The k-clustering is the partition into connected

components obtained from T ′ be removing the edges from p2, . . . , pk+1 to their parents.

Again, it is not hard to prove that the diameter of the k-clustering is at most 2(d1 +d2 + · · ·+dℓ),

and that the optimal k-clustering has diameter greater than dℓ−1, hence this, via online bidding again,

leads to a deterministic 8-competitive algorithm and a randomized (2e)-competitive algorithm. The

algorithms of [12] and of [18] can be formally related in some settings [17].

9 Incremental Medians

Given an integer k and a metric space, we want to find a set F of k points called facilities for which

the sum of distances between each point and its closest facility in F is minimized. Naturally, this

can be thought of as another version of k-clustering.

In the incremental version studied by Mettu and Plaxton [32, 33], the metric space is given

offline, but the number k is not specified in advance. Instead, authorizations for additional facilities

8

arrive over time, and each time the incremental algorithm can add another facility to those chosen

previously. In other words, the task is to compute an incremental sequence F1 ⊆ F2 ⊆ ... ⊆ Fn of

facility sets, where |Fk| ≤ k for all k. The competitive ratio is the maximum, over all k, of the cost

of Fk divided by the optimum k-median cost. (We stress that the term “incremental” is used here

in a very different sense than in Section 8.)

This problem has recently been studied by Lin et al [31] and by Chrobak et al [15], who, inde-

pendently, improved the first constant ratio of ≈ 30 from [32, 33] to 8, in the deterministic case, and

to 2e in the randomized case.

Let dk denote the optimum k-median cost and let F ∗
k be the corresponding optimal set. Note

that (dk) is a monotone non-increasing sequence. Here is an algorithm for oblivious median. Given

a subsequence d1 = di1 ≥ di2 ≥ · · · ≥ dip = dm, the algorithm construct the ordering backwards

starting with the set Fn of all facilities and removing facilities in batches as follows. Given the current

set Fij+1
of at most ij+1 facilities, the algorithm defines Fij ⊆ Fij+1

by taking, for each f ∈ F ∗
ij

,

the facility closest to f in Fij+1
. The output is any ordering that starts with the facilities in Fi1 ,

continues with the additional facilities in Fi2 , then Fi3 , and so on until Fip .

For the analysis, using the triangle inequality, it is not hard to prove that the cost of Fij exceeds

the cost of Fij+1
by at most 2dij . For ij ≤ k < ij+1, the cost of the distances to the first k facilities

is at most the cost of distances to Fij . Hence the approximation ratio is bounded by

max
k

{

2dij + 2dij+1
+ · · · + 2dim

dk

: ij ≤ k < ij+1

}

. (12)

Up to reversing the sequence (dk) (say, by defining d′k = dm−k), (12) is the same as the ratio (1)

for the online bidding, giving a deterministic 8-approximation and a randomized (2e)-approximation

algorithms.

Of course, to achieve these ratios we need to compute dk for each k – an NP-hard problem. But

instead of the optimal medians F ∗
k we can use c-approximate medians in the above method; this

simply increases the approximation ratio by a factor of c. In particular, since k-medians can be

approximated with ratio (3 + ǫ) in polynomial time [2], we obtain polynomial time algorithms with

ratio 24 + ǫ (deterministic) and 6e + ǫ (randomized).

With a somewhat more sophisticated approach, [31] were able to improve the ratio to 16 in

deterministic polynomial time. They also provide a number of extensions to other related clustering-

like problems, as well as a generalization of their approach in terms of searching in partially ordered

sets. Other versions of incremental k-medians are considered in [15].

References

[1] E. Anderson and C. Potts. Online scheduling of a single machine machine to minimize total weighted

completion time. Mathematics of Operations Research, 29:686–697, 2004.

[2] A. Archer, R. Rajagopalan, and D. Shmoys. Lagrangian relaxation for the k-median problem: new

insights and continuity properties. In Proc. 11th European Symp. on Algorithms (ESA), pages 31–42,

2003.

9

[3] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing with applications to

machine scheduling and virtual circuit routing. J. ACM, 44:486–504, 1997.

[4] R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Inform. and Comput., 106:234–252,

1993.

[5] A. Bar-Noy, A. Freund, and J. Naor. New algorithms for related machines with temporary jobs. J. Sched.,

3:259–272, 2000.

[6] A. Beck. On the linear search problem. Naval Research Logistics Quarterly, 2:221–228, 1964.

[7] R. Bellman. An optimal search problem. SIAM Review, 5:274, 1963.

[8] P. Berman, M. Charikar, and M. Karpinski. On-line load balancing for related machines. J. Algorithms,

35:108–121, 2000.

[9] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan. The minimum

latency problem. In Proc. 26th Symp. Theory of Computing (STOC), pages 163–171. ACM, 1994.

[10] S. Chakrabarti and S. Muthukrishnan. Resource scheduling for parallel databases and scientific comput-

ing. In Proc. 8th Symp. on Parallel Algorithms and Architectures (SPAA), pages 329–335, 1996.

[11] S. Chakrabarti, C. A. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein. Improved scheduling

algorithms for minsum criteria. In Proc. 23rd International Colloquium on Automata, Languages, and

Programming (ICALP), volume 1099 of Lecture Notes in Comput. Sci., pages 646–657. Springer, 1996.

[12] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic information

retrieval. In Proc. 29th Symp. Theory of Computing (STOC), pages 626–635. ACM, 1997.

[13] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency tours. In Proc.

44th Symp. Foundations of Computer Science (FOCS), pages 36–45, 2003.

[14] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques for average completion

time scheduling. In Proc. 8th Symp. on Discrete Algorithms (SODA), pages 609–618. ACM/SIAM, 1997.

[15] M. Chrobak, C. Kenyon, J. Noga, and N. Young. Online medians via online bidding. In Proc. 7th Latin

American Theoretical Informatics Symp. (LATIN), volume 3887 of Lecture Notes in Comput. Sci., pages

311–322, 2006.

[16] F. Chudak and D. B. Shmoys. Approximation algorithms for precedence-constrained scheduling problems

on parallel machines that run at different speeds. J. Algorithms, 30:323–343, 1999.

[17] A. Das and C. Kenyon. On hierarchical diameter-clustering and the supplier problems. In Proc. WAOA’06,

4th Workshop on Approximation and Online Algorithms, September 2006, Zurich, Switzerland, LNCS,

Springer, 2006.

[18] S. Dasgupta and P. Long. Performance guarantees for hierarchical clustering. Journal of Computer and

System Sciences, 70(4):555–569, 2005.

[19] E. D. Demaine, S. P. Fekete, and S. Gal. Online searching with turn cost, 2004.

[20] T. Ebenlendr and J. Sgall. Optimal and online preemptive scheduling on uniformly related machines. In

Proc. 21st Symp. on Theoretical Aspects of Computer Science (STACS), volume 2996 of Lecture Notes in

Comput. Sci., pages 199–210. Springer, 2004.

[21] T. Ebenlendr, J. Sgall, and W. Jawor. Preemptive online scheduling: Optimal algorithms for all speeds.

In Proc. 13th European Symp. on Algorithms (ESA), volume 4168 of Lecture Notes in Comput. Sci., pages

327–339. Springer, 2006.

10

[22] S. Gal. Search Games. Academic Press, 1980.

[23] M. Goemans and J. Kleinberg. An improved approximation ratio for the minimum latency problem. In

Proc. 7th Symp. on Discrete Algorithms (SODA), pages 152–158. ACM/SIAM, 1996.

[24] M. Goemans and J. Kleinberg. An improved approximation ratio for the minimum latency problem.

Mathematical Programming, 82:111–124, 1998.

[25] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Comput. Sci.,

38:293–306, 1985.

[26] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical J., 45:1563–1581,

1966.

[27] L. Hall, D. Shmoys, and J. Wein. Scheduling to minimize average completion time: Off-line and on-line

algorithms. In Proc. 7th Symp. on Discrete Algorithms (SODA), pages 142–151. ACM/SIAM, 1996.

[28] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average completion time:

Off-line and on-line approximation algorithms. Math. Oper. Res., 22:513–544, 1997.

[29] J. A. Hoogeveen and A. P. A. Vestjens. Optimal on-line algorithms for single-machine scheduling. In

Proc. 5th Conf. Integer Programming and Combinatorial Optimization (IPCO), volume 1084 of Lecture

Notes in Comput. Sci., pages 404–414. Springer, 1996.

[30] M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: An optimal randomized

algorithm for the cow-path problem. In Proc. 4th Symp. on Discrete Algorithms (SODA), pages 441–447.

ACM/SIAM, 1993.

[31] G. Lin, C. Nagarajan, R. Rajamaran, and D. Williamson. A general approach for incremental approxi-

mation and hierarchical clustering. In Proc. 17th Symp. on Discrete Algorithms (SODA). ACM/SIAM,

2006.

[32] R. R. Mettu and C. G. Plaxton. The online median problem. In Proc. 41st Symp. Foundations of

Computer Science (FOCS), pages 339–348. IEEE, 2000.

[33] R. R. Mettu and C. G. Plaxton. The online median problem. SIAM J. Comput., 32:816–832, 2003.

[34] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. In Proc. 4th Symp. on Discrete

Algorithms (SODA), pages 422–431. ACM/SIAM, 1993.

[35] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. Theoret. Comput. Sci., 130:17–47,

1994.

[36] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoret. Comput. Sci., 84:127–

150, 1991.

[37] R. Sitters. The minimum latency problem is NP-hard for weighted trees. In Proc. 9th Integer Programming

and Combinatorial Optimization Conference, 2002.

11

