
DBPal: A Fully Pluggable NL2SQL Training Pipeline

Nathaniel Weir1 Prasetya Utama2 Alex Galakatos3 Andrew Crotty3
Amir Ilkhechi3 Shekar Ramaswamy3 Rohin Bhushan3 Nadja Geisler2
Benjamin Hättasch2 Steffen Eger2 Ugur Cetintemel3 Carsten Binnig2

1 Johns Hopkins University {nweir3@jhu.edu} 2TU Darmstadt {first.last@cs.tu-darmstadt.de}
3Brown University {first_last@brown.edu}

ABSTRACT

Natural language is a promising alternative interface to
DBMSs because it enables non-technical users to formulate
complex questions in a more concise manner than SQL. Re-
cently, deep learning has gained traction for translating natu-
ral language to SQL, since similar ideas have been successful
in the related domain of machine translation. However, the
core problem with existing deep learning approaches is that
they require an enormous amount of training data in or-
der to provide accurate translations. This training data is
extremely expensive to curate, since it generally requires
humans to manually annotate natural language examples
with the corresponding SQL queries (or vice versa).

Based on these observations, we propose DBPal, a new
approach that augments existing deep learning techniques
in order to improve the performance of models for natural
language to SQL translation. More specifically, we present
a novel training pipeline that automatically generates syn-
thetic training data in order to (1) improve overall translation
accuracy, (2) increase robustness to linguistic variation, and
(3) specialize the model for the target database. As we show,
our DBPal training pipeline is able to improve both the ac-
curacy and linguistic robustness of state-of-the-art natural
language to SQL translation models.
ACM Reference Format:

Nathaniel Weir et al. 2020. DBPal: A Fully Pluggable NL2SQL Train-
ing Pipeline. In Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’20), June 14–
19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3318464.3380589

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3380589

1 INTRODUCTION

In order to effectively leverage their data, DBMS users are re-
quired to not only have prior knowledge about the database
schema (e.g., table and column names, entity relationships)
but also a working understanding of the syntax and seman-
tics of SQL. Unfortunately, despite its expressiveness, SQL
can often hinder non-technical users from exploring and
making use of data stored in a DBMS. These requirements
set “a high barrier to entry” for data exploration and have
therefore triggered new efforts to develop alternative inter-
faces that allow non-technical users to explore and interact
with their data conveniently.

For example, imagine that a doctor wants to look at the
age distribution of patients with the longest stays in a hospi-
tal. To answer this question, the doctor would either need to
write a complex nested SQL query or work with an analyst
to craft the query. Even with a visual exploration tool (e.g.,
Tableau [1], Vizdom [12]), posing such a query is nontrivial,
since it requires the user to perform multiple interactions
with an understanding of the nested query semantics. Alter-
natively, with a natural language (NL) interface, the query is
as simple as stating: “What is the age distribution of patients
who stayed longest in the hospital?”

Based on this observation, a number of Natural Language
Interfaces to Databases (NLIDBs) have been proposed that
aim to translate natural language to SQL (NL2SQL). The first
category of solutions are rule-based systems (e.g., NaLIR [25,
26]), which use fixed rules for performing translations. Al-
though effective in specific instances, these approaches are
brittle and do not generalize well without substantial addi-
tional effort to support new use cases. More recently, deep
learning techniques [22, 43, 44] have gained traction for
NL2SQL, since similar ideas have achieved success in the
related domain of machine translation. For example, generic
sequence-to-sequence (seq2seq) [51] models have been suc-
cessfully used in practice for NL2SQL translation, and more
advanced approaches like SyntaxSQLNet [46], which aug-
ments deep learning models with a structured model that
considers the syntax and semantics of SQL, have also been
proposed.

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2347

https://doi.org/10.1145/3318464.3380589
https://doi.org/10.1145/3318464.3380589

However, a crucial problemwith deep learning approaches
is that they require an enormous amount of training data in
order to build accurate models [21, 38]. The aforementioned
approaches have largely ignored this problem and assumed
the availability of large, manually-curated training datasets
(e.g., using crowdsourcing). In almost all cases, however,
gathering and cleaning such data is a substantial undertaking
that requires a significant amount of time, effort, and money.
Moreover, existing approaches for NL2SQL translation

attempt to build models that generalize to new and unseen
databases, yielding performance that is generally decent but
does not perform as well as running new queries on the
databases used for training. That is, the training data used to
translate queries for one specific database, such as queries
containing words and phrases pertaining to patients in a
hospital, does not always allow the model to generalize to
queries in other domains, such as databases of geographical
locations or flights.

In order to address these fundamental limitations, we pro-
pose DBPal, a fully pluggable NL2SQL training pipeline that
can be used with any existing NL2SQL deep learning model
to improve translation accuracy. DBPal implements a novel
training pipeline for NLIDBs that synthesizes its training
data using the principle of weak supervision [11, 15].

The basic idea of weak supervision is to leverage various
heuristics and existing datasets to automatically generate
large (and potentially noisy) training data instead of manu-
ally handcrafting training examples. In its basic form, only
the database schema is required as input to generate a large
collection of pairs of NL queries and their corresponding
SQL statements that can be used to train any NL2SQL deep
learning model.

In order to maximize our coverage across natural linguis-
tic variations, DBPal also uses additional input sources to
automatically augment the training data through a variety
of techniques. One such augmentation step, for example, is
an automatic paraphrasing process using an off-the-shelf
paraphrasing database [29]. The goal of these augmentation
steps is to make the model robust to different linguistic varia-
tions of the same question (e.g., “What is the age distribution
of patients who stayed longest in the hospital?” and “For pa-
tients with the longest hospital stay, what is the distribution
of age?”).

In our evaluation, we show that DBPal, which requires no
manually crafted training data, can effectively improve the
performance of a state-of-the-art deep learning model for
NL2SQL translation. Our results demonstrate that an NLIDB
can be effectively bootstrapped without requiring manual
training data for each new database schema or target domain.
Furthermore, if manually curated training data is available,
such data can still be used to complement our proposed data
generation pipeline.

In summary, we make the following contributions:
• We present DBPal, a fully pluggable natural language
to SQL (NL2SQL) training pipeline that automatically
synthesizes training data in order to improve the trans-
lation accuracy of an existing deep learning model.

• We propose several data augmentation techniques that
give themodel better coverage andmake it more robust
towards linguistic variation in NL queries.

• We propose a new benchmark that systematically tests
the robustness of a NLIDB to different linguistic varia-
tions.

• Using a state-of-the-art deep learning model, we show
that our training pipeline can improve translation ac-
curacy by up to almost 40%.

The remainder of this paper is organized as follows. First,
in Section 2, we introduce the overall system architecture of
DBPal. Next, in Section 3, we describe the details of DBPal’s
novel training pipeline, which is based on weak supervision.
We then show how the learnedmodel for NL2SQL translation
is applied at runtime in Section 4. Furthermore, we discuss
the handling of more complex queries like joins and nested
queries in Section 5. In order to demonstrate the effectiveness
of DBPal, we present the results of our extensive evaluation
in Section 6. Finally, we discuss related work in Section 7
and then conclude in Section 8.

2 OVERVIEW

In the following, we first discuss the overall architecture
of a NLIDB and then discuss DBPal, our proposed training
pipeline based on weak supervision that synthesizes the
training data from a given database schema.

2.1 System Architecture

Figure 1 shows an overview of the architecture of our fully
functional prototype NLIDB, which consists of multiple com-
ponents, including a user-interface that allows users to pose
NL questions that are automatically translated into SQL. The
results from the user’s NL query are then returned to the
user in an easy-to-read tabular visualization.

At the core of our prototype is a Neural Translator, which
is trained by DBPal’s pipeline, that translates incoming NL
queries coming from a user into SQL queries. Importantly,
our fully pluggable training pipeline is agnostic to the actual
translation model; that is, DBPal is designed to improve
the accuracy of existing NL2SQL deep learning models (e.g.,
SyntaxSQLNet [46]) by generating training data for a given
database schema.

2.1.1 Training Phase. During the training phase, DBPal’s
training pipeline provides existing NL2SQL deep learning
models with large corpora of synthesized training data. This

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2348

Show me all cities
in Massachusetts!

type in

visualization

SELECT * FROM city WHERE
city.state_name = @STATE

Query
Pre-processor

Query
Post-processor

Frontend
Interface

Neural
Translator

DBMS

Tabular Visualization

Server
Side

User
Side

Index Lookup

SELECT * FROM city WHERE
city.state_name = ‘Massachusetts’

Figure 1: Lifecycle of a NL query through a Neural Translator trained by DBPal’s training pipeline

training pipeline, described further in Section 2.2.1, consists
of three steps to synthesize the training data: (1) generator,
(2) augmentation, and (3) lemmatizer. Once training data is
synthesized by DBPal’s pipeline, it can then be used (po-
tentially together with existing manually curated training
data) to train existing neural translation models that can be
plugged into the training pipeline.

2.1.2 Runtime Phase. The runtime phase can leverage a
model (Neural Translator) that was trained by DBPal, as
shown on the right-hand side of Figure 2. The Parameter Han-
dler is responsible for replacing the constants in the input
NL query with placeholders to make the translation model
independent from the actual database and help to avoid re-
training the model if the underlying database is updated. For
example, for the input query shown in Figure 2 (i.e., “What
are cities whose state is Massachusetts?”), the Parameter Han-
dler replaces “Massachusetts” with the appropriate schema
element using the placeholder @STATE. The Lemmatizer then
combines different variants of the same word to a single root.
For example, the words “is”, “are”, and “am” are all mapped
to the root word “be”. Then, the Neural Translator works
on these anonymized NL input queries and creates output
SQL queries, which also contain placeholders. In the exam-
ple shown in Figure 2, the output of the Neural Translator
is: SELECT name FROM cities WHERE state = @STATE.
Finally, the Post-processor replaces the placeholders with the
actual constants such that the SQL query can be executed.

2.2 Training Pipeline

The basic flow of the training pipeline is shown on the left-
hand side of Figure 2. In the following, we describe the train-
ing pipeline and focus in particular on the data generation

framework. The details of the full training pipeline are ex-
plained further in Section 3.

2.2.1 Generator. In the first step, the Generator uses the
database schema along with a set of seed templates that de-
scribe typical NL-SQL pairs to generate an initial training set.
In the second step, Augmentation, the training data genera-
tion pipeline then automatically adds to the initial training
set of NL-SQL pairs by leveraging existing general-purpose
data sources and models to linguistically modify the NL part
of each pair.

The main idea is that each seed template covers a typical
class of SQL queries (e.g., a SELECT-FROM-WHERE query with
a simple predicate). Composing the seed templates is only
a minimal, one-time overhead, and all templates are inde-
pendent of the target database (i.e., they can be reused for
other schemas). Furthermore, in DBPal, we assume that the
database schema provides human-understandable table and
attribute names, but the user can optionally annotate the
schema to provide more readable names if required; deriving
readable schema names automatically is an orthogonal issue.

The schema information is then used to instantiate these
templates using table and attribute names. Additionally, man-
ually predefined dictionaries (e.g., to cover synonyms) can be
used to instantiate simple variations of NLwords and phrases
(e.g., “Show me” and “What is” for the SELECT clause). Cur-
rently, DBPal contains approximately 100 seed templates. A
typical training set that can be generated from these tem-
plates contains around 1 million NL-SQL pairs for a simple,
single-table database schema and around 2-3million formore
complicated schemas.

2.2.2 Augmentation. A core aspect of our pipeline is the
Augmentation step that automatically expands the training

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2349

Schema

SQL-NL pairs
templates

Slot-fill
lexicons

Generator

Augmentation

Neural Translator

DBMS

NL Query

Parameter
Handler

Runtime phaseTraining phase

Lemmatizer

Lemmatizer

Post-processor

Generated training set:

“What are cities whose state is
Massachusetts?”
SELECT name FROM cities
WHERE state = ‘Massachusetts’

“Show me average population
of cities for each state”
SELECT state, AVG(population)
FROM cities GROUP BY state

…...

Figure 2: DBPal’s Training and Runtime Phases

data produced by our Generator in order to offer more accu-
rate and linguistically robust translations. During augmenta-
tion, the training data generation pipeline automatically adds
new NL-SQL pairs by leveraging existing general-purpose
data sources and models to linguistically vary the NL part
of each pair. The goal of the augmentation phase is thus to
cover a wide spectrum of linguistic variations for the same
SQL query, which represent different versions of how users
might phrase the query in NL. This augmentation is the key
to make the translation model robust and allows DBPal to
provide better query understanding capabilities than exist-
ing standalone approaches. Section 3.2 describes this process
in more detail.

2.2.3 Lemmatization. Finally, in the last step of the data
generation procedure, the resulting NL-SQL pairs are lem-
matized to normalize the representation of individual words.
During this process, different forms of the same word are
mapped to the word’s root in order to simplify the analysis
(e.g., “cars” and “car’s” are replaced with “car”). The same
lemmatization is applied at runtime during the aforemen-
tioned pre-processing step.

3 TRAINING PHASE

In this section, we describe DBPal, our fully pluggable train-
ing data generation pipeline, which is designed to improve

the translation accuracy and linguistic robustness of existing
NL2SQL deep learning models. After describing the steps
of our training pipeline in detail, we discuss an optimiza-
tion procedure of the data generation process to increase the
model quality via parameter tuning. Finally, we elaborate on
the model training process, including a description of the
details of the model architecture and the hyperparameters
used in training.

3.1 Data Instantiation

The main observation of the instantiation step is that SQL, as
opposed to NL, has significantly less expressivity. We there-
fore use query templates to instantiate different possible SQL
queries that a user might phrase against a given database
schema, such as:

Select {Attribute}(s) From {Table}Where {Filter}

The main idea of data instantiation is that the space of
possible SQL queries a user might phrase against a given
database schema can be defined using a set of SQL templates.
The SQL templates cover a variety of query types, from sim-
ple SELECT-FROM-WHERE queries to more complex group-by
aggregation queries, as well as some simple nested queries.
For each SQL template, we define one or more NL templates
as counterparts for direct translation, such as:

{SelectPhrase} {Attribute}(s) {FromPhrase} {Table}(s)
{WherePhrase} {Filter}

It is important to note that we do not use actual constants
in the filter predicates. Instead, we use placeholders (e.g.,
@AGE) that represent an arbitrary constant for a given table
attribute. This makes the model trained on the generated
data independent of concrete values used in the database;
thus retraining is not required after inserts or updates.
To account for the expressivity of NL compared to SQL,

our templates contain slots for speech variation (e.g., Select-
Phrase, FromPhrase, WherePhrase) in addition to slots for
database objects (e.g., tables, attributes). Then, to instantiate
the initial training set, the Generator repeatedly instantiates
each of our NL templates by filling in the corresponding slots.
Table, column, and filter slots are filled using information
from the database’s schema, while a diverse array of NL slots
are filled using manually crafted dictionaries of synonymous
words and phrases. For example, the phrases “what is” or
“show me” can be used to instantiate the SelectPhrase. A fully
instantiated NL-SQL pair might look like:

Table, column, and filter slots are filled using information
from the database’s schema, while a diverse array of natural
language slots are filled using manually crafted dictionaries
of synonymous words and phrases. For example, the phrases

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2350

“what is” or “show me” can be used to instantiate the Select-
Phrase. A fully instantiated NL-SQL pair might look like:

Instantiated NL:

Show the names of all patients with age 20.

Instantiated SQL:

SELECT name FROM patients WHERE age = 20

An important part of training data instantiation is balanc-
ing the number of NL-SQL pairs that are instantiated per
template. If we naively replace the slots of a query template
with all possible combinations of slot instances (e.g., all at-
tribute combinations from the schema), then instances that
result from templates with more slots would dominate the
training set and bias the model. More specifically, an imbal-
ance of instances can lead to a biased training set where
the model would prefer certain translations over others only
due to the fact that certain variations appear more often. We
therefore randomly sample from the possible instances to get
a good coverage of different queries and to keep the number
of instances per query template balanced.
Finally, for each initial NL template, we additionally pro-

vide some manually curated paraphrased NL templates that
follow particular paraphrasing techniques [41], covering
categories such as syntactical, lexical, and morphological
paraphrasing. The existence of multiple corresponding NL
templates for each SQL template allows us to systematically
cover a range of possible linguistic variations. Importantly,
the paraphrased templates can be applied to instantiate the
training data for any given schema, and the instantiated
NL-SQL pairs are also automatically paraphrased during
automatic data augmentation.

For example, consider the following paraphrased NL tem-
plate and a corresponding instantiation:

Paraphrased NL Template:

For {Table}(s) with {Filter}, what is their {Attribute}(s)?

Instantiated NL Template:

For patients with age @AGE, what is their name?

We further expand upon our augmentation techniques in
the following section.

3.2 Data Augmentation

Unsurprisingly, numerous ways exist to express the same
idea in NL. For example, the questions “Show me the names of
all patients older than 18” and “What are the names of patients
who have an age greater than 18?” are semantically equivalent.
Therefore, to make the NL2SQL model more robust to these
linguistic variations, we apply the following augmentation
steps for each instantiated NL-SQL pair.

3.2.1 Automatic Paraphrasing. First, we augment the train-
ing set by generating duplicate NL-SQL pairs. This process
involves randomly selecting words/subphrases of the NL
query and paraphrasing them using the Paraphrase Data-
base (PPDB) [29] as a lexical resource, for example:

Input NL Query:

Show the names of all patients with age @AGE.

PPDB Output:

demonstrate, showcase, display, indicate, lay

Paraphrased NL Query:

Display the names of all patients with age @AGE.

PPDB is an automatically extracted database containing
millions of paraphrases in 27 different languages. DBPal
uses PPDB’s English corpus, which provides over 220 mil-
lion paraphrase pairs consisting of 73 million phrasal and 8
million lexical paraphrases, as well as 140million paraphrase
patterns, which capture a wide range of meaning-preserving
syntactic transformations. The paraphrases are extracted
from bilingual parallel corpora totaling over 100 million sen-
tence pairs and over 2 billion English words.
During paraphrasing, we randomly replace words and

subphrases of the input NL query with available paraphrases
provided by PPDB. For example, searching in PPDB for a
paraphrase of the word enumerate, as in “Enumerate the
names of patients with age 80”, we get suggestions such as
“list” or “identify” as alternatives.

An important question is how aggressively to apply auto-
matic paraphrasing. We therefore provide two parameters
to tune the automatic paraphrasing in DBPal. The first pa-
rameter sizepara defines the maximum size of the subclauses
(in number of words) that should be replaced in a given NL
query. A second parameter numpara defines the maximum
number of paraphrases that are generated as linguistic vari-
ations for each subclause. For example, setting sizepara = 2
will replace subclauses of size 1 and 2 (i.e., unigrams and
bigrams) in the input NL query with paraphrases found in
PPDB. Furthermore, setting numpara = 3, each of the uni-
grams and bigrams will be replaced by at most 3 paraphrases.
Setting these two parameters in an optimal manner is,

however, not trivial: if we set both parameters to high values,
we can heavily expand our initial training set of NL-SQL
query pairs using many different linguistic variations, which
hopefully will increase the overall robustness of DBPal. At
the same time, we might also introduce noise into the train-
ing dataset, since PPDB also includes some paraphrases that
are of low quality.
DBPal has default values for all of these parameters that

we have empirically determined to have the best performance

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2351

on multiple database schemas, which are used in our evalua-
tion in Section 6. In order to optimize these parameters to
increase the overall model accuracy for a given input data-
base schema, we provide an optimization procedure that we
discuss in Section 3.3. Our procedure automatically finds a
parameterization of the data generator that balances, among
others, the trade-off between these two dimensions: size of
the augmented training data and noise in the training data.

3.2.2 Missing Information. Another challenge of input NL
queries is missing or implicit information. For example, a user
might ask for “patients with influenza” instead of “patients
diagnosed with influenza”, where the referenced attribute
(i.e., “diagnosis”) is never explicitly stated.

Therefore, to make the translation more robust to missing
or implicit context, we randomly drop words and subphrases
from the NL training queries. For example, from the sentence
“patients diagnosed with influenza”, DBPal might decide to
drop the word “diagnosed”, allowing the translation model
to be able to successfully answer the question “Who are the
patients with influenza?”

Similar to paraphrasing, an interesting question is: which
words or subphrases should be removed and how frequently
shouldwe remove them?Again, aggressively removingwords
increases the training data size, since more variations are
generated. On the other hand, however, we might introduce
noisy training data that leads to a drop in translation accu-
racy and, counterproductively, produces less linguistically
robust models.

In order to tune how aggressively we drop words and sub-
phrases, we follow a similar protocol as the paraphrasing
process by randomly selecting words in the NL query and re-
moving them in a duplicate. Thus, we additionally introduce
a parameter named nummissinд that defines the maximum
number of query duplicates with removed words for a given
input NL query. We also include a parameter randDropp
that defines how often the generator will choose to remove
words from a particular NL query at all. Analogously to auto-
matic paraphrasing, we set these two parameters for a given
input database schema automatically using the procedure
described in Section 3.3.

3.2.3 Other Augmentations. For the automatic data augmen-
tation, we apply some additional techniques to increase the
linguistic variations. One example is the use of available lin-
guistic dictionaries for comparatives and superlatives. For
example, by using these resources, we can replace the gen-
eral phrase greater than in an input NL query by older than
if the domain of the schema attribute is set to age.
In the future, we plan on extending our augmentation

techniques in a variety of ways. For example, one possible
avenue is to enhance our automatic paraphrasing using other

language sources and not only PPDB. We also plan to inves-
tigate the idea of using an off-the-shelf part-of-speech tagger
to annotate each word in a given NL query. These annota-
tions can be used in different forms (e.g., we could use them
in the automatic paraphrasing to identify better paraphrases
or to infer a request for a nested query). Another idea is to
use part-of-speech tags to apply the word removal only for
certain classes of words.

3.3 Optimization Procedure

One important challenge of the automatic data generation
steps is to instantiate the training data such that the trans-
lation model will provide a high accuracy. For example, the
template-based training data instantiation step also has pa-
rameters that can be tuned to control the number of basic
NL-SQL pairs that are instantiated for each template. With-
out tuning these parameters, the data generation process
could introduce bias in the generated training data based
on a given schema if we exhaustively generate all possible
NL-SQL pairs. Furthermore, the augmentation steps require
several parameters for each step that define how aggres-
sively paraphrasing and removing information is applied to
an input NL query.
We therefore attempt to automatically optimize the con-

figuration of the generator parameters given a particular
database schema. The intuition behind this strategy comes
from observations made about the translation model’s behav-
ior. In particular, we note that models are typically very sus-
ceptible to overfitting to over-represented NL-SQL queries.
For example, if we overpopulate the training set with the
SQL count queries (the natural language parallel will usually
include words like “how many”), the model will likely output
a count query for all aggregations simply because it sees
particular NL words that most commonly appeared with the
word count during training. Queries like “How large is the
area of Alaska?” might be therefore be mapped to a count
instead of sum simply for this reason.

Table 1 lists all parameters that are available in DBPal to
tune the data generation process and explains their mean-
ings. As mentioned before, these parameters define the main
characteristics of the training data instantiation and augmen-
tation steps, and thus they have an effect on the accuracy
and robustness of the translation model. In order to find the
optimal parameter values of the data generation process for
a given schema automatically, we model the data generation
procedure as the following function:

Acc = Generate(D,T ,ϕ)

The inputs of this function are the database D that de-
scribes the schema and contains some sample data, a test
workload T of input NL queries and expected output SQL

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2352

Parameter Explanation

Data Instantiation

sizeslot f il ls Maximum number of instances cre-
ated for a NL-SQL template pair us-
ing slot-filling dictionaries.

sizetables Maximum number of tables sup-
ported in join queries.

дroupByp Probabilities of generating aGROUP
BY version of a generated query
pair.

joinboost ,
aддboost ,
nestboost

Control the balance of various types
of SQL statements relative to each
other and the number of templates
used.

Data Augmentation

sizepara Maximum size of subclauses that
are automatically replaced by a
paraphrase.

numpara Maximum number of paraphrases
that are used to vary a subclause.

nummissinд Maximum number of words that are
removed for a given input NL query.

randDropp Probability of randomly dropping
words from a generated query.

Table 1: Parameters of the Data Generation Procedure

queries, as well as a possible instantiation of all the tuning
parameters ϕ listed in the Table 1. The output of the gen-
eration procedure Acc is the accuracy of our model that is
trained on the generated dataset using D as well as ϕ and
then evaluated using the test workload T . It is important to
note that we can either use a test workload T that is created
automatically by using a random sample of the generated
training data (i.e., we split the test set from the training set)
or by providing a small representative set of NL-SQL query
pairs that are curated manually.
The goal of the optimization procedure is to find a pa-

rameter set ϕ that maximizes the accuracy Acc . Automatic
optimization techniques are useful for global optimization
problems that evaluate expensive black-box functions; as
such it has become popular for optimizing deep learning
models that take in a seemingly arbitrary set of hyperparam-
eters, such as the number of layers or perceptrons per layer
of a convolutional neural network (CNN). However, instead
of applying the optimization procedure to our translation
model, we extrapolate one step backwards and attempt to
optimize the nature of the training set to which the model
will be exposed.

In machine learning, there exist several strategies for au-
tomatically tuning hyperparameters. In DBPal, we use a

random search approach to automatically tune the hyper-
parameters ϕ of the function Generate . For each candidate
set of parameters, the entire system pipeline, including data
generation and model training (labeled Generate(D,T ,ϕ)), is
completed and the accuracy is returned. Random search is a
standard technique for hyperparameter-tuning and differs
from grid search, which is an alternative to random search,
mainly in that it searches the specified subset of hyperpa-
rameters randomly instead of exhaustively.

The major benefit of random search is the reduced runtime
in practice to find a set of hyperparameters that increases the
accuracy of the learned model. However, unlike grid search,
with random search we are not guaranteed to find the opti-
mal combination of hyperparameters. In the experimental
evaluation, we show that by using random search, we can
find parameters for the data generation process to produce
training data that can provide a high accuracy for the trained
model. We also experimented with more sophisticated hy-
perparameter search strategies like Bayesian optimization,
which did not find to improve the accuracy over the random
search strategy.

3.4 Neural Translation Model

As previously mentioned, DBPal is fully pluggable and is
designed to improve the accuracy of any existing NL2SQL
deep learningmodel. Therefore, importantly, existingmodels,
ranging from simple seq2seq to more complex ones like
SyntaxSQLNet [46], can be used for the translation and still
benefit from our proposed training pipeline. Additionally,
since a great deal of ongoing work is currently focused on
producing better NL2SQL models, our approach is similarly
able to improve the performance of any new advancements
that the NL community develops for translation. Since our
main contribution of this work is the novel data generation
approach, a detailed discussion of deep model architectures
is beyond the scope of this paper.

4 RUNTIME PHASE

In this section, we describe the query translation pipeline.
The complete process of the runtime phase is shown in
Figure 2 (right-hand side). From the given input NL query
to the output SQL query, three major processing phases
are performed: pre-processing, query translation, and post-
processing. The output SQL query is then executed against
the database and the result is returned to the user interface
in tabular form, as shown in Figure 1.

4.1 Pre-Processing and Query Translation

The input to the pre-processing step is a NL query formu-
lated by the user, such as the following:

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2353

User NL Query (with constants):

Show me the name of all patients with age 80

As previously mentioned, during pre-processing, parame-
ter values (i.e., constants) are replaced with special placehold-
ers. This step is performed to translate queries independently
from the database content. The resulting intermediate query
is as follows:

Input NL Query (without constants):

Show me the name of all patients with age @AGE
Output SQL Query (without constants):

SELECT name FROM patient WHERE age=@AGE

Replacing the constants in the input NL query with their
placeholders is a nontrivial task. The process might not be
deterministic, since the same constant might map to different
columns. This sub-task, commonly referred to as “variable
anonymization,” has been identified by other groups as an
important challenge in the NL2SQL pipeline. In their work
towards systematic benchmarking for NL2SQL systems, [19]
acknowledge that anonymization can be treated as a sepa-
rate task, and provide benchmarks with and without having
already performed the anonymization. As such, our paper
follows the former setup and evaluates on test sets with
pre-anonymized values.
In practice, as a temporary solution in the basic version

of DBPal, we build an index on each attribute of the schema
that maps constants to possible attribute names. Moreover,
the user might have provided a string constant in the input
NL query that is only similar to the one used in the database
(e.g., the user provides “New York City” instead of “NYC”). In
the current version of DBPal, we use a similarity function to
replace constants with their most similar value that is used
in the database. We therefore search the possible column
values and compute a string similarity metric with the string
constant provided by the user. In our prototype, we currently
use the Jaccard index, but the function can be replaced with
any other similarity metric. In cases where the similarity
of all values for the user-specified string is too low (which
could mean that the value does not exist in the database), we
use the constant as given by the user and do not replace it.
Finally, as a last step of pre-processing, we lemmatize

the input NL query to normalize individual words and thus
increase the similarity of the training data (which we also
lemmatize) and the input NL query the user provides at run-
time. After all pre-processing steps are applied, the trained
model is used to map the anonymized and lemmatized NL
query into an output SQL query, as shown previously.

4.2 Post-Processing

After pre-processing and translation, a post-processing phase
is applied. First, the placeholders in the output SQL query

are replaced by the appropriate database constants. Then,
we use SQL syntax knowledge to repair potential translation
errors of the model.

The first step is simply the inverse step of the pre-processing
phase. For example, the placeholder in the output SQL query
shown before should be replaced by the according constant
that was present in the user input:

Output SQL Query (with constants):

SELECT name FROM patient WHERE age=80

Hence, we need to replace the placeholder in the SQL
output of the model with the constant used in the input NL
query (e.g., @AGE is replaced by 80 in the example above).
In the second step of the post-processing phase, DBPal

uses knowledge about the SQL syntax to repair potential
translation errors that might result from applying the model.
One typical example is that the attributes used in the output
SQL query and the table names do not match (e.g., the query
asks for patient names but the table patient is not used in
the FROM clause). In this case, the post-processing step adds
missing tables to the FROM clause. The most likely join path
is selected from the schema using the shortest join path
between the table already present in the FROM clause and the
missing table. This is similar to the general join handling,
which we discuss in detail in the next section.

5 COMPLEX QUERIES

In the previous sections, we have shown both the training
and runtime phase of DBPal for example queries with sin-
gle tables. In this section, we discuss how we extend these
techniques to handle joins and nested queries as well.

5.1 Join Queries

In order to handle NL input queries that require a join, we
extend the template-based instantiation during the training
phase such that the attribute slots of a query can be filled
with attribute names from multiple tables in the same in-
stance. Attribute slots can be present in different parts of
a query (e.g., the SELECT or WHERE clause). The maximum
number of distinct tables that are used during slot-filling can
be defined using a parameter called sizetables , which is a tun-
ing parameter of the data generation process, as previously
discussed. Furthermore, we also change the instantiation of
table names in the generated SQL query. Instead of enumer-
ating all required tables in the FROM clause, we add a special
placeholder @JOIN. An example for an instantiated NL-SQL
pair that use a join might look as follows:

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2354

SQL Query (Training Set):

SELECT AVG(patient.age) FROM @JOIN WHERE
doctor.name=@DOCTOR.NAME
NL Query (Training Set):

What is the average age of patients treated
by doctor @DOCTOR.NAME

At runtime, our translation model then outputs a SQL
query with a @JOIN placeholder when it sees an input
NL query with attributes from multiple tables (i.e., it out-
puts a SQL query without concrete table names in the FROM
clause). The @JOIN placeholder is then replaced in the post-
processing step with the actual table names and the join
path that contains all tables required by the query. From
experience, we observe that this reduces the overall model
complexity, since the model does not need to predict actual
table names for the FROM clause.
Furthermore, as explained before in Section 4, for single-

table queries our translation model sometimes produces erro-
neous SQL queries where the table name in the FROM clause
does not match the attribute names used. These errors are
handled in the post-processing step, where we must infer the
correct table names from the attributes used in the SQL query.
Thus, increasing the model complexity to predict both the
join paths and table names increases the rate of errors that
would need to be handled in the post-processing phase. The
introduction of the JOIN placeholder rectifies these issues.

DBPal’s post-processing phase uses the schema informa-
tion to infer table names and a join path from the attributes
in the SQL output of the model. In case multiple join paths
are possible to connect all the required tables, we select the
join path that is minimal in its length.

5.2 Nested Queries

Handling arbitrary nested queries is a hard task on its own.
In our current prototype, we only handle a subset of possible
SQL nestings by adding additional templates that represent
common forms of nested queries where the slots for the
outer and inner query can be instantiated individually. An
example for a NL-SQL template pair looks as follows:

SQL Template:

Select {Attribute}(s) From {Table} Where (Select {MaxMi-
nAttribute} From {Table} Where {Filter}))
NL Template:

{SelectPhrase} the {Attribute}(s) {FromPhrase} {Table}
{WherePhrase} {MaxMinAttribute}

This template is then instantiated during the first phase of
the data generation process. For example, the following pair
of instantiated queries could be generated for the training
set from the previous template pair:

SQL Query (Training Set):

SELECT name FROM mountain WHERE height =
(SELECT MAX(height) FROM mountain WHERE
state=@STATE.NAME)
NL Query (Training Set):

What is name of the mountain with maximum height in
@STATE.NAME

The instantiated queries are augmented automatically in
the sameway as for non-nested queries. In its current version,
DBPal only supports uncorrelated nestings in the WHERE
clause using different keywords (e.g., EXISTS, IN), as well as
nested queries where the inner query returns an aggregate
result. However, the nesting capabilities of DBPal can easily
be extended by further adding templates that are instantiated
in the first phase of the data generation.

6 EXPERIMENTAL EVALUATION

The main goal of our evaluation is to show that the presented
training pipeline is able to improve the performance of exist-
ing NL2SQL translation techniques. Therefore, in Section 6.1,
we first compare our proposed augmentation techniques to
the training process using SyntaxSQLNet [46] with the well-
known Spider [47] benchmark. Based on this analysis, in
Section 6.2, we introduce a new benchmark for NLIDBs that
better tests linguistic variations for NL2SQL translation and
present experimental results. Finally, Section 6.3 presents
the results of several microbenchmarks that test different
aspects of DBPal’s training pipeline.

6.1 Existing Benchmark: Spider

The first benchmark that we use to show the effectiveness
of our proposed techniques is Spider [47]. In the following,
we describe the benchmark at a high-level, and then we
show how DBPal can effectively improve the accuracy of
SyntaxSQLNet [46] on the Spider benchmark. SyntaxSQLNet
is a state-of-the-art deep learningmodel that uses pre-trained
GloVe word embeddings [30] when parsing the words in the
input sentences. Using GloVe embeddings already allows the
model to handle variations of individual words efficiently.

6.1.1 Setup. Spider [47] is a popular openly-available dataset
that consists of over 10, 000 NL questions paired with the
corresponding SQL queries. The benchmark contains 200
database schemas, each of which has several tables, repre-
senting real-world database deployments. The data in the
benchmark is very diverse and spans 138 distinct domains
(e.g., automotive, social networking, geography). In addition
to the diverse data, the corresponding SQL queries contain
almost all of the common SQL patterns, including nested
queries.

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2355

Algorithm Easy Medium Hard Very Hard Overall

SyntaxSQLNet 0.445 0.227 0.231 0.051 0.248
DBPal (Train) 0.472 0.300 0.252 0.107 0.299
DBPal (Full) 0.480 0.323 0.279 0.122 0.317

Table 2: Spider Benchmark Results

Based on the complexity of the corresponding SQL query
(i.e., the number of SQL components), each question is as-
signed a difficulty (i.e., easy, medium, hard, very hard). The
benchmark includes queries from each of these categories,
allowing us to test how different approaches compare in a
diverse set of scenarios. In this benchmark, accuracy is mea-
sured by computing the number of correctly translated NL
phrases divided by the total number of queries. A query is
deemed to be correctly translated only if it exactly matches
the provided “gold standard” SQL query for the NL input,
without allowing for semantically equivalent answers.

Unlike existing datasets, Spider uses different databases
(i.e., schemas and data) for training and testing (i.e., a data-
base schema is used exclusively for either training or testing,
but not both). This allows us to evaluate how well the model
will generalize to new domains.

6.1.2 Results. Table 2 shows the accuracy for SyntaxSQLNet
using the Spider dataset for three different configurations.
First, as a baseline, we show the performance of the base
SyntaxSQLNet model trained using the data from Spider’s
training set. The DBPal (Train) configuration uses the base-
line SyntaxSQLNet (i.e., trained using Spider’s training set),
but we augmented the training data with additional synthetic
data generated by DBPal using the schemas of the training
set in Spider only. Finally, the DBPal (Full) version uses the
schemas from both the training and test set of Spider to
generate additional synthetic training data. Note, however,
that DBPal never sees actual NL-SQL pairs from the test set
during the training process, only the schemas in the DBPal
(Full) configuration.

As shown, both configurations of DBPal improve upon
the baseline performance of SyntaxSQLNet across all dif-
ficulty levels. In the DBPal (Train) case, we see that with
the addition of synthetic training data generated only using
schema information from the training set, DBPal is already
able to outperform the baseline SyntaxSQLNet model. This
is due to the fact that our novel training pipeline is able to
supplement the existing training data with additional query
patterns (e.g., nested subqueries) that are not present (or
numerous enough) in the training data. As shown, this helps
significantly for the harder queries, withDBPal being able to
outperform the baseline by more than 2× for the “very hard”
category due to the fact that the training pipeline introduces
new query patterns (e.g., nested queries) to the model.

In general,DBPal (Full) is able to leverage additional query
patterns from the synthetic data generation pipeline that are
specific for the test schemas. With this information, DBPal
(Full) is able to generate training examples that provide the
model with additional information (e.g., table names, col-
umn names, column values) that is specific to test databases.
As shown in Table 2, the added synthetic data for the test
schemas in Spider when using DBPal (Full) is able to offer
additional performance improvement over DBPal (Train).
More concretely, with the help of the additional generated
training data, we can further improve translation accuracy
across all query difficulties of Spider by 15 − 27%.

6.2 New Benchmark: Patients

While Spider covers both a wide variety of schemas from dif-
ferent domains and different SQL query patterns, it does not
comprehensively test different linguistic variations. Hence,
we introduced a new open-source NL2SQL benchmark1 that
is available online specifically to test a model’s linguistic
robustness.

6.2.1 Setup. The schema of our new benchmark models
a medical database comprised of hospital patients with at-
tributes such as name, age, and disease. We refer to this
dataset as the Patients benchmark. In total, the benchmark
consists of 399 carefully crafted pairs of NL-SQL queries.

To better test the linguistic robustness of the given trans-
lation model, queries are grouped into one of the following
categories depending on the linguistic variation that is used
in the NL query: naive, syntactic paraphrases, morphological
paraphrases, semantic paraphrases, and lexical paraphrases,
as well as a category where queries have some missing infor-
mation. These categories are formulated along the guidelines
of paraphrase typologies discussed in [41] and [6]. While
the NL queries in the naive category represent a direct trans-
lation of their SQL counterpart, the other categories are
more challenging: syntactic paraphrases emphasize struc-
tural variances, lexical paraphrases pose challenges such as
synonymous words and phrases, semantic paraphrases use
changes in lexicalization patterns that maintain the same
semantic meaning, morphological paraphrases add affixes,
apply stemming, etc., and the missing category includes im-
plicit references to concepts.

1https://github.com/DataManagementLab/ParaphraseBench

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2356

https://github.com/DataManagementLab/ParaphraseBench

Algorithm Naive Syntactic Lexical Morphological Semantic Missing Mixed Overall

SyntaxSQLNet 0.281 0.228 0.070 0.175 0.175 0.088 0.140 0.165
DBPal (Train) 0.930 0.333 0.404 0.667 0.228 0.088 0.193 0.409
DBPal (Full) 0.947 0.632 0.544 0.667 0.491 0.158 0.298 0.531

Table 3: Patients Benchmark Results

Unlike other benchmarks that test for exact syntactic
match of SQL queries, Patients tests instead for semantic
equivalence. Since the test set is (relatively) small (i.e., 57
queries per category), we manually enumerated possible se-
mantically equivalent SQL query answers. However, if the
benchmark were to be extended, one could use an equiva-
lence checker (e.g., Cosette [9]) to verify correctness.
In the following, we show an example query for each of

these categories:
Naive: “What is the average length of stay of patients where

age is 80?"
Syntactic: “Where age is 80, what is the average length of

stay of patients?"
Morphological: “What is the averaged length of stay of

patients where age equaled 80?"
Lexical: “What is the mean length of stay of patients where

age is 80 years?"
Semantic: “On average, how long do patients with an age

of 80 stay?"
Missing Information: “What is the average stay of pa-

tients who are 80?"

6.2.2 Results. In this section, we show how our proposed
techniques compare using the previously described Patients
benchmark. Table 3 shows the performance of SyntaxSQLNet
(Baseline), our proposed synthetic data generation using
only information from the training set (DBPal (Train)), and
synthetic data generation using schema information from
both the training and testing set (DBPal (Full)).
In the results, we see that our proposed synthetic data

generation techniques can help improve the performance of
SyntaxSQLNet across all of the linguistic variation categories.
In particular, our techniques improve the translation accu-
racy by almost 25% by generating additional training data
over only the training set and can provide a more than 35%
accuracy improvement over SyntaxSQLNet by leveraging
schema information about the test databases.
In general, the results of our training data augmentation

fall into two categories. On one hand, there are query pattern
categories where the baseline DBPal augmentation achieves
almost all of the observed performance improvement (e.g.,
Naive, Morphological). In these cases,DBPal improvesmodel
performance by providing training examples for classes of
queries that are not well-covered by the Spider training set,

and the target schema knowledge provides virtually no addi-
tional benefit.

The second category of query patterns is where there is a
large performance difference between DBPal (Train) and the
target schema augmentation version, DBPal (Full), where
accuracy is often doubled (e.g., semantic, missing). In these
categories, the additional schema information is particularly
helpful because it allows the model to learn complex, domain-
specific NL mappings. For example, consider the example
semantic query: “On average, how long do patients older
than 80 stay?” Clearly, the semantic meaning of the phrase
“older than” refers implicitly to the “age” attribute of the
patient, but this would not be easy to derive from a generic
training set. However, by providing training data specifically
generated from the target schema, DBPal is able to help the
model to better learn these mappings.

6.3 Microbenchmarks

In the following, we present the results of our microbench-
marks, which include: (1) an analysis of Spider results based
on SQL pattern coverage; (2) the sensitivity of DBPal when
using only a fraction of seed templates; and (3) our hyperpa-
rameter optimization techniques described in Section 3.3.

6.3.1 Pattern Coverage Breakdown. To understand the spe-
cific benefits ofDBPal, we analyzed our results for the Spider
benchmark from Section 6.1 based on query pattern coverage
in the training data. Table 4 shows the same overall perfor-
mance results reported in Table 2 broken down by query
patterns in the test set using the following categories: the
query pattern of the test query was found in (1) both the
Spider training set and augmented data generated by DBPal;
(2) only the augmented DBPal data; (3) only the training set
of Spider; and (4) neither of them. For example, the simple
SELECT COUNT(*) query pattern appears in both training
sets, whereas only the Spider training dataset has coverage
for multiple nested subqueries.
In general, we see that DBPal improves accuracy for all

four categories, demonstrating that our data augmentation
process can improve linguistic robustness irrespective of
which training set contains individual query patterns. That
is, DBPal’s generated data actually helps the model to gen-
eralize and be more linguistically robust to patterns that are
not explicitly covered in our seed templates. This effect can

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2357

Algorithm Both DBPal Spider Unseen

SyntaxSQLNet 0.375 0.000 0.244 0.013
DBPal (Train) 0.458 0.000 0.287 0.026
DBPal (Full) 0.462 0.250 0.317 0.040

Table 4: Pattern Coverage Breakdown for Spider

be seen for patterns that appear only in the Spider training
dataset (Spider), where DBPal improves the model perfor-
mance by about 30%. Even more impressive is the over 3×
improvement for test queries where the query patterns never
explicitly appear in any training set (Unseen).

Again, as observed in our other results, the additional aug-
mentation step using the target schema further increases
accuracy. For the Both category, this enables model special-
ization of those patterns to the target schema, whereas for
the Spider and Unseen categories, it helps the model to learn
to translate patterns with no DBPal coverage to the target
schema.
Finally, one notable result is for the query patterns that

appear only in DBPal’s seed templates. As expected, the
baseline SyntaxSQLNet model has never seen these query
patterns (since they do not appear in Spider) and thus has 0%
accuracy, whereas DBPal achieves 25% accuracy by learning
from augmented examples of these patterns.

6.3.2 Seed Templates. Since DBPal generates additional
training data by instantiating seed templates, the number of
templates used during training can impact the overall ben-
efit of our training pipeline. Therefore, to demonstrate the
impact of the seed templates, Figure 3 shows the normal-
ized accuracy (i.e., performance compared to using all of the
templates) using the Patients benchmark when varying the
number of templates used during training.
For this experiment, we train the same SyntaxSQLNet

model using the previously mentioned Spider training data
and include additional training data that is generated for the
Patients schema only using a random subset of the available
seed templates. For example, in the 10% case, we augment
the Spider data with additional training examples that are
instantiated using a randomly selected 10% of the available
seed templates on the Patients schema. Importantly, the ran-
dom subsets are selected prior to instantiation, which means
templates covering certain patterns are excluded.
As shown, the addition of only 10% of the available seed

templates is able to improve the overall accuracy when run-
ning the Patients test queries by more than 4×. Adding even
more of the available seed templates (i.e., 50%) offers an ad-
ditional 15% accuracy improvement, showing that additional
templates are able to capture distinct NL2SQL patterns.

0% 10% 50% 100%
% of Templates

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

Figure 3: Normalized Accuracy for Fractions of Seed

Templates

6.3.3 Hyperparameter Optimization. As described in Sec-
tion 3.3, we apply an automatic hyperparameter optimiza-
tion procedure to tune the parameters of our training data
generator. In this experiment, we show the results of apply-
ing our optimization procedure for generating the training
data for the Spider benchmark we used in our experiments
in Section 6.1.
As a test workload T to tune the hyperparameters of our

data generation pipeline, we used the full GeoQuery query
test set of 280 pairs provided by [22]. The rationale is that the
GeoQuery queries are partially included in the Spider test set
and thus represents a good test set for the hyperparameter
tuning, since the queries can be seen as representative on
the one hand but also independent from the actual Spider
test set. For the experiment, we sampled 68 random sets of
hyperparameters. For every set of randomly sampled hyper-
parameters, we then trained a given model for up to a 6 hour
time limit (which we saw is the typical time a model needs to
converge when trained on Spider and DBPal training data).
Figure 4 shows the distribution of the accuracy recorded

from running the optimization procedure, which trains a
model on every dataset that was generated using the ran-
domly sampled hyperparameters. Of the 68 parameter sets
we evaluated, 59 converged within their 6 hour time limit.
The worst model returned had an accuracy of 37.5%, while
the best had an accuracy of 55.5%. The mean accuracy of all
59 models was 48.4%, with a standard deviation of 3.5%.

We used the hyperparameters which returned the highest
accuracy as the basis for all other experiments previously
described in this section.

7 RELATEDWORK

The task of synthesizing SQL queries from natural language
(NL) has been studied extensively within both the NLP and
database research communities since the late 1970s [31, 48].

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2358

0.384 0.403 0.421 0.440 0.459 0.478 0.497 0.515 0.534 0.553
Translation Accuracy

0

2

4

6

8

10

Fr
eq

ue
nc

y
(#

 T
ria

ls)

Figure 4: Histogram of Test Accuracy for Enumerated

Parameter Configurations

A 1995 study [2] extensively discusses challenges that need
to be addressed pertaining to Natural Language Interfaces for
Databases (NLIDBs); their list includes linguistic coverage
and database portability.

NLIDBs have a long history in the database research com-
munity [2, 25, 26, 32, 33, 36]. Most of this work relied on clas-
sical techniques for semantic parsing and used rule-based
approaches for the translation into SQL. However, these ap-
proaches have commonly shown poor flexibility for the users
who phrase questions with different linguistic styles using
paraphrases and thus failed to support realistic scenarios.

More recent approaches tackled some of the limitations of
the original NLIDBs. For example, the system ATHENA [36]
relies on a manually crafted ontology that is used to make
query translation more robust by taking different ways of
phrasing a query into account. Yet, since ontologies are
domain-specific, they need to be hand-crafted for every new
database schema. On the other hand, the NaLIR [25] system
relies on an off-the-shelf dependency parser that could also
be built on top of a deep model. However, it still implements
a rule-based system that struggles with variations in vocabu-
lary and syntax. Our system attempts to solve both of those
issues by being domain-independent as well as robust to
linguistic variations.
Within the NLP community, this task is most commonly

treated as a semantic parsing problem where the goal is to
model a mapping of NL to a corresponding logical form, in
this case SQL. Earlier works, such as [3, 4, 27, 49], employ
variants of CCG parsers [10] to parse NL utterances into an
executable lambda calculus notation. It should be noted that
the grammar of logical form notation is far more simplistic
than that of a complex query language like SQL; as such, a
single NL query can be mapped to an arbitrarily complex
SQL statement crossing many tables and involving many
layers of nesting.

Recent success in employing neural network sequence-
to-sequence (seq2seq) modeling for syntactic constituency
parsing by [42] has spurred efforts in adapting the same so-
lution for semantic parsing. That is, they pose logical form
synthesis as a neural machine translation task, adapting sys-
tems for translating English to Czech or French to instead
treat the logical form as the target foreign language. In both
settings, mapping to lambda calculus [16, 17] or directly to
SQL [8, 19, 22], the seq2seq architecture has shown com-
petitive performance with statistical approaches that rely
heavily upon hand-crafted lexical features.

In general, seq2seq models consist of a large number of pa-
rameters that require vast amounts of training examples. This
poses a substantial challenge, as collecting diverse enough
training data comprising pairs of NL utterances and logical
form or SQL queries requires expensive expert supervision.
Iyer et al. [22] attempts to deal with this data bottleneck
by performing an online learning mechanism in which the
model alternates between training and making predictions.
Human judges identify incorrect predictions that need to be
corrected by a crowdsourced worker with SQL expertise.

Alternatively, a solution more similar to ours is introduced
by [43], whose approach produces pairs of canonical utter-
ances aligned with their corresponding logical forms using
a seed lexicon. However, they again use crowdsourcing to
paraphrase the canonical utterances into more fluent sen-
tences that include syntactic alterations and context specific
predicates. While less efficient than an on-the-fly system,
this form of crowdsourced annotation is much less costly,
given worker’s SQL expertise is not required.

The main contribution of this work addresses the training
data bottleneck from a slightly different angle. We attempt
to completely eliminate any manual annotation effort by a
user who is not well-versed in SQL. Rather, the user needs to
be familiar only with the given new domain in order to suffi-
ciently annotate the new schema’s elements with their NL
utterances. We argue that our extensive linguistically-aware
templates provide a comparable breadth of coverage as that
of manually collected training data. Additionally, our strat-
egy of employing PPDB [29] to automatically paraphrase the
sentence can approximate a human doing the same task.

Previous work on Natural Language Processing (NLP) has
heavily relied on classical statistical models to implement
tasks such as semantic parsing that aim to map a natural
language utterance to an unambiguous and executable logi-
cal form [48]. More recent results on semantic parsing such
as [16, 23] have started to employ deep recurrent neural net-
works (RNNs), particularly seq2seq architectures, to replace
traditional statistical models. RNNs have shown promising
results and outperform the classical approaches for semantic
parsing, since they make only few domain-specific assump-
tions and thus require only minimal feature engineering.

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2359

An important research area aiming to allow non-experts to
specify ad-hoc queries over relational databases are keyword
search interfaces [45]. Recently, there have been extensions
to keyword-based search interfaces to interpret the query
intent behind the keywords in the view of more complex
query semantics [5, 7, 39]. In particular, some of them support
aggregation functions, boolean predicates, etc.

Some recent approaches leverage deep models for end-to-
end translation similar to our system (e.g., [22]). However, a
main difference of our system to [22] is that their approach
requires manually handcrafting a training set for each novel
schema/domain that consist of pairs of NL and SQL queries.
In contrast, our approach does not require a hand-crafted
training set. Instead, inspired by [43], our system generates a
synthetic training set that requires only minimal annotations
to the database schema.

Another recent paper that also uses a deep model to trans-
late NL to SQL is [44]. First, the approach in this paper is
a more classical approach based on identifying the query
intent and then filling particular slots of a query. In their cur-
rent version [44], they can only handle a much more limited
set of NL queries compared to DBPal. Furthermore, their ap-
proach leverages reinforcement learning to learn from user
feedback in case the query could not be translated correctly,
which is an orthogonal issue that could also be applied to
DBPal.
Finally, in addition to its primary focus on generating

labels for unlabeled training data, Snorkel [34] also incorpo-
rates data augmentation techniques to generate additional
heuristically modified training examples [14, 35]. Unlike
Snorkel, DBPal presents many optimizations that are spe-
cific to the task of NL2SQL translation, including slot-fill
dictionaries, random word-dropout, and paraphrasing tech-
niques to increase the linguistic robustness of the generated
training data. Additionally, DBPal includes an optimization
procedure for hyper-parameter tuning that leverages schema
information to further specialize the generated training ex-
amples for the target use case.

8 CONCLUSION & FUTUREWORK

In this paper, we presented DBPal, a fully pluggable natural
language to SQL (NL2SQL) training pipeline that generates
synthetic training data to improve both the accuracy and
robustness to linguistic variation of existing deep learning
models. In combination with our presented data augmen-
tation techniques, which help improve the translational ro-
bustness of the underlying models, DBPal is able to improve
the accuracy of state-of-the-art deep learning models by up
to almost 40%.
Longer term, we believe that an exciting opportunity ex-

ists to expand DBPal’s techniques to tackle broader data

science use cases, ultimately allowing domain experts to
interactively explore large datasets using only natural lan-
guage [24]. In contrast to the typical notion of one-shot SQL
queries currently taken byDBPal, data science is an iterative,
session-driven process where a user repeatedly modifies a
query or machine learning model after examining interme-
diate results until finally arriving at some desired insight,
which will therefore necessitate a more conversational in-
terface. These extensions would require the development of
new techniques for providing progressive results [40, 50] by
extending past work on traditional SQL-style queries [13, 20]
and machine learning models [37].

Finally, we believe there are also interesting opportunities
related to different data models (e.g., time series [18]) and
new user interfaces (e.g., query-by-voice [28]).

9 ACKNOWLEDGMENTS

This work was funded in part by NSF grants III:1526639 and
III:1514491, as well as gifts from Oracle to support our work
on Natural Language Interfaces on Big Data.

REFERENCES

[1] 2020. Tableau. https://www.tableau.com/. (2020).
[2] Ion Androutsopoulos, Graeme D. Ritchie, and Peter Thanisch. 1995.

Natural language interfaces to databases - an introduction. Natural
Language Engineering 1, 1 (1995), 29–81.

[3] Islam Beltagy, Katrin Erk, and Raymond Mooney. 2014. Semantic
Parsing using Distributional Semantics and Probabilistic Logic. In ACL
2014 Workshop on Semantic Parsing. 7–11.

[4] Jonathan Berant and Percy Liang. 2014. Semantic Parsing via Para-
phrasing. In ACL. 1415–1425.

[5] Sonia Bergamaschi, Francesco Guerra, Matteo Interlandi, Raquel Trillo
Lado, and Yannis Velegrakis. 2013. QUEST: A Keyword Search Sys-
tem for Relational Data based on Semantic and Machine Learning
Techniques. PVLDB 6, 12 (2013), 1222–1225.

[6] Rahul Bhagat and Eduard H. Hovy. 2013. What Is a Paraphrase?
Computational Linguistics 39, 3 (2013), 463–472.

[7] Lukas Blunschi, Claudio Jossen, Donald Kossmann, Magdalini Mori,
and Kurt Stockinger. 2012. SODA: Generating SQL for Business Users.
PVLDB 5, 10 (2012), 932–943.

[8] Ruichu Cai, Boyan Xu, Zhenjie Zhang, Xiaoyan Yang, Zijian Li, and
Zhihao Liang. 2018. An Encoder-Decoder Framework Translating
Natural Language to Database Queries. In IJCAI. 3977–3983.

[9] Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung.
2017. Cosette: An Automated Prover for SQL. In CIDR.

[10] Stephen Clark and James R. Curran. 2004. Parsing the WSJ Using CCG
and Log-Linear Models. In ACL. 103–110.

[11] Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum,
Tom M. Mitchell, Kamal Nigam, and Seán Slattery. 2000. Learning to
construct knowledge bases from the World Wide Web. Artif. Intell.
118, 1-2 (2000), 69–113.

[12] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig,
and Tim Kraska. 2015. Vizdom: Interactive Analytics through Pen and
Touch. PVLDB 8, 12 (2015), 2024–2027.

[13] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig,
and Tim Kraska. 2016. The case for interactive data exploration accel-
erators (IDEAs). In HILDA@SIGMOD.

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2360

https://www.tableau.com/

[14] Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith, Chris De Sa, and
Christopher Ré. 2019. A Kernel Theory of Modern Data Augmentation.
In ICML, Vol. 97. 1528–1537.

[15] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and
W. Bruce Croft. 2017. Neural Ranking Models with Weak Supervision.
In SIGIR. 65–74.

[16] Li Dong and Mirella Lapata. 2016. Language to Logical Form with
Neural Attention. In ACL.

[17] Li Dong and Mirella Lapata. 2018. Coarse-to-Fine Decoding for Neural
Semantic Parsing. In ACL. 731–742.

[18] Philipp Eichmann, Andrew Crotty, Alexander Galakatos, and Emanuel
Zgraggen. 2017. Discrete Time Specifications In Temporal Queries. In
CHI Extended Abstracts. 2536–2542.

[19] Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik
Ramanathan, Sesh Sadasivam, Rui Zhang, and Dragomir R. Radev. 2018.
Improving Text-to-SQL Evaluation Methodology. In ACL. 351–360.

[20] Alex Galakatos, Andrew Crotty, Emanuel Zgraggen, Carsten Binnig,
and Tim Kraska. 2017. Revisiting Reuse for Approximate Query Pro-
cessing. PVLDB 10, 10 (2017), 1142–1153.

[21] Mi-Young Huh, Pulkit Agrawal, and Alexei A. Efros. 2016. What makes
ImageNet good for transfer learning? CoRR abs/1608.08614 (2016).

[22] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy,
and Luke Zettlemoyer. 2017. Learning a Neural Semantic Parser from
User Feedback. In ACL. 963–973.

[23] Robin Jia and Percy Liang. 2016. Data Recombination for Neural
Semantic Parsing. In ACL.

[24] Rogers Jeffrey Leo John, Navneet Potti, and Jignesh M. Patel. 2017.
Ava: From Data to Insights Through Conversations. In CIDR.

[25] Fei Li and H. V. Jagadish. 2014. Constructing an Interactive Natural
Language Interface for Relational Databases. PVLDB 8, 1 (2014), 73–84.

[26] Fei Li and Hosagrahar Visvesvaraya Jagadish. 2014. NaLIR: an interac-
tive natural language interface for querying relational databases. In
SIGMOD. 709–712.

[27] Percy Liang, Michael I. Jordan, and Dan Klein. 2011. Learning
Dependency-Based Compositional Semantics. In ACL. 590–599.

[28] Gabriel Lyons, Vinh Tran, Carsten Binnig, Ugur Çetintemel, and Tim
Kraska. 2016. Making the Case for Query-by-Voice with EchoQuery.
In SIGMOD. 2129–2132.

[29] Ellie Pavlick and Chris Callison-Burch. 2016. Simple PPDB: A Para-
phrase Database for Simplification. In ACL.

[30] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014.
Glove: Global Vectors for Word Representation. In EMNLP. 1532–1543.

[31] Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko, and
Alexander Yates. 2004. Modern Natural Language Interfaces to
Databases: Composing Statistical Parsing with Semantic Tractabil-
ity. In COLING.

[32] Ana-Maria Popescu, Oren Etzioni, and Henry A. Kautz. 2003. Towards
a theory of natural language interfaces to databases. In IUI. 149–157.

[33] Rodolfo A. Pazos Rangel, Joaquín Pérez Ortega, Juan Javier González
Barbosa, Alexander F. Gelbukh, Grigori Sidorov, and Myriam J. Ro-
dríguez M. 2005. A Domain Independent Natural Language Interface to
Databases Capable of Processing Complex Queries. InMICAI, Vol. 3789.
833–842.

[34] Alexander Ratner, Stephen H. Bach, Henry R. Ehrenberg, Jason Alan
Fries, Sen Wu, and Christopher Ré. 2017. Snorkel: Rapid Training Data
Creation with Weak Supervision. PVLDB 11, 3 (2017), 269–282.

[35] Alexander J. Ratner, Henry R. Ehrenberg, Zeshan Hussain, Jared Dunn-
mon, and Christopher Ré. 2017. Learning to Compose Domain-Specific
Transformations for Data Augmentation. In NIPS. 3236–3246.

[36] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan,
Umar Farooq Minhas, Ashish R. Mittal, and Fatma Özcan. 2016.
ATHENA: An Ontology-Driven System for Natural Language Query-
ing over Relational Data Stores. PVLDB 9, 12 (2016), 1209–1220.

[37] Zeyuan Shang, Emanuel Zgraggen, Benedetto Buratti, Ferdinand Koss-
mann, Philipp Eichmann, Yeounoh Chung, Carsten Binnig, Eli Upfal,
and Tim Kraska. 2019. Democratizing Data Science through Interactive
Curation of ML Pipelines. In SIGMOD. 1171–1188.

[38] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta.
2017. Revisiting Unreasonable Effectiveness of Data in Deep Learning
Era. In ICCV. 843–852.

[39] Sandeep Tata and Guy M. Lohman. 2008. SQAK: doing more with
keywords. In SIGMOD. 889–902.

[40] Cagatay Turkay, Nicola Pezzotti, Carsten Binnig, Hendrik Strobelt,
Barbara Hammer, Daniel A. Keim, Jean-Daniel Fekete, Themis Pal-
panas, Yunhai Wang, and Florin Rusu. 2018. Progressive Data Science:
Potential and Challenges. CoRR abs/1812.08032 (2018).

[41] Marta Vila, Maria Antònia Martí, and Horacio Rodríguez. 2011. Para-
phrase Concept and Typology. A Linguistically Based and Computa-
tionally Oriented Approach. Procesamiento del Lenguaje Natural 46
(2011), 83–90.

[42] Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever,
and Geoffrey E. Hinton. 2015. Grammar as a Foreign Language. In
NIPS. 2773–2781.

[43] Yushi Wang, Jonathan Berant, and Percy Liang. 2015. Building a
Semantic Parser Overnight. In ACL. 1332–1342.

[44] Xiaojun Xu, Chang Liu, and Dawn Song. 2017. SQLNet: Generating
Structured Queries From Natural Language Without Reinforcement
Learning. CoRR abs/1711.04436 (2017).

[45] Jeffrey Xu Yu, Lu Qin, and Lijun Chang. 2010. Keyword Search in
Relational Databases: A Survey. IEEE Data Eng. Bull. 33, 1 (2010),
67–78.

[46] Tao Yu,Michihiro Yasunaga, Kai Yang, Rui Zhang, DongxuWang, Zifan
Li, and Dragomir R. Radev. 2018. SyntaxSQLNet: Syntax Tree Networks
for Complex and Cross-Domain Text-to-SQL Task. In EMNLP. 1653–
1663.

[47] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang,
Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin
Zhang, and Dragomir R. Radev. 2018. Spider: A Large-Scale Human-
Labeled Dataset for Complex and Cross-Domain Semantic Parsing and
Text-to-SQL Task. In EMNLP. 3911–3921.

[48] John M. Zelle and Raymond J. Mooney. 1996. Learning to Parse Data-
base Queries Using Inductive Logic Programming. In AAAI. 1050–
1055.

[49] Luke S. Zettlemoyer and Michael Collins. 2007. Online Learning of
Relaxed CCG Grammars for Parsing to Logical Form. In EMNLP. 678–
687.

[50] Emanuel Zgraggen, Alex Galakatos, Andrew Crotty, Jean-Daniel
Fekete, and Tim Kraska. 2017. How Progressive Visualizations Affect
Exploratory Analysis. IEEE Trans. Vis. Comput. Graph. 23, 8 (2017),
1977–1987.

[51] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL:
Generating Structured Queries from Natural Language using Rein-
forcement Learning. CoRR abs/1709.00103 (2017).

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2361

	Abstract
	1 Introduction
	2 Overview
	2.1 System Architecture
	2.2 Training Pipeline

	3 Training Phase
	3.1 Data Instantiation
	3.2 Data Augmentation
	3.3 Optimization Procedure
	3.4 Neural Translation Model

	4 Runtime Phase
	4.1 Pre-Processing and Query Translation
	4.2 Post-Processing

	5 Complex Queries
	5.1 Join Queries
	5.2 Nested Queries

	6 Experimental Evaluation
	6.1 Existing Benchmark: Spider
	6.2 New Benchmark: Patients
	6.3 Microbenchmarks

	7 Related Work
	8 Conclusion & Future Work
	9 Acknowledgments
	References

