Profit-Maximizing Envy-free Pricing

Venkat Guruswami Jason Hartline Anna Karlin David Kempe Claire Kenyon Frank McSherry

Envy-free pricing

- Seller: (*m* items)
 - Sets price p_j for item j.

Consumers: (*n* consumers)

- Consumer i has valuation v_{ij} for item j.
- For item j at price p_j , consumer i has *utility*: $u_{ij} = v_{ij} p_j$.
- Consumer desired item to maximize utility.

Agreement: (envy-free pricing)

• Must have allocation such that all consumers are happy.

Envy-free pricing

Given: the valuations v_{ii} Find: prices p_i and allocation so as: to maximize seller profit $\sum_{j \text{ allocated }} p_j$ s.t.: envy-free constraint: if customer i is allocated item j, then $p_i \leq v_{ii}$ and for every j', we have $v_{ii'} - p_{j'} \le v_{ij} - p_j$.

Motivation

- Envy-free pricing has been studied in Economics for 50 years [Walras 1954]
- Envy-free ⇒ consumer has no incentive to change allocation;
 Maximum-profit ⇒ seller has no incentive to change prices.
- "Price of truthfulness" in combinatorial auctions: to analyze performance, compare truthful mechanism to envy-free (full information) pricing

Envy-free pricing has an $O(\log n)$ approximation algorithm

Walrasian Equilibrium

Definition: *Walrasian Equilibrium*, an envy-free pricing with unallocated items at price zero.

Examples:

- for unlimited supply, all items at price zero.
- for limited supply, all items at price zero is not Walrasian Equilib.

Algorithm: Vickrey-Clarke-Groves (VCG):

- 1. Allocate items via *maximum weighted matching* (MM).
- 2. For (i, j) in matching, give item j to consumer i at price:

$$p_j = v_{i,j} - \mathrm{MM}(V) + \mathrm{MM}(V_{-i}).$$

Theorem: [Leonard 83] VCG outputs a Walrasian Equilibrium.

Reserve Prices

Definition: *reserve price*, a lower bound on the sale price of an item.

Reserve prices often used to obtain more revenue from VCG. (e.g., Bayesian optimal auction [Myerson 81])

Walrasian + Reserve

Definition: Walrasian Equilibrium with reserve price r, a envy-free pricing with unallocated items at price r.

Algorithm: Vickrey-Clarke-Groves with reserve price r (VCG $_r$):

- 1. Construct V': add two dummy consumers for each item with valuation r. (breaking ties in favor of real consumers)
- 2. Run VCG on V' and output prices.

Lemma: The VCG $_r$ prices are a Walrasian Equilibrium with reserve price r.

Proof: If price for unsold item j is less than r,

- in VCG(V'), one dummy consumer for item j would envy, thus
- prices of VCG(V') would not be Walrasian for V'.

Log *n* Approximation

Lemma: If MM sells k items at price $\geq p$, then VCG_p $\geq kp/2$. Proof:

- Consider $(i, j) \in MM$ at price above p.
- Either i or j is matched in VCG_p. (otherwise we could add (i, j) to VCG_p)
- Therefore, number of matched vertices in VCG_p is $\geq k$.
- Number of matched items in VCG_p is $\geq k/2$.

Algorithm: Limited Supply Logarithmic Approximation:

- 1. Run MM(V) to compute prices p_1, \ldots, p_m .
- 2. Output VCG_{p_i} with highest profit.

Analysis: Profit
$$\geq \max_i \frac{ip_i}{2} \geq \frac{\sum_i p_i}{2 \ln n} = \frac{\text{MM}}{2 \ln n} \geq \frac{\text{OPT}}{2 \ln n}$$

Proof of lemma

if j is sold to a real consumer

if j is not sold to a real consumer

- Open: Is there a matching lower bound?
- Known: APX-hard, by reduction from Vertex Cover in bounded degree graphs

Open Problem #1: Pricing over Time A special case of Envy-free pricing.

- Customer: "I want to buy a Boston-Bologna ticket between June 16 and June 18 and pay at most \$600."
- supply c_t of seats available at date t; customer = $[s_i, t_i]$, valuation v_i
- Open problem: design an algorithm that is better than the $\log n$ approximation (the case $c_t = 1 \; \forall t$ would already be interesting)
- Not known: not known to be NP-hard
- Known: Solvable by dynamic programming if unlimited supply $c_t \ge n \forall t$

Unlimited Supply

Definition: *unlimited supply* special case: the number of copies of each item is > n.

(E.g., pricing in-flight movies.)

Definition: Item j and j' are *identical* iff $v_{ij} = v_{ij'}$ for all i.

Unlimited supply implications:

- Identical items sold at same price \Leftrightarrow envy-free.
- Given prices, consumers pick favorite item.

Open problem #2: Unlimited supply envy-free pricing

- Open problem: Is there an O(1)-approximation algorithm if all items are in unlimited supply?
- Known hardness: APX-hard
- Known algorithm: $O(\log n)$ -approximation algorithm by our main result or by the best-uniform-price algorithm
- Failed attempt: Linear programming relaxation + randomized rounding. Variables x(i, j, p) = 1 if customer i buys item j at price p.
 And y(j, p) = 1 if item j is offered at price p. Difficulty: our models all seemed to have unbounded integrality gap!

Open problem #3: Unlimited Supply Tollbooth problem

- Variation: customers want to buy bundles instead of single items.
- The problem: Items are edges forming a tree, bundles are paths, customer *i* wants to buy a specific path (or nothing at all) and pay at most v_i to buy all the edges on the path. Unlimited supply: edges have infinite capacity.
- Known hardness: APX-hard
- Known algorithm: $O(\log n)$ approximation
- Known special case: solvable by dynamic programming if all paths end at same node
- Open problem: Is there an O(1)-approximation algorithm?

Open problem #4: Unlimited Supply Highway problem

- Customers want to buy bundles
- The problem: items are edges forming a path, bundles are subpaths, customer i wants to buy [s_i, t_i] and pay at most an integer sum v_i to buy all the edges in the interval. Edges have infinite capacity.
- No known hardness.
- Known algorithm: $O(\log n)$ approximation
- Known special case: solvable by dynamic programming if all bundles have bounded length $t_i - s_i = O(1)$
- Open problem: Is there an O(1)-approximation algorithm, or maybe even an exact algorithm?