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ABSTRACT
We consider a multicast game played by a set of selfish noncoop-
erative players (i.e., nodes) on a rooted undirected graph. Players
arrive one by one and each connects to the root by greedily choos-
ing a path minimizing its cost; the cost of using an edge is split
equally among all users using the edge. How large can the sum of
the players’ costs be, compared to the cost of a “socially optimal”
solution, defined to be a minimum Steiner tree connecting the play-
ers to the root? We show that the ratio is O(log2 n) and Ω(log n),
when there are n players. One can view this multicast game as
a variant of ONLINE STEINER TREE with a different cost sharing
mechanism.
Furthermore, we consider what happens if the players, in a sec-

ond phase, are allowed to change their paths in order to decrease
their costs. Thus, in the second phase players play best response
dynamics until eventually a Nash equilibrium is reached. We show
that the price of anarchy is O(log3 n) and Ω(log n).
We also make progress towards understanding the challenging

case where arrivals and path changes by existing terminals are inter-
leaved. In particular, we analyze the interesting special case where
the terminals fire in random order and prove that the cost of the
solution produced (with arbitrary interleaving of actions) is at most
O(polylog(n)

√
n) times the optimum.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complexity]: Gen-
eral
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1. INTRODUCTION
Given an undirected connected rooted graph G = (V, E) with

nonnegative edge costs c(e) for e ∈ E, consider a sequence X =
t1, . . . , tn of players, or terminal vertices, who arrive in an online
fashion; each new terminal greedily chooses a path connecting it to
the root r so as to minimize its payment, as determined by the egali-
tarian (or Shapley) model: the cost of an edge is split evenly among
the players currently using it in their paths to the root. Thus, if k
players use edge e, then each player pays c(e)/k for using e. Such
egalitarian cost-sharing was recently introduced in an algorithmic
game-theoretic context by Anshelevich et al. [2] and further stud-
ied by [3, 4, 5]. (It is also the outcome of the Shapley value; see
[14] for details.)
The offline structure minimizing the total cost to all the players

(the so-called “social optimum”) is the minimum Steiner tree on
X ∪ {r}. How much larger is the cost of the structure resulting
from a sequence of selfish choices of cost-minimizing paths? The
answer turns out to be polylogarithmic: here, we prove that its cost
is larger by a factor which is no larger thanO(log2 n) (Theorem 1),
and that there are instances for which it is larger by a factor of
Ω(log n). This dramatically improves upon the previously known
upper and lower bounds of O(

√
n log n) and Ω(log n/ log log n)

[3].
Our upper bound is proven by a gap-revealing linear program,

an argument which we find appealingly simple. Our lower bound
is proven by relating the problem to the ONLINE STEINER TREE
problem, whose competitive ratio [7] is known to beΘ(log n). (Re-
call that the competitive ratio of an online algorithm A is the worst
case, over all input sequences X , of the value of A for input X ,
divided by the value of the optimal offline solution for X .)
Naturally, later arriving terminals may render certain paths more

attractive and produce some regret for terminals who have previ-
ously chosen paths which are no longer cheapest for them. In order
to deal with such regret, Chekuri et al. [3], following a first phase
in which the players arrive one by one, proposed adding a second



phase during which any existing player may change its path to a dif-
ferent, currently cheapest path (i.e., use best response dynamics):
that is, once all players have arrived, players are allowed to “refire”
or “replay” an arbitrary number of times and in arbitrary order, un-
til a Nash equilibrium is reached, in the sense that no player has
any incentive to deviate unilaterally from its currently-chosen path.
This defines a two-phase multicast game. The inefficiency result-
ing from such a non-cooperative game is quantified by the price
of anarchy [8], the worst-case ratio between the cost of a Nash
equilibrium and the cost of the optimum Steiner tree. Here, as a
corollary of Theorem 1, we prove that the ratio is O(log3 n) when
all initial firings precede the first refiring; and our lower bound ex-
tends to prove that the worst-case ratio is alsoΩ(log n). Again, this
dramatically improves upon the previous bounds of O(

√
n log2 n)

and Ω(log n/ log log n) [3], also proven in the case in which all
initial firings precede the first refiring.
We emphasize that in our game all players must arrive before any

player refires. Thus, we do not talk about a Nash equilibrium until
all nodes have arrived, each firing once. Only then does the second
phase, of refirings, begin, and then we discuss a Nash equilibrium.
In the last section, we pose as an open problem the case in which
arbitrary intermingling of initial firings and refirings is allowed.

For the two-phase multicast game with egalitarian cost sharing,
we have thus proven that the Nash equilibria that are reachable by
our best response dynamics (all initial firings before any refirings)
have cost no more than a polylogarithmic factor times the optimum.
In contrast, for this game there do exist Nash equilibria of the tradi-
tional kind, without any issue of reachability, with cost larger than
the optimum by a factor of n: consider an instance [2] with two
nodes, s and r, and two parallel edges between s and r, one of cost
n, one of cost 1 + ε. Now suppose that n players use the heavy
edge, each shouldering one nth of the burden. This configuration
has cost n, whereas the optimal cost is 1 + ε. Yet, no player will
move to the light edge, and so this is a Nash equilibrium; hence
the price of anarchy is (at least) n. In a dynamic environment as
modeled by our game, this equilibrium simply cannot be reached,
since we start from an initial empty configuration.
The latter example motivated Anshelevich et al. to introduce the

notion of price of stability: the ratio of the cost of the cheapest
Nash equilibrium to the cost of the optimal solution. They showed
that this ratio is O(log n) for the multicast game on undirected
graphs, a bound slightly improved by Agarwal and Charikar [1]
to O(log n/ log log n), and by Fiat et al. [5] to O(log log n) in the
special case in which every node in the graph is a terminal. How-
ever, the proof of the logarithmic upper bound on the price of sta-
bility of [2] heavily relies on the assumption that the starting point
is an optimal (or near optimal) Steiner tree on the terminals.
In light of this prior work, one can view our result either as a

result about ONLINE STEINER TREE with egalitarian cost sharing
(Phase 1 alone), or as a result about the modest price of anarchy
in a multicast game in which price of anarchy is defined only over
configurations which are reachable from the initial empty configu-
ration, albeit in a specific way (all initial firings preceding all refir-
ings).
Extending our analysis to the more general case in which termi-

nals may refire before all terminals have arrived, seems to be sur-
prisingly challenging. In this case, the online sequence is an arbi-
trary sequence of ”firings” of the terminals, with repetitions, where
the first firing corresponds to the arrival of the terminal. We make
some progress towards understanding this case by studying the ver-
sion where the firing sequence is random. For this version we prove
that the cost of the solution produced (with arbitrary interleaving of
actions) is at most O(polylog(n)

√
n) times the optimum.

2. ONLINEMULTICASTWITHEGALITAR-
IAN COST SHARING: UPPER BOUND

Theorem 1 The greedy algorithm for online multicast with egali-
tarian cost sharing has competitive ratio O(log2 n).

Let H(n) = 1 + 1/2 + 1/3 + · · · + 1/n, be the nth harmonic
number. Assume the terminals are labeled so that their arrival order
is < t1, t2, ..., tn >. Denote by d(·, ·) the distance function on the
graph G as defined by the edge cost c(·).

Lemma 1 The total cost of all edges used by the terminals’ paths is
bounded above by the optimal value of the following “gap-revealing”
linear program with variables s(1), ..., s(n), b(1), ..., b(n):

max
n∑

i=1

b(i) s.t.

s(j)− s(i) + b(i)/2 ≤ d(i, j) ∀ 1 ≤ i < j ≤ n
∑

i

s(i)−
∑

i

b(i)H(n) ≤ 0

s(0) = b(0) = 0 (for the root)
s(i), b(i) ≥ 0 ∀ 1 ≤ i ≤ n

PROOF. It suffices to construct a feasible solution to the above
LP whose objective function value equals the total cost of the edges
used by the terminals. For 1 ≤ i ≤ n, let Pi denote the path
selected by terminal ti. Let s(i) be the cost share of Pi upon arrival
of ti, specifically,

s(i) =
∑

e∈Pi

c(e)/|{j : (e ∈ Pj) ∧ (1 ≤ j ≤ i)}|

and let b(i) to be the sum of c(e) over those e that were used for
the first time by Pi.
We claim that this choice of s(i), b(i) is feasible for the LP. The

first set of constraints is equivalent to an observation of Chekuri et
al. [3]: For any two terminals i and j, 1 ≤ i < j ≤ n,

s(j) ≤ d(i, j) + s(i)− b(i)/2.

To see this, note that when terminal j selects his path, one option
is to select the shortest path to i (costing d(i, j)), and then follow
the same path selected by i, which costs at most s(i)−b(i)/2 since
the cost share to j of using edges that were first used by i is at most
b(i)/2.
For the second set of constraints, observe that the total of all cost

shares for the selected path by each terminal i upon arrival is at
most:

Φ =
∑

i

(b(i) + s(i)) ≤
∑

e∈∪iPi

c(e)H(n) =
∑

i

b(i)H(n).

Finally, the total cost of the selected tree is given by
∑

i b(i),
which is the value of the objective function.

To get an upper bound on the optimal value of this LP, we con-
sider a relaxation of this LP, and construct a solution to the dual of
the relaxation.
In what follows, we view the root r as a terminal t0 that ar-

rived before any other terminal and define W = X ∪ {t0} =
{t0, . . . , tn}. Let T be a tree on vertex set W rooted at t0 (not
necessarily a subgraph of the network) such that for each j ∈ X ,



its parent p(j) in T arrived before j. For a node j, let C(j) de-
note the set of children in T . Consider the relaxation of the LP in
Lemma 1, denoted LPT , where for the first set of constraints we
only keep those in which i = p(j). The dual of this linear program,
DLPT , has dual variables {zj : j ∈ X} ∪ {y} and has the form:

min
∑

j∈X

d(p(j), j)zj s.t.

−H(n)y +
∑

j∈C(i)

zj/2 ≥ 1 ∀i ∈ W

y + zi −
∑

j∈C(i)

zj ≥ 0 ∀i ∈ W

zi ≥ 0 ∀i ∈ W

y ≥ 0

For any choice of T and any feasible solution to DLPT we get
an upper bound on the optimal value of the LP in Lemma 1 and
therefore an upper bound on the cost of tree produced by the algo-
rithm.
The next lemma constructs a specific rooted tree T ′ with some

nice properties. We then show how to construct a low cost feasible
solution toDLPT ′ that yields the upper bound of Theorem 1.
When we write d(i, j), we mean the distance in the underlying

network (not in the tree T ′ being constructed). The level of a node
is one more than its distance from the root in the tree T ′ (so the
root is at level 1). For j ∈ X we write p(j) for the parent of j in ′.

Lemma 2 Let τ be a positive integer. There exists a rooted tree T ′

(not necessarily a subgraph of the input graph) on the set W =
{t0, . . . , tn} with root t0 such that:

1. For every terminal t )= t0, the parent of t arrived earlier
than t.

2. Every node has at most two children.

3. Every node u with two children is at level divisible by τ .

4.
∑

j∈X d(j, p(j)) ≤ 2(τ + 1)*log n+ · OPT.

PROOF. Select a minimum Steiner tree R on the network. Let
π = (π(0), π(1), . . . , π(n)) be the ordering of W that lists the
terminals in order of first appearance along an Eulerian tour of R
that starts from t0. We have π(0) = t0 and

∑
i d(π(i), π(i+1)) ≤

2 · OPT.
The construction of T ′ is recursive. Let S be the set of τ ter-

minals, t0, . . . , tτ−1 with earliest arrival time (listed in increasing
order of arrival time). Let π′ be the sequence obtained from π by
deleting S. Split π′ into two sequences π1, π2 of nearly equal size,
so that |π1| ≤ |π2| ≤ |π1|+1. For i ∈ {1, 2}, let ri be the terminal
in πi that arrived first. Recursively build trees T1 for π1 with root
r1 and T2 for π2 with root r2. The output tree T ′ consists of the
union of the path t0, . . . , tτ−1, the edges (tτ−1, r1) and (tτ−1, r2)
and the trees T1, T2.
By construction, T ′ satisfies the first three properties. Further-

more, a simple induction on n shows that the number of levels of
T ′ is at most τ*log n+.
For the final property claimed in the lemma we want to prove

an upper bound on
∑

j∈X d(j, p(j)). For each terminal j )= π(n)
let f(j) be the terminal that immediately follows it in π order and
let D(j) be the set of terminals that appear between j and p(j) in
π order together with the member of {j, p(j)} that appears first in

π order. By repeated use of the triangle inequality d(j, p(j)) ≤∑
i∈D(j) d(i, f(i)) and therefore

∑

j∈X

d(j, p(j)) ≤
∑

i∈X

d(i, f(i))|{j : i ∈ D(j)}|.

Claim 3 For any two terminals j, j′, if D(j) ∩ D(j′) )= ∅ then
p(j) is an ancestor of p(j′) or p(j′) is an ancestor of p(j).

To prove the claim, suppose, for contradiction that the least com-
mon ancestor k of p(j) and p(j′) is distinct from both, and without
loss of generality p(j) is in the left subtree of k and p(j′) is in the
right subtree. Then j and p(j) both precede j′ and p(j′) in π or-
der and so D(j) ∩ D(j′) is empty, a contradiction that proves the
claim.
From the claim it follows that for any terminal i, there is a single

root to leaf path that contains the parents of all terminals j such
that i ∈ D(j). Such a path contains at most τ*log n+ terminals, of
which at most *log n+ have two children, so |{j : i ∈ D(j)‖ ≤
(τ + 1)*log n+. We conclude that

∑

j∈X

d(j, p(j)) ≤ (τ + 1)*log n+
∑

i∈X

d(i, f(i))

≤ 2(τ + 1)*log n+OPT,

as required to complete the proof of the lemma.

Note that in the previous lemma, τ is a free parameter. We now
complete the proof of Theorem 1 by fixing τ and defining a specific
feasible solution to DLPT ′ , for the tree T ′ defined in Lemma 2.
The value of that solution will be the required upper bound.
For the moment we leave τ unspecified and also introduce an-

other positive parameter a that will be fixed shortly. Let y =
a

2(τ−1) . For each integer q satisfying 1 ≤ q ≤ τ , for every termi-
nal j whose level is congruent to q mod τ set zj = a

2 + (q − 1)y.
Observe that for every j, zj ∈ [a/2, a].
For any choice of a and τ , the second set of dual constraints is

satisfied. To see this, note that if the level of j is not a multiple of
τ then j has one child, so y + zi −

∑
j∈C(i) zj = 0. If j is at level

a multiple of τ then zj = a and j has two children each having z
value a/2, so y + zj −

∑
i∈C(j) zi = y ≥ 0.

For the first set of constraints, it is enough that yH(n) ≤ a/4−1
and this is true if we take τ = *4H(n)++ 1 and a = 8.
By the third property of Lemma 2, the value of the solution is
∑

j

d(p(j), j)zp(j),j ≤
∑

j

d(p(j), j)a

≤ 16*log n+(*4H(n)++ 1) · OPT,

completing the proof of Theorem 1.

3. TWO-PHASEMULTICASTGAME:PRICE
OF ANARCHY

Recall that we consider a two-phase game for connecting the
terminals to the root. In Phase 1 the players play in the order
t1, . . . , tn, and each selects a greedy (best response) path relative
to the selection of paths by the previous players. In Phase 2, the fol-
lowing step is repeated: take an arbitrary player among t1, . . . , tn,
whose current path is not a greedy path relative to the other paths,
and replace its current path by a greedy path. When each player’s
path is the greedy path relative to the other paths, we have reached
a Nash equilibrium and the game ends. Our goal is to analyze the
cost of the resulting solution. (As the game proceeds, the union of



the paths chosen by the players need not be a tree, but it can be
shown [3] that any Nash equilibrium induces a tree.)
The multicast game belongs to the class, first defined by Rosen-

thal [12] and widely investigated [6, 9, 11, 14, 15], of congestion
games. Rosenthal [12] showed that a potential function can be de-
fined for each congestion game such that the potential decreases
if a player makes a move that improves its selfish cost. It follows
that every congestion game has a pure Nash equilibrium. More-
over, there is a one-to-one correspondence between Nash equilibria
and the solutions defining a local minimum of Rosenthal’s potential
function. For the multicast game, Rosenthal’s potential function Φ
reduces to the following:

Φ =
∑

e∈E



c(e) ·
n(e)∑

i=1

1
i



 ,

where n(e), the usage of e, denotes the number of players using
edge e at the specified time. If a player has previously fired and
changes its connection to the root from path P to path Q, then
the potential function precisely captures the change in cost (to the
player) from P to Q. Since best response dynamics can only de-
crease Rosenthal’s potential function, it follows that this process
must terminate in a Nash equilibrium. From Theorem 1, it is easy
to deduce a bound on the price of anarchy of reachable Nash equi-
libria. (Chekuri et al. [3] used the same technique.)

Corollary 4 The Nash equilibrium reached by the two-phase Mul-
ticast Cost Sharing game with best response dynamics has cost
O(log3 n)OPT.

PROOF. Consider Rosenthal’s potential functionΦ defined above.
Let Φ1 and Φ2 be its values at the end of Phases 1 and 2, respec-
tively. Since Φ cannot increase in Phase 2, Φ2 ≤ Φ1. Now the cost
at the end of Phase 1 is at most O(log2 n) · OPT by Theorem 1.
Hence, Φ1 is at mostH(n) times this value, i.e.,O(log3 n) ·OPT .
But the cost of the graph at the end of Phase 2 is at most Φ2 ≤ Φ1.

4. LOWER BOUNDS
Using the lower bound for the ONLINE STEINER TREE greedy

algorithm, we prove a lower bound of Ω(log n) for the greedy on-
line Steiner problem with egalitarian cost sharing (i.e., Phase 1
alone), and for the two-phase multicast cost sharing game, improv-
ing upon the previous lower bound proof of Ω(log n/ log log n) by
[3]. We note that our proof is simpler compared to the proof of [3].
In the ONLINE STEINER TREE problem, given are a graph G =

(V, E) and a root r ∈ V . The algorithm will maintain a connected
subgraph T of G; initially T = {r}. In each step, given a new
terminal t of V , the greedy algorithm selects a cheapest path from
t to r and adds it to T . Its competitive ratio is the worst-case ratio
between the cost of the tree it constructs and that of the cheapest
Steiner tree on the union of {r} and the set of the given terminals.

Theorem 5 [7] The competitive ratio of the greedy algorithm for
ONLINE STEINER TREE on n-vertex unweighted graphs isΩ(log n).

The proof of Theorem 5 given by Imase and Waxman uses the $-
level diamond graphwith 4" edges. However, we will use the lower
bound as a black box.

Theorem 6 The competitive ratio of the greedy algorithm for on-
line multicast with cost sharing and the price of anarchy of the two-
phase multicast cost sharing game on n(n + 1)-vertex graphs are

both at least half of the competitive ratio of the greedy algorithm
for ONLINE STEINER TREE on n-vertex unweighted graphs.

PROOF. Consider an instance for ONLINE STEINER TREE on a
graph G = (V, E) with n vertices. We define an instance of the
multicast game as follows. LetN = n + 1 and ε = 1/n2. Replace
each vertex v ∈ V by a star Sv ofN vertices by addingN −1 new
vertices v1, v2, ..., vN−1 each at distance ε from v. This defines a
new graph H . Replace each request to a vertex v ∈ V (G) by a
“v-batch,” i.e., a request to v0 = v ofH followed by a sequence of
requests to all the leaves v1, ..., vN−1 in V (H) in the star Sv ofH .
This defines an instance of the multicast game.
An edge of length ε will be called a short edge; others (of length

1) will be called long edges. We will prove that during Phase 1
of the multicast cost sharing algorithm, the following invariant is
maintained: At any time, the union of the request paths forms a tree
T rooted at r. The invariant implies that at the beginning of every
batch of requests, for every long edge e, the number of requests
which use e is an integer multiple of N . It also implies that for
every vertex vi ∈ Sv , if v is in T then the path from vi to r is
the concatenation of the short edge from vi to v and the same path
from v to r. The invariant is valid initially. Assume that it is true
so far, and consider a request to some vertex vi ∈ Sv .
If this is the beginning of a new batch (i = 0), the path serving

v traverses some number $, $ ≥ 1, of long edges to first reach a
vertex which is already in T . From that point onward, following
the edges of T , each of which is used at least N times, costs at
most n/N in total. Following unnecessarily even one long edge
not in T would cost 1 > n/N . It follows that the algorithm will
simply minimize the number $ of non-T edges it needs to first hit T
(just as the greedy ONLINE STEINER TREE algorithm does); from
that point on, it will lazily follow T to r.
Now suppose 1 ≤ i ≤ N − 1. When vi is requested, it must

take the short edge to v followed by some path from v to r. The
main observation is that whatever path P that vi−1 chose to take
to go from v to r is still the best path for vi. (Compare P to some
other path P ′. Edges in the intersection I of P and P ′ contribute
the same cost to P and P ′. After vi−1 has chosen path P , edges in
P \ P ′ are cheaper than before, and edges in P ′ \ P are the same
price as before. Since P was of no greater cost than P ′ before path
P was added to the collection, it is certainly still of no greater cost
than P ′ afterward.)
Thus the invariant is maintained. The structure at the end of

Phase 1 in the two-phase multicast cost sharing game is thus a tree
corresponding to the tree produced by the ONLINE STEINER TREE
algorithm on G. Moreover, this tree is a Nash equilibrium since no
vertex can wish for a different path (even using one long edge not
in T is a disaster), so Phase 2 is empty of events.
The output tree has total length exactly equal to n(N − 1)ε +

$(T ), $(T ) denoting the number of long edges in T . The optimal
multicast structure on H must be a tree, which has length n(N −
1)ε + $(T ∗), where T ∗ is the corresponding tree in G and $(T ∗)
is the number of its long edges (all of them). By optimality, T ∗

is the optimal Steiner tree on G. Thus the competitive ratio of the
optimal Steiner tree problem (on this instance) is $(T )/$(T ∗) and
the price of anarchy of the multicast game (on this instance) is

n(N − 1)ε + $(T )
n(N − 1)ε + $(T ∗)

≥ $(T )
n(N − 1)ε + $(T ∗)

≥ (1/2)
$(T )
$(T ∗)

,

since $(T ∗) ≥ 1 ≥ n(N − 1)ε by the definition of ε. Finally, the
competitive ratio of the optimal Steiner tree problem is simply the
worst-case value of $(T )/$(T ∗).



Corollary 7 The price of anarchy of the two-phase Multicast Cost
Sharing game is Ω(log n).

5. MULTICASTWITHRANDOMARRIVALS
In this section, we consider the setting in which arrivals and re-

plays can be mixed in arbitrary order. The general setting seems
quite challenging to analyze and giving a guarantee in this case is
an open problem. We make some progress towards understand-
ing this problem in the interesting special case of random arrivals.
Here, the order of arrivals is a random permutation of the termi-
nals, refirings are (adversarially) intermingled with arrivals. In this
case, we show that the expected cost of the solution produced is
O(polylog(n)

√
n)· OPT.

More precisely, the model we consider can be described as a
semi-random adversary model as follows. At each time step, an
adversary decides either to refire a specific terminal that has previ-
ously joined, or decides that a new terminal should arrive. In the
latter case, the new terminal is selected uniformly at random from
among the terminals that have not yet arrived.
To analyze the cost of the solution produced, we analyze the evo-

lution of the potential function.

5.1 Bounding the change in the potential func-
tion

Let Ψ(k) denote the value of the potential function immediately
prior to the kth arrival and letΦ(k) denote the value of the potential
function immediately following the kth arrival. Upon arrival of the
(k+1)th new terminal v, the potential change isΦ(k+1)−Ψ(k+
1), which is at most

min{d(v, u) +
∑

e∈P (u)

c(e)/(n(e) + 1) : u arrived before v },

where n(e) is the number of paths using edge e immediately prior
to the arrival of v and P (u) is the path currently used by vertex u
when v arrives.
We can bound this minimum from above by considering an av-

erage over u selected according to some distribution. We now de-
scribe the distribution we will use. As in the previous section, let
π be the permutation of the terminals giving their order of first ap-
pearance along an Eulerian tour of the minimum Steiner tree on
X ∪ {r}. Here we view π as a cyclic permutation. Below we will
fix a positive integer s. Let S(v) (resp. S−(v)) denote the first s
vertices following (resp. preceding) v along π. Let R(k) denote
the first k terminals of X that arrived (in time) and B(k) denote
the remaining terminals. We pick u uniformly at random among
S(v) ∩R(k).
Let Av(k + 1) be the indicator of the event that v arrives at

time k + 1. Since replays can only decrease the potential function,
Ψ(k+1) ≤ Φ(k), and soΦ(k+1)−Φ(k) ≤ Φ(k+1)−Ψ(k+1);
then

Φ(k + 1)− Φ(k) ≤
∑

v

Av(k + 1)
[

max
u∈S(v)

d(v, u)

+
∑

u∈R(k)∩S(v)

1(v picks u)
∑

e∈P (u)

c(e)
n(e) + 1

]
. (1)

5.2 Chernoff Bound
Each fixed vertex belongs to R(k) with probability k/n so the

expected size ofR(k)∩S(v) is sk/n and the expected size ofB(k)
is s(n − k)/n. For the analysis we will need to show that with
probability close to 1, for all v |R(k) ∩ S(v)| is not much smaller
than its expectation (and |B(k) ∩ S(v)| is not much bigger than

its expectation.) For fixed v, R(k) ∩ S(v) is a sum of s indicator
random variables each corresponding to a vertex w ∈ S(v) and
indicating whether w ∈ R(k). If these were independent we could
use standard tail bounds for sums of independent random variables,
but they are not independent. The problem of deriving tail bounds
in similar cases has been considered extensively, but we don’t know
a result that it is in a form that is convenient for our purposes, so
we prove it here.

Lemma 8 Let ε ∈ (0, 1/2). Let k0 = 48 ln n/ε2. Let k ∈ [k0, n−
k0] and s = k0n/ min(k, n− k). Define the event E1(k):

for every v,

|S(v) ∩R(k)| ≥ ks
n

(1− ε)

and

|S(v) ∩B(k)| ≥ (n− k)s
n

(1 + ε).

Then, event E1(k) has probability at least 1−O(1/εn2).

First observe that the definition of k0 ensures that s < n. We
will bound the two cardinalities separately and use the union bound
for 1 − Pr{E1(k)}. By symmetry, |S(v) ∩ B(k)| has the same
distribution as |S(v) ∩R(n− k)|, so we will just analyze |S(v) ∩
R(k)| and bound its tail distribution on both sides of the mean.
To prove the lemma, fix k, fix v, and let Z = |S(v) ∩ R(k)|.

As noted above, Z has expectation (k/n)s. Using a standard tech-
nique, we will obtain an upper bound on the probability that Z <
(1−ε)E[Z], by approximating Z by a sum of independent random
variables. Let R′ = X1 + . . . + Xn and Z′ = X1 + · · · + Xs,
where the Xi’s are i.i.d. indicator random variables each having
the same (as yet unspecified) expectation. Observe that when Z′

is conditioned on the event R′ = k, has the same as the distribu-
tion of Z, and when Z′ is conditioned on the event R′ < k, it is
stochastically dominated by Z. Thus:

Pr{Z ≤ (1− ε)(k/n)s} ≤ Pr{Z′ ≤ (1− ε)(k/n)s|R′ ≤ k}

≤ Pr{Z′ ≤ (1− ε)(k/n)s}
Pr{R′ ≤ k} .

Fixing the common expectations of theXi to be (k/n)/(1+ε/2)
we have E[R′] = k/(1 + ε/2), and by Markov’s inequality, we
obtain the (crude but adequate) bound:

Pr{R′ ≤ k} = 1− Pr{R′ > k} > 1− 1/(1 + ε/2) > ε/3.

Therefore we have:

Pr {Z ≤ (1− ε)(k/n)s}

≤ 3
ε

Pr{Z′ ≤ (1− ε)(k/n)s}

≤ 3
ε

Pr{Z′ ≤ (1− ε)(1 +
ε
2
)E[Z′]}

≤ 3
ε
e−ε2(k/n)s/(12(1+ε/2)), (2)

where the last inequality is obtained by a standard Chernoff-type
bound.
Similarly, since Z is stochastically dominated by Z′ if R′ ≥ k,

Pr {Z ≥ (1 + ε)(k/n)s}
≤ Pr{Z′ ≥ (1 + ε)(k/n)s|R′ ≥ k}
≤ Pr{Z′ ≥ (1 + ε)(k/n)s}/ Pr{R′ ≥ k}.



Assume now thatXi satisfies1 E[Xi] = (k/n)/(1−ε/2). Then
E[R′] = k/(1−ε/2), and (given that the maximum possible value
is n), by Markov’s inequality, the probability that R′ is less than k
is at most 1− εk/(2(n− k)).
Therefore we have:

Pr {Z ≥ (1 + ε)(k/n)s}

≤ 2(n− k)
εk

Pr{Z′ ≥ (1 + ε)(k/n)s}

≤ 2(n− k)
εk

Pr{Z′ ≥ (1 + ε)(1− ε/2)E[Z′]}

≤ 2(n− k)
εk

e−ε2(k/n)s/(12(1−ε/2)), (3)

where the last inequality is obtained by standard Chernoff bounds.
Summing the bounds in (2) and (3) and plugging in the value of
s = 4 ln n · 12n/(min(k, n− k)ε2) proves the lemma.

5.3 Concluding the Analysis
We start from Equation (1). Writing σ = rv1v2 . . . vn, the first

part averages to

E[D1] =
∑

i

Pr{vi arrives at k + 1}
∑

i≤j<i+s

d(vj , vj+1)

≤ (1/n)s 2OPT. (4)

Rewrite the second part as

D2 =
∑

u∈R(k)

∑

e∈P (u)

c(e)
n(e) + 1

∑

v∈S−(u)∩B(k)

Av(k+1)1(v picks u).

To bound the expectation ofD2, we condition on the eventE1(k)
from Lemma 8 with ε = 1/(c ln(n)). We have:

E[D2] ≤ E[D2|E1(k)] + (1− Pr{E1(k)}) · OPT

≤ E[D2|E1(k)] +
O(ln n)

n2
· OPT. (5)

So now we need to bound E[D2|E1(k)]. The event E1(k) de-
pends only on the history up to time k. Fix a history up to time
k, such that E1(k) holds, and take expectations over v, being care-
ful to do things in the correct order: the probability that v picks u
is 1/|S(v) ∩R(k)|, which can be bounded by the definition of the
eventE1(k). E[Av|history] equalsE[Av|v ∈ B(k)] = 1/(n−k).
The number of non-zero terms is |S−(u) ∩ B(k)| and can also be
bounded by the definition of event E1(k). Thus:

E [D2|history]

≤
∑

u∈R(k),e∈P (u)

c(e)
n(e) + 1

∑

v∈S−(u)∩B(k)

1
n− k

n
(1− ε)ks

≤
∑

u∈R(k),e∈P (u)

c(e)
n(e) + 1

(1 + ε)s(n− k)
n

1
n− k

n
(1− ε)ks

=
1 + ε

(1− ε)k

∑

e

c(e)
n(e)

n(e) + 1
.

Now, note that for any i ≥ 1, we have

i/(i + 1) ≤ (1/2)(1 + 1/2 + 1/3 + · · · + 1/i),

and so
∑

e

c(e)n(e)/(n(e) + 1) ≤ (1/2)Ψ(k + 1).

1If this quantity is greater than n then the probability that Z ex-
ceeds it is 0.

Thus, we can substitute and average over histories such that E1(k)
holds:

E[D2|E1(k)] ≤
�

1 + 3ε
2k

�
· E[Ψ(k + 1)|E1(k)]

≤
�

1 + 3ε
2k

�
· E[Φ(k)|E1(k)],

since Ψ(k + 1) ≤ Φ(k) as replays can only decrease the potential
function. Continuing we have:

E[D2|E1(k)] ≤
�

1 + 3ε
2k

�
· E[Φ(k)]
Pr{E1(k)}

≤
�

1 + O(1/ ln n)
2k

�
· E[Φ(k)], (6)

where the last inequality uses the chosen value of ε and Lemma 8.
Therefore, combining (4), (5) and (6) we get:

E[Φ(k + 1)− Φ(k)] = E[D1 + D2]

≤ (
s
n

+
O(ln n)

n2
)OPT

+

�
1 + O(1/ ln n)

2k

�
· E[Φ(k)].

Rewriting this, we get that for k ∈ [k0, n− k0]:

E[Φ(k + 1)] ≤ O(1) ln3(n)
min(k, n− k)

· OPT

+

�
1 +

1 + O(1)/ ln(n))
2k

�
· E[Φ(k)].

Moreover, the initial value of the recurrence is

Φ(k0) ≤ k0OPT.

Replacing k0 by its value, and doing repeated back substition from
n− k0 down to k0 and using a coarse upper bound, yields

E[Φ(n−k0)] ≤ O(ln4(n))·OPT·
n−k0∏

k0

�
1 +

1 + O(1)/ ln(n))
2k

�
.

E[Φ(n− k0)] ≤ O(ln4(n)) · OPT · e(1+O(1)/ ln(n)) ln(n)/2.

E[Φ(n− k0)] ≤ OPT · O(ln4(n))
√

n.

Finally, Φ(n) − Φ(n − k0) ≤ k0OPT. Recall that the value of
the potential function is an upper bound on the cost of the solution.
This gives the claimed bound of O(polylog(n)

√
n · OPT).

6. DISCUSSION
The main problem that remains open is analyzing the model

where we are allowed to mix arrivals and replays. We made some
progress towards understanding this model in the special case of
random arrivals. We conjecture that the upper bound remains poly-
logarithmic even in the adversarial model, but leave it as a tantaliz-
ing (and difficult) open problem.
Another interesting direction is the multi-source case where each

request (player) is a pair of terminals that need to be connected. We
assume egalitarian cost sharing between the players. Unfortunately,
the following is an easy example that shows that in this case the
greedy algorithm (for phase 1) has competitive ratioΩ(n). Take the
complete graph in which all edges e have distinct costs ce which are



approximately 1. The terminals pairs consist of all possible pairs
of vertices, and the requests {i, j} appear in order of decreasing
cost of c{i,j}. Then, upon arrival of request {i, j}, even if all other
more expensive edges already have a user, buying edge {i, j} to
serve the request is cheaper than using a path {i, k}, {k, j}. Thus,
every request will be served by a new edge and the total cost of the
solution is approximately n(n−1)/2, whereas the optimal solution
has cost about n− 1, giving a competitive ratio of at least n/2.
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