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Abstract—Code generation for in-memory query processing
is now commonplace. While existing approaches use a wide
range of techniques (e.g., inline expansion, pipelining, SIMD
vectorization, prefetching) to reduce processing effort, we argue
that generating code with better data access patterns is often
more important. Therefore, we propose SWOLE, the first access-
aware code generation strategy. Contradictory to the conventional
wisdom, SWOLE heavily leverages predicate pullups to produce
code with better access patterns, which outweighs the overhead
of performing wasted work. Our experiments show that SWOLE
can outperform the state-of-the-art approach by over 2.6×.

I. INTRODUCTION

Code generation has become a popular approach for ac-

celerating in-memory query processing. The main benefit of

code generation is the ability to eliminate high-overhead ab-

stractions (e.g., Volcano-style iterators [1]) and apply low-level

optimizations, including inline expansion [2], pipelining [3],

SIMD vectorization [4], and prefetching [5].
However, we argue that improving data access patterns is

often more important than simply reducing the amount of

work performed by the CPU. While others have previously

examined the impact of access patterns on in-memory OLAP

queries [6], [7], [8], [9], we are the first to propose a code

generation strategy that explicitly optimizes for access pat-

terns rather than CPU work. In fact, as we will illustrate in

Section II, several existing strategies all produce code that

exhibits essentially the same poor access patterns.
Our novel access-aware code generation strategy, called

SWOLE, makes extensive use of predicate pullups, which defer

filtering until after other operations. Although performing

potentially wasted work seems counterintuitive, this approach

can significantly outperform traditional predicate pushdowns

due to improved access patterns.
In summary, we make the following contributions:

• We propose SWOLE, the first access-aware code gener-

ation strategy that reasons about and optimizes for data

access patterns rather than minimizing CPU work.

• We introduce several techniques based on the idea of

predicate pullups to improve the access patterns of the

most common OLAP query operators, as well as cost

models to decide when these techniques are beneficial.

• We evaluate SWOLE using TPC-H [10] and a series of

microbenchmarks, and our results show an improvement

of more than 2.6× over the state-of-the-art approach.

II. BACKGROUND & RELATED WORK

Using code generation for query processing is not a re-

cent idea. In fact, System R [11] originally compiled SQL

statements directly to machine code by stitching together

code fragments from a fragment library [12]. While beneficial

for avoiding the overhead associated with interpreted query

execution, this approach was eventually abandoned due to

issues with software maintenance and debuggability [13], as

well as poor portability [5].
Over two decades later, Daytona [14] pioneered the transla-

tion of queries into C programs, which could then be compiled

into an executable and linked with the necessary libraries.

Compared to machine code, generating relatively high-level

C code avoided many of the main issues encountered with

System R.
Similarly, JAMDB [13] translated queries to Java code

while applying operator type specialization and aggressive

expression inlining. Unlike the statically compiled C programs

produced by Daytona, though, JAMDB sought to leverage the

capabilities of the Java Virtual Machine to dynamically apply

low-level optimizations at runtime.
HIQUE [2] used template-based code generation to compile

queries into C programs with explicit data staging. Unlike past

attempts at code generation, HIQUE’s approach removed the

overheads associated with traditional iterator-based execution,

which emerged as a key bottleneck for in-memory query

processing.
Some recent systems that have utilized code generation

include HyPer [15], [3], Tenzing [16], Hekaton [17], [18],

LegoBase [19], Impala [20], [21], Tupleware [22], [4], Mem-

SQL [23], and Peloton [24], [5].
On the other hand, a number of studies [25], [26], [27]

have compared the performance of code generation to vec-

torized query processing, which operates on vectors rather

than individual tuples. The idea originated as part of the

MonetDB/X100 project [28], which would eventually be com-

mercialized as Vectorwise [29] (currently known as Actian

Vector [30]). These studies largely concluded that neither

approach is dominant and advocate instead for a combination

of the two in order to achieve the best performance.
In the remainder of this section, we discuss in detail three

of the most prominent existing code generation strategies for

executing OLAP queries on column-oriented storage formats

and then explain the importance of data access patterns.
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Data-centric [3]

7 42 12 29 16 5 x

a0 a2 a5 a

for (i = 0; i < R; i++)
if (x[i] < 13)

sum += a[i];

Hybrid [4]

7 42 12 29 16 5 x

1 0 1 0 0 1 cmp

0 2 2 idx

a0 a2 a2 a

for (i = 0; i < R; i += TILE) {
len = R - i < TILE ? R - i : TILE;
for (j = 0; j < len; j++)

cmp[j] = x[i+j] < 13;
pos = 0;
for (j = 0; j < len; j++) {

idx[pos] = j;
pos += cmp[j];

}
for (j = 0; j < pos; j++)

sum += a[i+idx[j]];
}

ROF [5]

7 42 12 29 16 5 x

0 2 5 idx

a0 a2 a5 a

for (i = 0; i < R;) {
for (j = 0; i < R; i++)

if (x[i] < 13) {
idx[j++] = i;
if (j == TILE) break;

}
for (k = 0; k < j; k++)

sum += a[idx[k]];
}

Fig. 1: Existing Code Generation Strategies

A. Existing Strategies

To illustrate each strategy, Figure 1 shows both a pictorial

representation and the corresponding pseudocode fragment for

the following simple example query:

select sum(a)
from R
where x < 13

1) Data-centric: Developed as the query execution frame-

work for HyPer [15], the key idea of data-centric [3] code

generation is to use a push-based, pipelined query processing

model that attempts to maximize data locality, with data items

remaining in CPU registers as long as possible. LLVM glue

code is generated to stitch together precompiled operators, and

then the query is JIT-compiled.

As shown in Figure 1, the data-centric strategy is the most

straightforward approach that we consider, consisting of a

single for loop over each tuple in R with a conditional if
statement to evaluate the predicate. For tuples that pass the

predicate, the corresponding value of the a attribute is added

to sum.

This approach achieves excellent data locality but suffers

from two main drawbacks: (1) the control dependency intro-

duced by if statements typically precludes SIMD vectoriza-

tion; and (2) if statements exhibit generally poor performance

for predicates with intermediate selectivities due to frequent

CPU branch mispredictions [31]. Later versions of HyPer

incorporated Data Blocks [32] to enable SIMD processing on

cold data, but the two code generation strategies we consider

next provide different alternatives that mitigate the issues

associated with the data-centric approach.

2) Hybrid: Tupleware [22] proposed a code generation

strategy that is a hybrid between data-centric and vectorized

processing [4]. This approach generates code that minimizes

intermediate materialization while maximizing SIMD process-

ing opportunities by fusing or splitting query operators.

The hybrid strategy naturally produces more complex code

than the data-centric approach, as shown in Figure 1. First,

note that the outer for loop over R is now broken up into

three separate inner loops, each of which operates on len
tuples at a time. In most cases, len is of size TILE, except

for the remainder tuples when R is not divisible by TILE.

The first inner loop evaluates the predicate and stores the

result (i.e., 0 or 1) in the cmp array, which is called the prepass

technique [4]. Unlike the data-centric version, the hybrid

strategy’s prepass technique enables SIMD vectorization for

predicate evaluation by removing the control dependency.

The second inner loop iterates over cmp to populate the

idx array, which is a selection vector [28] containing the

indexes of tuples that passed the predicate. In Figure 1, we

show the no-branch [31] (i.e., predicated) version, which

replaces the control dependency with a data dependency in

order to avoid expensive branch mispredictions, although a

branching implementation may be superior for some predicate

selectivities. Finally, the third inner loop updates sum based

on the tuple indexes stored in idx.

Again, by generating three separate inner loops, the hybrid

strategy can leverage SIMD processing for predicate evalua-

tion using the prepass technique while also benefiting from

the ability to skip tuples that did not pass the predicate using

the idx selection vector.
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Section Technique Operators Heuristics

III-A Value Masking All Memory-Bound, Small Hash Tables

III-B Key Masking Group-By Aggregation, Join, Groupjoin Complex Aggregation, Large Hash Tables

III-C Access Merging All Always Better

III-D Positional Bitmaps Join, Semijoin Always Better

III-E Eager Aggregation Join, Groupjoin Low-Cardinality Group-By Keys

Fig. 2: Summary of SWOLE Techniques

3) ROF: Like Tupleware, the relaxed operator fusion [5]

(ROF) strategy used by Peloton [24] blends data-centric code

generation and vectorization through the materialization of

intermediate results at staging points during query execution.

Compared to Tupleware, ROF has three primary differences:

(1) always operating on full intermediate result selection

vectors; (2) using the Data Blocks [32] technique of a pre-

computed lookup table to enable SIMD for selection operators;

and (3) embedding explicit prefetch instructions to mask data

request latencies, in particular for operators that need to access

a hash table (e.g., joins, group-by aggregations).

The first and most important difference is depicted visually

in Figure 1: whereas the hybrid strategy produces two par-

tially full idx arrays, ROF fills a single idx array before

moving on to the aggregation. The control flow to achieve

this is now much more complicated than the comparatively

straightforward tiling of the hybrid approach. Essentially, the

first inner loop is responsible for filling up the idx array with

the indexes of tuples that pass the predicate. Then, when idx
is full (or no tuples remain), this loop breaks.

The second inner loop performs the aggregation and works

almost identically to the previously explained hybrid version.

However, since the predicate evaluation loop (almost always)

fills the idx array, the ROF aggregation loop will (almost

always) perform a fixed number of iterations. The hybrid

aggregation loop, in contrast, will perform a variable number

of iterations based on how many tuples pass the predicate.

For simplicity, we do not depict the SIMD implementation

of the predicate evaluation in the pseudocode. Like the prepass

technique, though, this optimization can provide substantial

speedups over the data-centric strategy for predicates that

are complex or select few tuples. Finally, since this simple

aggregation query does not require a hash table, no explicit

prefetching is necessary.

B. Access Patterns

As shown in Figure 1, the strategies we described have

considerable variability in the structure of their generated code.

Surprisingly, however, they all have one thing in common: the

same data access patterns.

Specifically, all of these strategies produce code ex-

hibiting a Sequential Traversal with Conditional Reads [7]

(s_trav_cr) access pattern. In terms of the example query,

the s_trav_cr pattern corresponds to sequential accesses of

x for predicate evaluation followed by conditional accesses of

a to update sum for selected tuples. The conditional access

appears in the data-centric version as an if statement, whereas

the hybrid and ROF versions utilize a selection vector (i.e.,

idx) to skip filtered tuples.

The s_trav_cr access pattern stems from the predicate

pushdown, which has long existed as a fundamental query

optimization heuristic. The goal of a predicate pushdown is

to filter tuples as early as possible during query processing in

order to minimize work performed by later operators.

However, we argue that a predicate pullup, which does

not perform any early filtering, will actually produce better

access patterns than predicate pushdowns at the cost of some

potentially wasted work. As we demonstrate experimentally

(Section IV), these improved access patterns outweigh the

overhead of wasted work in many cases.

While predicate pullups have been previously explored for

specific uses (e.g., delaying evaluation of expensive pred-

icates [33], sharing work among continuous queries [34],

leveraging specialized hardware [35]), we show how they can

be utilized to improve the access patterns of generated code.

The result is a set of techniques that we synthesize into the first

access-aware code generation strategy, called SWOLE, which

we discuss in the following section.

III. SWOLE

This section describes the techniques that comprise SWOLE

and explains their applicability to some of the most common

OLAP operators. A summary of these techniques appears

in Figure 2, including basic heuristics to give a high-level

intuition about when each is beneficial.

A. Value Masking

Consider again the example query from the previous section.

As shown in Figure 1, the existing strategies all use some form

of predicate pushdown (i.e., conditional branching or selection

vectors) to filter tuples before performing the aggregation, thus

resulting in the s_trav_cr access pattern.

Instead, we propose an alternative based on predicate

pullups called value masking, which is shown in Figure 3. At a

high level, we evaluate the predicate and use the result to mask

non-qualifying values to 0 rather than immediately filtering

them, similar to the idea behind SIMD implementations of

certain aggregation functions [36]. Note that, although we

primarily discuss the sum function in this paper, others (e.g.,

min, max) may require minor additional bookkeeping.

The pseudocode for this approach resembles the hybrid

strategy, with the first inner loop storing the predicate eval-

uation result in cmp. However, instead of using a selection

vector to perform early filtering, the value masking approach

1275



Value Masking

7 42 12 29 16 5 x

1 0 1 0 0 1 cmp

a0 0 a2 0 0 a2 a

for (i = 0; i < R; i += TILE) {
len = R - i < TILE ? R - i : TILE;
for (j = 0; j < len; j++)

cmp[j] = x[i+j] < 13;
for (j = 0; j < len; j++)

sum += a[i+j] * cmp[j];
}

Fig. 3: Simple Aggregation

unconditionally accesses the values from a and then multiplies

each by the corresponding predicate result stored in cmp (i.e.,

either 0 or 1) before finally updating sum.

While the implementation of value masking may be less

intuitive than some of the other strategies we have discussed,

the benefit is straightforward: we have replaced the conditional

access of a with a sequential access. Our experimental eval-

uation (Section IV) demonstrates that this seemingly minor

change can have a substantial impact on performance.

However, since the value masking technique will usually

perform some degree of wasted work (i.e., processing tuples

that are subsequently masked), predicate selectivity plays an

important role in deciding if it is beneficial. For example, if

a predicate selects very few tuples, the cmp array shown in

Figure 3 will contain mostly 0 values, and the subsequent

aggregation step will add primarily masked a values (i.e., 0)

to sum. In many cases, the benefits of the improved access

patterns will outweigh the costs of performing this wasted

work, but some cases (e.g., expensive aggregations) may make

value masking infeasible.

Therefore, in cases where value masking is not beneficial,

we can simply fall back to generating code using the hybrid

strategy. To choose between these two alternatives, we devel-

oped a cost model for each strategy. The cost of the hybrid

version is:

Hybrid = R · (readseq
︸ ︷︷ ︸

Selection

+σR ·max(comp, readcond)
︸ ︷︷ ︸

Aggregation

)

where the number of tuples in R is multiplied by (1) the

cost of the sequential read readseq needed to perform the

selection plus (2) the cost of performing the aggregation

max(comp, readcond) for every tuple that passes the predicate

with selectivity σR. Note that if the aggregation is compute-

bound, the model will use the cost comp (in cycles) of

that computation, which can be estimated through introspec-

tion [4]. Otherwise, if the aggregation is memory-bound, the

model will use the cost of a conditional access [7].

On the other hand, the cost model for the value masking

(VM) approach is:

VM = R · (readseq
︸ ︷︷ ︸

Selection

+max(comp, readseq)
︸ ︷︷ ︸

Aggregation

)

where the conditional read from the hybrid cost model has

been replaced by the cost of a sequential read readseq and

the selectivity term σR has been removed.

Essentially, if the aggregation is compute-bound, the hybrid

approach is superior, since the selection vectors will perform

early filtering. If the aggregation is memory-bound, though,

the wasted work is masked by the data access, and predicate

pullups are beneficial. In Section IV, we show cases where

each of these strategies is preferable.

Finally, we note that the value masking technique can

benefit a broad range of query operators. One interesting

example is SQL’s CASE statement, which would normally

entail a series of branching if-else expressions. In many

instances, though, we can unconditionally evaluate all cases

and then mask the non-qualifying results. While this approach

avoids the poor access patterns associated with conditional

branching, unconditionally evaluating complex (or too many)

cases can again become prohibitively expensive, and we must

apply the cost model to see if this optimization is beneficial.

B. Key Masking

The example query from Section II produces a single

aggregate value. On the other hand, a group-by aggregation

query produces multiple aggregate values grouped by the

specified key. Consider the following simple extension to the

example:

select c, sum(a)
from R
where x < 13
group by c

The existing strategies would execute this query similarly

to the previous one, first filtering tuples that do not satisfy

the predicate before performing a lookup in a hash table to

update the sum for the corresponding group-by key. Although

straightforward, this approach still has the same poor access

patterns (i.e., sequential reads of x followed by conditional

reads of both c and a).

As an alternative, we can extend our value masking tech-

nique to work for group-by aggregation. Figure 4 (top) shows

a value masking version of the example group-by query. After

evaluating and storing the result of the predicate in the first

inner loop, the second inner loop unconditionally accesses the

group-by key c and performs a lookup in the hash table. As

in the prior example, non-qualifying values are then masked

using the cmp array before updating sum.

Similarly, the original cost model for value masking (VM)

needs to be extended as follows:

VM = R · (readseq +max(comp, readseq, htlookup))
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Value Masking

7 42 12 29 16 5 x

1 0 1 0 0 1 cmp

c0 c1 c2 c0 c1 c2 key

a0 0 a2 0 0 a2 a

for (i = 0; i < R; i += TILE) {
len = R - i < TILE ? R - i : TILE;
for (j = 0; j < len; j++)

cmp[j] = x[i+j] < 13;
for (j = 0; j < len; j++) {

key = c[i+j];
sum[key] += a[i+j] * cmp[j];

}
}

Key Masking

7 42 12 29 16 5 x

1 0 1 0 0 1 cmp

c0 ∅ c2 ∅ ∅ c2 key

a0 a1 a2 a0 a1 a2 a

for (i = 0; i < R; i += TILE) {
len = R - i < TILE ? R - i : TILE;
for (j = 0; j < len; j++) {

cmp = x[i+j] < 13;
key[j] = c[i+j] * cmp + NULL * !cmp;

}
for (j = 0; j < len; j++)

sum[key[j]] += a[i+j];
}

Fig. 4: Group-By Aggregation

where the cost [7] of performing a hash table lookup htlookup
has been added to the max function, since it can be interleaved

with the other parts of the aggregation.

As in the previous example, the value masking version

replaces the conditional reads with a sequential access pattern

for both c and a. However, with the addition of htlookup,

unconditionally looking up a key in a large hash table can

become expensive, which would dominate the cost and far

outweigh the benefits of the improved access patterns. We

must also perform an extra bookkeeping step by setting a flag

during insertion to differentiate between masked entries and

actual 0 values.

Another option is to mask the group-by key rather than

the value, thereby mapping keys not selected by the predicate

to a single throwaway entry in the hash table. This key
masking technique mitigates the aforementioned problems

with unconditional lookups in large hash tables because the

throwaway entry will most likely be cached from frequent

accesses in cases where the predicate selects relatively few

tuples. Moreover, the extra bookkeeping step is no longer

necessary, since all entries other than the throwaway are

guaranteed to be valid.

Figure 4 (bottom) shows the key masking approach. In the

first inner loop, the predicate result is now used to directly

mask the values of c that we store in the key array. More

specifically, if the predicate evaluates to true, then the value

of c will be stored as the key at position j; otherwise, the

NULL key will be stored at that position, which maps to the

throwaway entry in the hash table. The second inner loop

then performs the aggregation for every key, updating the

appropriate entry for selected tuples and the throwaway for

filtered ones. Again, note that the value of a is not masked in

this version, since the masking is performed on the group-by

key in the first inner loop.

The cost model for the key masking (KM) version is the

same as value masking but with one additional term:

KM = R · (readseq + σR ·max(comp, readseq, htlookup)

+ (1− σR) ·max(comp, readseq, htnull)
︸ ︷︷ ︸

Masked Aggregation

)

where σR is the percentage of valid aggregations for tuples that

pass the predicate and (1 − σR) is the percentage of masked

aggregations for tuples that do not. In particular, notice that the

term for the masked aggregation includes the cost of accessing

the hash table entry for the null key htnull, which should

be cheaper than a regular hash table lookup htlookup due to

caching in cases where the predicate often evaluates to false.

Intuitively, then, the key masking approach will be better than

masking the value when the cost of an unconditional lookup is

high, such as when the hash table is large. We experimentally

validate this intuition in Section IV.

Finally, although we have focused on group-by aggregation,

we can apply the key masking technique to any operator that

uses a hash table, including joins. In this sense, key masking is

a generalization of the predicated lookup technique proposed

by Voodoo [37], which narrowly targeted queries containing

an indexed join. Moreover, we show in Section IV that the key

masking approach is not a dominant strategy, as suggested by

Voodoo.

C. Access Merging

Often, queries will repeat the same expressions multiple

times, such as in a complex aggregation (e.g., TPC-H Q1).

Common subexpression elimination is a well-known technique

for removing redundant computations in these situations by

materializing intermediate values in temporary variables.

However, another type of redundancy can occur when the

same attribute is referenced in several different expressions
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Value Masking

7 42 12 29 16 5 x

1 0 1 0 0 1 cmp

a0 0 a2 0 0 a2 a

7 0 12 0 0 5 x

for (i = 0; i < R; i += TILE) {
len = R - i < TILE ? R - i : TILE;
for (j = 0; j < len; j++)

cmp[j] = x[i+j] < 13;
for (j = 0; j < len; j++) {

sum += (a[i+j] * x[i+j]) * cmp[j];
}

Access Merging

7 42 12 29 16 5 x

7 0 12 0 0 5 tmp

a0 a1 a2 a0 a1 a2 a

for (i = 0; i < R; i += TILE) {
len = R - i < TILE ? R - i : TILE;
for (j = 0; j < len; j++)

tmp[j] = x[i+j] * (x[i+j] < 13);
for (j = 0; j < len; j++)

sum += a[i+j] * tmp[j];
}

Fig. 5: Repeated References

throughout a query, such as in a predicate as well as an ag-

gregation (e.g., TPC-H Q6). As a concrete example, consider

the following query:

select sum(a * x)
from R
where x < 13

Like the previous examples, the existing approaches would

execute this query by first evaluating the predicate, which

requires a sequential access of x, followed by a conditional

access of a and a second conditional access of x in order to

update sum. As shown in Figure 5 (top), our value masking

technique can improve the access patterns by replacing condi-

tional accesses with sequential ones, but x is still accessed

twice (i.e., once for the selection and then again for the

aggregation).

We therefore propose an access merging technique that re-

moves redundant data accesses by fusing multiple expressions

that reference the same attribute into a single expression. The

generated code for the access merging version of this query is

shown in Figure 5 (bottom). Rather than storing the outcome

of the predicate in the cmp array in the first inner loop, the

predicate result is immediately multiplied with the actual value

of x, which is stored in an intermediate tmp array. Then, in the

second inner loop, the values in tmp are multiplied directly

with a, thereby resulting in only a single access of x. This

access merging approach can be seen as a form of operator

fusion and is always beneficial if it can be applied, since it

results in fewer total accesses.

D. Positional Bitmaps

A semijoin is a special case of an equijoin where attributes

from the build side do not appear beyond the join, as in the

following query:

select sum(R.a)
from R, S
where R.fk = S.pk
and S.x < 13

The existing strategies would execute this query as expected.

First, in the build phase, a scan of S constructs a hash table

containing S.pk for all tuples that pass the predicate. Then,

in the probe phase, a scan of R performs a lookup in the hash

table before updating sum if a match is found. The resulting

access patterns include random accesses on both sides of the

join for inserts and lookups.

Instead, we propose a data structure called a positional
bitmap, which is based on an old technique [38] that has

recently been rediscovered [39]. Positional bitmaps exploit

the referential integrity constraint of foreign keys, which is

typically enforced by building an index to check the corre-

sponding primary key. Thus, since these indexes are necessary,

our technique does not incur any additional overhead.

The algorithm to perform a semijoin using a positional

bitmap works as follows. First, we perform a sequential scan

over the build side of the join, evaluating the predicate to

decide whether each tuple should be included in the result.

Depending on the estimate of the value masking cost model,

we either: (1) unconditionally set the corresponding bit at the

tuple offset in the bitmap to the value of the predicate result; or

(2) use a selection vector to set bits to 1 for only the tuples that

pass the predicate. Therefore, we replace the random accesses

required to insert keys that pass the predicate into a hash table

with sequential accesses to the bitmap. On the probe side, we

can then simply perform a positional lookup into the bitmap

using the offset from the foreign key index to check for the

inclusion of the corresponding primary key.

Applying this optimization to the example query yields:

Γsum(R.a)

�hash

σ(S.x < 13)

S

R
=⇒

Γsum(R.a)

�bitmap

R σ(S.x < 13)

S
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The original version (left) matches our previous description

of the existing strategies, which probe a hash table for every

tuple in R to find a match from S before updating sum. On

the other hand, the bitmap version (right) builds a bitmap for

qualifying tuples from S and then checks the bit for each tuple

in R using the foreign key index.

One concern might be that positional bitmaps will exhibit

the same cache miss problems that would occur with a large

hash table in a traditional join. Surprisingly, though, even for

relatively large tables, the corresponding positional bitmap is

still a very manageable size. For example, a table with 100M

tuples requires only about 12.5MB of space, which fits easily

within most caches. If size does become an issue, we can

always compress the bitmap, either by replacing entire blocks

of repeated values or through more advanced techniques [40],

[41], but the benefits in size reduction would need to be

weighed against the increased access overhead.

Finally, while we have focused on the semijoin operator,

positional bitmaps can also be applied to regular joins using

techniques similar to late materialization [42].

E. Eager Aggregation

When a query uses the same attribute for both a join and

group-by key (e.g., TPC-H Q3), the groupjoin [43] operator

enables the reuse of the hash table constructed during the build

side of the join to directly store the aggregate values. The

following query exhibits this pattern:

select R.fk, sum(R.a)
from R, S
where R.fk = S.pk
and S.x < 13

group by R.fk

While obviously more efficient than building two separate

hash tables, the groupjoin does not actually improve the

access patterns, since both the build and probe sides can have

conditional reads followed by random lookups in the hash

table.

We therefore propose to use an eager aggregation approach

that unconditionally performs the aggregation before the join

and then removes non-qualifying aggregates from the final

result. While eager aggregation is a known technique [44],

the main goal was to reduce the number of tuples that

appear in subsequent joins. Instead, our version actually ends

up performing unnecessary extra work (i.e., by computing

aggregates for keys that are later discarded during the join)

in order to achieve more favorable access patterns.

The eager aggregation optimization for the example query

would look as follows:

Γsum(R.a)

�group

σ(S.x < 13)

S

R
=⇒

�delete

Γsum(R.a)

R

σ(S.x ≥ 13)

S

As shown in the original version (left), we first build a hash

table for all S.pk keys where S.x < 13. Then, on the probe

side, we perform a lookup for every tuple in R. If a match is

found, we update sum with the corresponding R.a value.

The eager aggregation version (right) reverses the traditional

build and probe sides, performing an unconditional aggre-

gation on R grouped by R.fk. The next step involves a

sequential scan of S to select all non-qualifying S.pk keys

and delete them from the hash table; in particular, note that the

predicate has been inverted in the rewritten version to perform

the deletion.

To understand when this optimization is beneficial, consider

the following cost model for the groupjoin:

Groupjoin = S · (readseq + σS · (readcond + htinsert))

+R · (readseq + σR · (readcond + htlookup)

+ �R,S ·max(comp, readcond))

where the first term is the cost of building the hash table for

every tuple in S that passes predicate σS , and the second term

is the cost of looking up the key for every tuple in R that passes

predicate σR plus the cost of performing the final aggregation

with probability �R,S that a join match is found.

On the other hand, the cost model for eager aggregation

(EA) is:

EA = R · (readseq + σR ·min(Hybrid, V M,KM))

+S · (readseq + (1− σS) · (readcond + htdelete))

where the first term is the unconditional construction of the

hash table for all tuples in R that pass predicate σR, and the

second term is the subsequent deletion of keys filtered by the

join. As shown in Section IV, this technique is most beneficial

for queries with a smaller number of group-by keys or higher

selectivities.

Finally, although we have introduced our eager aggregation

approach in the context of groupjoins, the techniques can

similarly be applied to equijoins with a few simple extensions.

The basic idea is to again reorder the traditional build and

probe sides of the join, performing a partial aggregation on the

new build side grouped by the join key. Then, for all matches

on the new probe side, we perform the final aggregation step

with the actual group-by key.

IV. EVALUATION

This section presents a detailed experimental evaluation of

SWOLE using (1) the TPC-H [10] decision support benchmark

and (2) a series of microbenchmarks that specifically isolate

each proposed optimization. We ran all experiments on a

server with an Intel E5-2660 v2 CPU (2.2GHz, 10 cores,

25MB cache) and 256GB RAM.

In all experiments, we compare SWOLE against both the

data-centric and hybrid strategies. We did not include ROF

because: (1) the reported relative runtimes [5] are the same

or worse than we measured for hybrid; and (2) our evaluation

hardware did not support the required AVX2 instructions.
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Fig. 6: TPC-H Results (SF 10)

Similar to a recent study [27], we hand coded each strategy

in C to eliminate any overheads from tangential implemen-

tation differences or additional features (e.g., concurrency

control, recovery logging) implemented in a full system.

Moreover, we use the same library code (e.g., hash table

implementations) and compile all versions using GCC-9.2,

with experiments run single-threaded. This type of comparison

fully isolates each code generation strategy, allowing us to

evaluate them on a level playing field.

All of our implementations use well-known compres-

sion techniques, including: (1) dictionary encoding for low-

cardinality string columns; (2) null suppression for low-

cardinality integer columns; and (3) fixed-point storage, where

decimals are multiplied by a power of 10 and stored as

integers. Rather than performing explicit overflow checking,

all aggregates are stored as 64-bit integers. For approaches that

operate on tiles, we use a vector size of 1024, as suggested

by other recent studies [5], [27]. Finally, we do not use any

auxiliary data structures (e.g., indexes, materialized views)

for query processing other than foreign key indexes built for

checking referential integrity.

A. TPC-H

We selected the same eight TPC-H queries used in a recent

code generation paper [5], which are a representative subset

of the TPC-H benchmark [45], and conducted all experiments

at scale factor (SF) 10. Figure 6 shows the results.

In addition to our hand-coded implementations, we also

include HyPer v0.5-222, which is not intended as a direct com-

parison point but rather a sanity check to demonstrate that our

implementations are reasonable. Our results for HyPer, which

include only query processing time and not other parts of

the execution (e.g., SQL parsing, planning, code generation),

comport with published results from similar evaluations [46],

[5], [27].

Overall, our hand-coded data-centric implementations out-

perform HyPer on all of the tested queries, ranging from a

speedup of 1.02× (Q3) to as much as 5.32× (Q13). As such,

we believe that they are a fair and accurate representation of

the data-centric code generation strategy.

Relative to the data-centric baseline, our implementations

of the hybrid approach exhibit speedups ranging from 1.04×
(Q1) up to 2.43× (Q14). As expected, we observe the largest

performance improvements in queries with more complex

predicates that select relatively few tuples, where hybrid can

leverage the prepass technique for SIMD vectorization of

predicates and selection vectors for efficient filtering.

Finally, our SWOLE implementation outperforms the hybrid

strategy by up to 2.63× and data-centric by almost 4×.

On almost every query we test, the application of SWOLE’s

techniques achieves significant speedups by inducing more

favorable access patterns.

In the following, we provide a detailed discussion of the

results for each query.

1) Q1: This query is a single-table scan of lineitem with

a single predicate that selects almost all (i.e., roughly 98%)

of the tuples. Q1 also contains the most compute-intensive

aggregation of any TPC-H query.

Since the predicate is fairly simple (i.e., a single comparison

on l_shipdate) and does not filter many tuples, the hybrid

strategy provides almost no performance improvement over

data-centric, with only a 1.04× speedup. SWOLE, however,

outperforms hybrid by an additional 1.43×.

In this case, SWOLE uses key masking to perform the aggre-

gation rather than value masking. Our cost model determines

that the complexity of the aggregation would require masking

many individual aggregate values, which is significantly more

expensive than masking the single group-by key. Moreover,

the fact that the predicate selects nearly the entire lineitem
table means that SWOLE performs very little wasted work.

2) Q3: This query involves a join between customer and

orders followed by a groupjoin with lineitem. Every

table has a predicate that filters at least half of the tuples,

but each predicate contains only a single comparison.

The hybrid strategy achieves an improvement of 1.19×
compared to data-centric, due to the relative simplicity of

each individual predicate. Similar to Q1, SWOLE again offers

a 1.48× speedup over hybrid by using a positional bitmap

for the first join between customer and orders. Although

we could replace the groupjoin with eager aggregation of the

lineitem table, our cost model determines that too many

keys are filtered by the join for this rewrite to be beneficial.

3) Q4: Since the predicate on orders has a selectivity

of about 4%, the majority of the runtime in Q4 is spent

constructing the hash table on lineitem for the semijoin.

As such, the hybrid strategy has a moderate speedup of 1.5×
over the data-centric version, which comes from applying the

prepass technique to the orders and lineitem predicates.
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Unlike hybrid and data-centric, which again use a hash

table to implement the semijoin, SWOLE builds a positional

bitmap with a sequential scan of the lineitem table. Then,

with a second sequential scan of orders, SWOLE probes the

bitmap at the corresponding position to check for a match. This

optimization results in a 2.63× speedup over hybrid, which is

the largest out of all TPC-H queries that we test.

4) Q5: With a total of six tables, Q5 is the query with the

most complex plan that we evaluate. All of the joins are simple

equijoins, with predicates on only region and orders. The

largest table (i.e., lineitem) has no predicate, though, which

means a hash table lookup is required for every tuple.

Since the runtime of Q5 is dominated by the join involving

the unfiltered lineitem table, hybrid achieves only a 1.12×
improvement over data-centric by applying the prepass tech-

nique to the scan of orders, which is the second largest table

in the query. SWOLE, on the other hand, shows a large 2.55×
speedup over hybrid, again through extensive use of bitmap

semijoins. With only about 3% of tuples remaining after the

last join, our cost model decides to replace all joins with

bitmap semijoins and use the late materialization technique

described in Section III-D before the final aggregation.

5) Q6: Like Q1, this query is also a single-table scan of

lineitem. However, Q6 has several additional predicates

that select only about 2% of the tuples.

Due to these additional predicates, which perform a to-

tal of five comparisons involving three different attributes,

hybrid markedly outperforms the data-centric strategy by

2.33×. SWOLE achieves another 1.38× improvement over

hybrid through a combination of access merging for the

l_discount attribute, which is used in the predicate as well

as the aggregation, and value masking. Yet, while our cost

model determines that value masking is still beneficial, the

overall benefit is limited because of the high percentage of

wasted work (i.e., approximately 98%).

6) Q13: Although appearing deceptively complex, Q13

requires only a simple groupjoin between customer and

orders before a final aggregation step. The only predicate

is a complex string-matching expression with three wildcard

characters, which selects about 98% of the tuples.

Even though this string-matching predicate cannot benefit

from SIMD vectorization, the hybrid approach still splits

the predicate into a separate prepass loop, yielding a 1.31×
speedup relative to data-centric. For the aggregation, SWOLE

utilizes the value masking technique, which incurs relatively

little wasted work because nearly all tuples in the orders
table pass the predicate. However, since the query runtime is

dominated almost entirely by the string-matching predicate,

SWOLE offers only a very slight additional benefit.

7) Q14: This query is a relatively straightforward index

join between the lineitem and part tables. Since p_type
is a low-cardinality attribute, the string-matching expression

can be converted to a lookup in a small hash table computed

on the fly during an initial scan of part.

The hybrid strategy achieves a 2.43× speedup over the data-

centric approach because the predicate, which performs two

comparisons on the l_shipdate attribute, selects only about

1% of the lineitem table. Due to the small percentage of

selected tuples and high overhead of the index join, SWOLE

cannot further improve the performance.

8) Q19: Finally, Q19 requires a join between part and a

filtered subset of lineitem. The join condition is a complex

disjunctive predicate, and only a handful of tuples comprise

the final aggregate.

By enabling SIMD vectorization for the independent

predicates on lineitem (i.e., for l_shipmode and

l_shipinstruct), hybrid gets a 1.78× improvement over

data-centric. However, the hybrid strategy cannot improve the

evaluation of the join condition, which takes a considerable

amount of processing effort.

On the other hand, SWOLE outperforms hybrid by 2.07× us-

ing the positional bitmap technique described in Section III-D.

In particular, SWOLE builds a total of three bitmaps in a purely

sequential scan of the part table. The join then resolves

to a union of semijoins, where we can use the bitmap that

corresponds to each lineitem tuple.

B. Microbenchmarks

To further evaluate SWOLE, we created a microbenchmark

that isolates each of the techniques described in Section III.

Figure 7 shows the microbenchmark specification, including

the schema (7a), five queries (7b), and a legend (7c).

The main table is R, which has 100M tuples. Each attribute

has a data type (e.g., int8) and a cardinality (e.g., 100). Some

attributes have multiple types and cardinalities listed because

they are substituted in different query configurations to stress

various dimensions. The other table is S, which has either 1K

or 1M tuples in order to test joins of different sizes.

All values are assigned randomly with a uniform distribu-

tion, which represents the worst case for operations that use a

hash table (e.g., group-by aggregation, join), since skew means

some keys are more common than others and, therefore, more

likely to be cached. In other words, a lookup in a large hash

table with uniformly distributed values will almost certainly

result in a cache miss. This lack of caching is important for

stressing our techniques that perform unconditional lookups.

Similar to TPC-H, each of the queries also has substitution

parameters that allow us to test different variations. The

substitution parameters used for a particular configuration are

displayed in the caption below the corresponding figure. For

example, we replace the OP parameter of Q1 (Figure 8) with

both the multiplication (∗) and division (/) operators. The

selectivity parameter SEL is typically varied from 0 − 100
along the x-axis.

In the following, we describe our microbenchmark results

for each query.

1) Q1: This query tests the value masking technique from

Section III-A, and we show the results in Figure 8. As men-

tioned, we evaluate query performance for both multiplication

(8a) and division (8b).

The results for the data-centric and hybrid strategies are

unsurprising. For the multiplication query, data-centric exhibits
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R (r )
size = 100M

r_a int64 1
r_b int64 1
r_c uint8 10

uint16 1K
uint32 100K
uint32 10M

r_x int8 100
r_y int8 1
r_fk uint32 1K

uint32 1M

S (s )
size = {1K,1M}

s_pk uint32 1K
uint32 1M

s_x int8 100

(a) Schema

Query SQL Parameters

Q1
select sum(r_a [OP] r_b)
from R
where r_x < [SEL] and r_y = 1

OP, SEL

Q2
select r_c, sum(r_a * r_b)
from R
where r_x < [SEL] and r_y = 1
group by r_c

|r_c|, SEL

Q3
select sum(r_x * [COL])
from R
where r_x < [SEL] and r_y = 1

COL, SEL

Q4

select sum(r_a * r_b)
from R, S
where r_fk = s_pk

and r_x < [SEL1]
and s_x < [SEL2]

SEL1, SEL2

Q5

select r_fk, sum(r_a * r_b)
from R, S
where r_fk = s_pk

and s_x < [SEL]
group by r_fk

|S|, SEL

(b) Queries

(c) Legend

Fig. 7: Microbenchmark Specification

the well-known curve [31] that results from CPU branch

mispredictions. Initially, the hybrid runtime increases until

leveling off at roughly 15% selectivity when the approach

becomes memory-bound.

The division query, on the other hand, is much more

compute-intensive. Consequently, the data-centric runtime

does not decrease after peaking at 50% selectivity, as observed

in the multiplication query. The runtime for the hybrid strategy

also steadily increases along with selectivity.

(a) OP = * (b) OP = /

Fig. 8: Microbenchmark Q1

(a) |r_c| = 10 (b) |r_c| = 1K

(c) |r_c| = 100K (d) |r_c| = 10M

Fig. 9: Microbenchmark Q2

For both query configurations, our value masking technique

exhibits a constant runtime across the entire selectivity range.

In fact, value masking outperforms the other two approaches

for nearly all selectivities in the memory-bound multiplication

query, but it only becomes beneficial in the compute-bound di-

vision query at around 95% selectivity. Importantly, this result

validates the intuition that improving data access patterns is

the most important consideration for memory-bound queries.

2) Q2: To test the key masking technique described in

Section III-B, we extended the first configuration of Q1 to

perform a group-by aggregation. Figure 9 shows the results,

which include four different cardinalities for the group-by key

r_c ranging from small (10) to very large (10M).

For all strategies, the performance difference between 10

(9a) and 1K (9b) keys is almost indistinguishable, as the

hash tables are small and fit entirely in the cache. In fact,

the absolute runtimes for these two cases are only slightly

worse than those shown in Figure 8a, which has no group-

by key. Moreover, key masking exhibits virtually equivalent

performance to value masking, again due to the low overhead

of accessing a small hash table.
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(a) COL = r_b (b) COL = r_y

Fig. 10: Microbenchmark Q3

At 100K keys (9c), the query starts to become bottlenecked

by the hash table lookups. Hence, value masking becomes

markedly worse than key masking. The key masking technique

performs comparatively poorly for low selectivities but begins

overtaking hybrid at around 45% selectivity due to the better

access patterns.

Finally, for the very large hash table with 10M keys (9d), the

hybrid strategy outperforms all alternatives until roughly 85%
selectivity, when key masking again becomes beneficial. As

previously mentioned, these results contradict the findings of

Voodoo [37], which posited that key masking (i.e., predicated

lookups) is a dominant approach.

3) Q3: Again, this query resembles Q1 but reuses the pred-

icate attributes in the aggregation to test our access merging

technique from Section III-C. As shown in Figure 10, the

data-centric and hybrid strategies exhibit similar performance

to the results in Figure 8a, with slightly lower overall run-

times due to the decreased memory pressure from referencing

fewer attributes. Compared to value masking, access merging

achieves only about a 1.15× speedup in the configuration that

reuses only one attribute (10a) but over a 1.9× speedup in the

configuration that reuses both (10b).

4) Q4: Unlike the previous queries, Q4 contains a join

between R and S. The two substitution parameters SEL1 and

SEL2 control the selectivity on the probe and build sides,

respectively. For this experiment, S has size 1M.

Figure 11 shows the results. First, we fix the selectivity of

the probe side at 10% (11a) and 90% (11b) while varying the

selectivity of the build side. Then, we vary the selectivity for

the probe side with a fixed selectivity of 10% (11c) and 90%
(11d) on the build side.

As shown, our positional bitmaps, which are described

in Section III-D, significantly outperform the other two ap-

proaches in all configurations. Data-centric and hybrid perform

comparably, since the main factor in overall query runtime

is the hash table lookups. The only exception is the top left

configuration, where the 10% selectivity on the probe side

means that the predicate filters most of R and relatively few

hash table lookups occur.

5) Q5: The main focus of Q5 is the groupjoin operator,

which allows us to test our eager aggregation technique

(Section III-E). The query contains a predicate on S but not

on R, which represents the worst case for our approach; that

(a) SEL1 = 10 (b) SEL1 = 90

(c) SEL2 = 10 (d) SEL2 = 90

Fig. 11: Microbenchmark Q4

(a) |S| = 1K (b) |S| = 1M

Fig. 12: Microbenchmark Q5

is, we will need to unconditionally aggregate all tuples in R,

many of which could be discarded depending on the selectivity

of the S predicate. On the other hand, the traditional groupjoin

only performs the aggregation for tuples with a match in the

hash table.

Figure 12 shows the results for Q5 when S has both

1K (12a) and 1M (12b) tuples. The data-centric and hybrid

approaches exhibit nearly identical performance for both join

sizes, since the runtime is again dominated by the hash table

lookups for every tuple in R. Due to branch mispredictions

during the lookup (i.e., predicting whether a match exists),

these strategies perform worst at around 50% selectivity for

both the 1K and 1M cases.

Like our other techniques, the performance of eager aggre-

gation remains relatively constant across the entire selectivity

range, with a (very) slight improvement as selectivity ap-

proaches 100% because fewer non-qualifying aggregates need

to be deleted. Eager aggregation is almost always superior

for the 1K size but only becomes beneficial at around 30%
selectivity for the 1M size, since lookups for the larger hash

table are significantly more expensive.
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V. CONCLUSION

This paper presented SWOLE, the first access-aware code

generation strategy. Unlike existing approaches that apply

predicate pushdowns to reduce processing effort, SWOLE

counterintuitively leverages predicate pullups to achieve better

access patterns, which often outweigh the cost of performing

wasted work. Overall, our experiments demonstrated that

SWOLE can outperform the state-of-the-art code generation

strategy by over 2.6×.
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Zdonik, “Tupleware: ”big” data, big analytics, small clusters,” in CIDR,
2015.

[23] J. Chen, S. Jindel, R. Walzer, R. Sen, N. Jimsheleishvilli, and M. An-
drews, “The memsql query optimizer: A modern optimizer for real-time
analytics in a distributed database,” PVLDB, vol. 9, no. 13, pp. 1401–
1412, 2016.

[24] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon, T. C.
Mowry, M. Perron, I. Quah, S. Santurkar, A. Tomasic, S. Toor, D. V.
Aken, Z. Wang, Y. Wu, R. Xian, and T. Zhang, “Self-driving database
management systems,” in CIDR, 2017.

[25] J. Sompolski, M. Zukowski, and P. A. Boncz, “Vectorization vs. com-
pilation in query execution,” in DaMoN, 2011, pp. 33–40.

[26] T. Gubner and P. A. Boncz, “Exploring query compilation strategies for
jit, vectorization and SIMD,” in ADMS@VLDB, 2017, pp. 9–17.

[27] T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and P. A. Boncz,
“Everything you always wanted to know about compiled and vectorized
queries but were afraid to ask,” PVLDB, vol. 11, no. 13, pp. 2209–2222,
2018.

[28] P. A. Boncz, M. Zukowski, and N. Nes, “Monetdb/x100: Hyper-
pipelining query execution,” in CIDR, 2005, pp. 225–237.

[29] M. Zukowski, M. van de Wiel, and P. A. Boncz, “Vectorwise: A
vectorized analytical DBMS,” in ICDE, 2012, pp. 1349–1350.

[30] “Actian vector,” https://www.actian.com/wp-content/uploads/2017/03/
WP01-ActianVector-0424-1.pdf, 2020.

[31] K. A. Ross, “Conjunctive selection conditions in main memory,” in
PODS, 2002, pp. 109–120.
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