
Online algorithms: Ski rental

Assume that renting skis costs 1 per day and buying skis costs b units. Every
day x ≥ 1 you have to decide, in an online fashion, whether you will continue
renting skis for one more day or buy a pair of skis. The online adversary, during
the course of some unknown future day D, is going to break your leg. You would
like to minimize the cost of skiing.

With foresight, you would either rent every day in [1, D] or buy skis right
away, thus incurring a cost of min{D, b}. That’s the optimal offline cost. A
deterministic online algorithm chooses some day t, rents for up to t − 1 days
and buys skis on the morning of day t if the adversary has not yet cut your
skiing career short. The algorithm’s cost will be t if D < t and t − 1 + b if
D ≥ t. The adversary knows t and will break your leg on day t at the latest,
since waiting further could only increase the optimal offline cost and would not
hurt the algorithm’s cost. Choosing D = t yields competitive ratio

t − 1 + b

min(t, b)
= 1 +

max(t, b)

min(t, b)
−

1

min(t, b)
.

Choosing D < t yields competitive ratio D
min(D,b) , a monotone non-decreasing

function of D, so the adversary’s best choice in that case would be D = t − 1
to yield competitive ratio t−1

min(t−1,b) , which is less than or equal to t/ min(t, b),

and so the adversary will prefer D = t. Thus the deterministic algorithm has
competitive ratio exactly

1 +
max(t, b) − 1

min(t, b)
,

which is minimized for t = b, yielding optimal deterministic competitive ratio
of 2 − 1/b.

A randomized algorithm chooses some day T at random according to some
distribution, rents for up to T − 1 days and buys skis on the morning of day T
if the adversary has not yet broken your leg. Given the distribution of T , the
adversary chooses D to maximize the expected cost of the algorithm divided by
the optimal cost.

In order to defeat the adversary, the randomized algorithm thus seeks a
c-competitive strategy for the distribution (pt)t of T , that is:

inf c s.t. for every D,

bp1 + (1 + b)p2 + (2 + b)p3 + · · · + (D − 1 + b)pD + D
∑

j>D

pj ≤ c min(D, b).

The constraints defining the problem form an infinite linear program which we
now want to solve.

1



For simplicity, consider the case b = 4. The algorithm wants:

inf c s.t.










































4p1 + p2 + p3 + p4 + p5 + p6 + p7 + · · · ≤ c (D = 1)
4p1 + 5p2 + 2p3 + 2p4 + 2p5 + 2p6 + 2p7 + · · · ≤ 2c (D = 2)
4p1 + 5p2 + 6p3 + 3p4 + 3p5 + 3p6 + 3p7 + · · · ≤ 3c (D = 3)
4p1 + 5p2 + 6p3 + 7p4 + 4p5 + 4p6 + 4p7 + · · · ≤ 4c (D = 4)
4p1 + 5p2 + 6p3 + 7p4 + 8p5 + 5p6 + 5p7 + · · · ≤ 4c (D = 5)
4p1 + 5p2 + 6p3 + 7p4 + 8p5 + 9p6 + 6p7 + · · · ≤ 4c (D = 6)

... ≤ 4c

Step 1. Now observe that for D ≥ 4, the right hand side stays fixed while
all the coefficients of the variables on the left hand side vary monotonically
when going from one row to the next; thus, the row D = 4 is dominated by
the subsequent rows and can be deleted from the set of constraints. In the
remaining system, consider the column of p4 and the column of p5, and observe
that the coefficient of p4 is always less than or equal to the coefficient of p5.
Thus, if p5 6= 0, the algorithm can always construct a solution which is at least
as good by setting p′5 = 0, p′4 = p4 + p5, and p′i = pi otherwise. Thus, without
loss of generality we can assume that p5 = 0 and remove column 5, leading to
the following equivalent LP:

inf c s.t.


































4p1 + p2 + p3 + p4 + p6 + p7 + · · · ≤ c (D = 1)
4p1 + 5p2 + 2p3 + 2p4 + 2p6 + 2p7 + · · · ≤ 2c (D = 2)
4p1 + 5p2 + 6p3 + 3p4 + 3p6 + 3p7 + · · · ≤ 3c (D = 3)
4p1 + 5p2 + 6p3 + 7p4 + 5p6 + 5p7 + · · · ≤ 4c (D = 5)
4p1 + 5p2 + 6p3 + 7p4 + 9p6 + 6p7 + · · · ≤ 4c (D = 6)

... ≤ 4c

Iterating, we can argue that for any i > 4, without loss of generality we have
pj = 0 for every j ∈ (4, i]. We will apply this for i = 2b/ε.

Step 2. Now, note that for every N ≥ 2b, it must be that
∑

t≥N pt < 2b/N ,
since otherwise the adversary could just set D = N to force competitive ratio
at least (2b/N)N/b ≥ 2, which would be worse than the simple deterministic
algorithm described above. (In particular, the probability p∞ that we keep
renting forever is 0.) Applying this remark to N = 2b/ε yields

∑

t>2b/ε pt < ε.

Now, consider the solution such that p′t = 0 for t > 2b/ε, p′1 = p1 +
∑

t>2b/ε pt,

and p′t = pt otherwise. The left hand side of any constraint increases by at most
3ε. Letting c′ = c + 3ε creates a feasible solution to the LP.

Thus we have proved that without loss of generality, pt = 0 for every t ≥
5, and have reduced ourselves to solving a finite problem (where the inf now
becomes a min by compactness):

min c s.t.

2

















4p1 + p2 + p3 + p4 ≤ c (D = 1)
4p1 + 5p2 + 2p3 + 2p4 ≤ 2c (D = 2)
4p1 + 5p2 + 6p3 + 3p4 ≤ 3c (D = 3)
4p1 + 5p2 + 6p3 + 7p4 ≤ 4c (D ≥ 4)

Step 3. We now prove the “principle of equality”, which claims that in the
optimal solution, every constraint is exactly tight.

Indeed, take a solution which achieves the minium c and assume, for a con-
tradiction, that one of the inequalities has slack, for example the inequality for
D = 3. Then we can increase p3 and decrease p4 until that inequality is tight.
This does not affect inequalities D = 1, D = 2 and creates slack in the inequality
D = 4. We then increase p1 a little bit and decrease p4 a little bit to create
slack in every constraint, which then enables us to decrease c, a contradiction.
Thus we have:

min c s.t.














4p1 + p2 + p3 + p4 = c (D = 1)
4p1 + 5p2 + 2p3 + 2p4 = 2c (D = 2)
4p1 + 5p2 + 6p3 + 3p4 = 3c (D = 3)
4p1 + 5p2 + 6p3 + 7p4 = 4c (D ≥ 4)

Step 4. To solve this simple linear system, substract each row from the row
below to make the system upper triangular, then substract each row from the
row above to make the system near diagonal, then substitute. We go back to
general b to give the explicit form of the general solution. Subtracting once:



























bp1 + p2 + p3 + · · · + pb = c (D = 1)
bp2 + p3 + · · · + pb = c (D = 2)

bp3 + · · · + pb = c (D = 3)
...

bpb = c (D = b)

Subtracting again:


































bp1 − (b − 1)p2 = 0 (D = 1)
bp2 − (b − 1)p3 = 0 (D = 2)
bp3 − (b − 1)p4 = 0 (D = 3)

...
bpp−1 − (b − 1)pb = 0 (D = b − 1)

bpb = c (D = b)

We obtain:

pi = (
b − 1

b
)b−i c

b
.

Since the pi’s sum to 1, this yields the value of c, the optimal randomized
competitive ratio, and using the fact that (1 − 1/b)b is always at most 1/e and
tends to 1/e at infinity:

c =
b

∑

0≤i≤b−1(
b−1

b )i
=

b
1−(1−1/b)b

1−(1−1/b)

=
1

1 − (1 − 1/b)b
≈

e

e − 1
.

3



Step 4, alternate approach. Alternatively, one can go to the continuous
setting (pt) over real numbers t and (with some kind of justification presumably
needed in order to make this rigorous) replace the system of equations by the
following:

∀x ∈ [0, b],

∫ x

0

(b + t)ptdt + x

∫ b

x

ptdt = cx.

Differentiating:

(b + x)px +

∫ b

x

ptdt + x(pb − px) = c.

Differentiating again and noting that by continuity we should have pb = 0:

px + (b + x)p′x − px − xp′x − px = 0.

In other words, p′x/px = (1/b), hence px = Kex/b. Since
∫ b

0 ptdt = 1, it follows
that Kb(e − 1) = 1 and K = 1/(b(e − 1)). Finally, using the equation giving c
for x = 0:

c = bp0 +

∫ b

0

ptdt =
1

e − 1
+ 1 =

e

e − 1
.

4


