
DeepSqueeze: Deep Semantic Compression for
Tabular Data

Amir Ilkhechi Andrew Crotty Alex Galakatos
Yicong Mao Grace Fan Xiran Shi Ugur Cetintemel

Department of Computer Science, Brown University
firstname_lastname@brown.edu

ABSTRACT

With the rapid proliferation of large datasets, efficient data
compression has become more important than ever. Colum-
nar compression techniques (e.g., dictionary encoding, run-
length encoding, delta encoding) have proved highly effec-
tive for tabular data, but they typically compress individual
columns without considering potential relationships among
columns, such as functional dependencies and correlations.
Semantic compression techniques, on the other hand, are
designed to leverage such relationships to store only a subset
of the columns necessary to infer the others, but existing
approaches cannot effectively identify complex relationships
across more than a few columns at a time.

We propose DeepSqeeze, a novel semantic compression
framework that can efficiently capture these complex rela-
tionships within tabular data by using autoencoders to map
tuples to a lower-dimensional representation. DeepSqeeze
also supports guaranteed error bounds for lossy compression
of numerical data and works in conjunction with common
columnar compression formats. Our experimental evaluation
uses real-world datasets to demonstrate that DeepSqeeze
can achieve over a 4× size reduction compared to state-of-
the-art alternatives.

ACM Reference Format:

Amir Ilkhechi, Andrew Crotty, Alex Galakatos, Yicong Mao, Grace
Fan, Xiran Shi, Ugur Cetintemel. 2020. DeepSqueeze: Deep Seman-
tic Compression for Tabular Data. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data (SIG-
MOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3318464.3389734

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3389734

1 INTRODUCTION

In nearly every domain, datasets continue to grow in both
size and complexity, driven primarily by a “log everything”
mentality with the assumption that the data will be use-
ful or necessary at some time in the future. Applications
that produce these enormous datasets range from central-
ized (e.g., scientific instruments) to widely distributed (e.g.,
telemetry data from autonomous vehicles, geolocation co-
ordinates from mobile phones). In many cases, long-term
archival for such applications is crucial, whether for analysis
or compliance purposes.
For example, current Tesla vehicles have a huge number

of on-board sensors, including cameras, ultrasonic sensors,
and radar, all of which produce high-resolution readings [11].
Data from every vehicle is sent to the cloud and stored in-
definitely [30], a practice that has proved useful for a variety
of technical and legal reasons. In 2014, for instance, Tesla
patched an engine overheating issue after identifying the
problem by analyzing archived sensor readings [30].
However, the cost of data storage and transmission has

not kept pace with this trend, and effective compression al-
gorithms have become more important than ever. For tabular
data, columnar compression techniques [12] (e.g., dictionary
encoding, run-length encoding, delta encoding) can often
achieve much greater size reductions than general-purpose
tools (e.g., gzip [9], bzip2 [4]). Yet, traditional approaches that
operate on individual columns miss an important insight:
inherent relationships among columns frequently exist in
real-world datasets.
Semantic compression, therefore, attempts to leverage

these relationships in order to store the minimum number of
columns needed to accurately reconstruct all values of entire
tuples. A classic example is to retain only the zip code of a
mailing address while discarding the city and state, since the
former can be used to uniquely recover the latter two. Ex-
isting semantic compression approaches [14, 22, 25, 26, 31],
though, can only capture simple associations (e.g., functional
dependencies, pairwise correlations), thereby failing to iden-
tify complex relationships across more than a few columns at
a time. Moreover, some require extensive manual tuning [22],
while others work only for certain data types [31].

Research 19: Machine Learning Systems and Applications SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1733

https://doi.org/10.1145/3318464.3389734
https://doi.org/10.1145/3318464.3389734

To overcome these limitations, we present DeepSqeeze,
a new semantic compression framework for tabular data
that uses autoencoders to map tuples to a lower-dimensional
space. We additionally introduce several enhancements to
the basic model, as well as columnar compression techniques
that we have adapted for our approach. As we show in
our evaluation, DeepSqeeze can outperform existing ap-
proaches by over 4× on several real-world datasets.
In summary, we make the following contributions:

• We present DeepSqeeze, a new semantic compres-
sion framework that uses autoencoders to capture com-
plex relationships among both categorical and numer-
ical columns in tabular data.

• We propose several optimizations, including exten-
sions to the basic model (e.g., automatic hyperparam-
eter tuning) and columnar compression techniques
specifically tailored to our approach.

• Our experimental results show that DeepSqeeze can
outperform state-of-the-art semantic compression tech-
niques by over 4×.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on a wide range of compression
techniques, including the most closely related work. Next,
in Section 3, we present DeepSqeeze and give a high-level
overview of our approach. Then, Sections 4-6 describe each
stage of DeepSqeeze’s compression pipeline in detail. Fi-
nally, we present our experimental evaluation in Section 7
and conclude in Section 8.

2 RELATEDWORK

Compression is a well-studied problem, both in the context
of data management and in other areas. This interest has
spawned a huge variety of techniques, ranging from general-
purpose algorithms to more specialized approaches.
We note that many of these techniques are not mutually

exclusive and can often be combined. For example, many
existing semantic compression algorithms [14, 25, 26] apply
other general-purpose compression techniques to further
reduce their output size. Similarly, DeepSqeeze combines
ideas from semantic and deep compression methods, as well
as further incorporating columnar (and even some general-
purpose) compression techniques.

In the following, we give an overview of the compression
landscape and outline the key ideas behind each category.

2.1 General-Purpose Compression

General-purpose compression algorithms are oblivious to
the high-level semantics of datasets, simply operating on raw
bits. These techniques fall into two categories: (1) lossless
and (2) lossy.

2.1.1 Lossless. As the name suggests, lossless compression
is reversible, meaning that the original input can be perfectly
recovered from the compressed format. Lossless compression
algorithms typically operate by identifying and removing sta-
tistical redundancy in the input data. For example, Huffman
coding [24] replaces symbols with variable-length codes, as-
signing shorter codes to more frequent symbols such that
they require less space.
One common family of lossless compression algorithms

includes LZ77 [43], LZ78 [44], LZSS [36], and LZW [42],
among others. These approaches work in a streaming fash-
ion to replace sequences with dictionary codes built over a
sliding window.

Many hybrid algorithms exist that utilize multiple lossless
compression techniques in conjunction. For example, DE-
FLATE [20] combines Huffman coding and LZSS, whereas
Zstandard [16] uses a combination of LZ77, Finite State En-
tropy coding, and Huffman coding. A number of common
tools (e.g., gzip [9], bzip2 [4]) also implement hybrid varia-
tions of these core techniques.

2.1.2 Lossy. Unlike lossless compression, lossy compression
reduces data size by discarding nonessential information,
such as truncating the least significant digits of a measure-
ment or subsampling an image. Due to the loss of infor-
mation, the process is not reversible. While some use cases
require perfect recoverability of the input (e.g., banking trans-
actions), our work focuses on data archival scenarios that
can usually tolerate varying degrees of lossiness.
The discrete cosine transform [13] (DCT), which repre-

sents data as a sum of cosine functions, is the most widely
used lossy compression algorithm. For example, DCT is the
basis for a number of image (e.g., JPEG), audio (e.g., MP3),
and video (e.g., MPEG) compression techniques.

Another simple form of lossy compression is quantization,
which involves discretizing continuous values via rounding
or bucketing. DeepSqeeze uses a form of quantization to
enable lossy compression of numerical columns, which we
describe further in Section 4.

2.2 Columnar Compression

The advent of column-store DBMSs (e.g., C-Store[35], Ver-
tica [27]) prompted the investigation of several compression
techniques specialized for columnar storage formats, includ-
ing dictionary encoding, run-length encoding, and delta en-
coding [12, 45]. While some of these techniques attempt to
balance data size with processing overhead (i.e., lightweight
compression), our data archival use case focuses instead on
minimizing overall data size.

Parquet [2] is a popular column-oriented data storage for-
mat from the Apache Hadoop [1] ecosystem that implements
many of the most common columnar and general-purpose

Research 19: Machine Learning Systems and Applications SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1734

compression techniques. Although widely used as a stor-
age format for many big data processing frameworks (e.g.,
Apache Spark [3]), Parquet also has a standalone library,
which we integrate as part of DeepSqeeze.

2.3 Semantic Compression

Semantic compression algorithms attempt to leverage high-
level relationships in datasets. One of the first semantic com-
pression works [25] proposed an approach based on “fasci-
cles,” which represent clusters of tuples with similar column
values that can be extracted and stored only once. Similarly,
ItCompress [26] uses an iterative clustering algorithm, such
that only the differences between tuples and their respective
cluster representative must be stored.

Recent work [41] on the minimum description length [32]
(MDL) is closely related to these approaches, although with
a broader focus on pattern mining. These patterns, however,
can be used for effective compression. For example, Pack [37]
is an MDL-based compression approach that uses decision
trees to determine compact encodings.
On the other hand, Spartan [14] leverages dependencies

and correlations among columns, storing only the subset
of columns necessary to accurately infer the others. To re-
construct the discarded columns, Spartan uses models based
on classification and regression trees to predict the column
values. Similar techniques [31], which leverage data skew
with variable-length encoding, also attempt to capture cor-
relations through the use of multi-column codes or special
sort orders.
Finally, Squish [22] combines Bayesian networks with

arithmetic coding to capture a variety of columnar relation-
ships, including correlations and functional dependencies.
While the application of arithmetic coding to Bayesian net-
works has been previously explored [19], Squish extends
this approach by additionally considering numerical data
types and lossiness. However, Squish can only guarantee
near-optimality under strict conditions when the dataset: (1)
contains only categorical columns; and (2) can be efficiently
described with a Bayesian network.

2.4 Deep Compression

With the unique ability to model highly complex relation-
ships in large datasets, deep learning is a natural candidate
for compressing data. For example, convolutional neural net-
works (CNNs) have been successfully applied to the problem
of image compression [29], as well as other related problems
(e.g., denoising [40]).

Autoencoders are a type of artificial neural network that
can learn to map input data to (typically smaller) codes. As
an unsupervised learning algorithm, they have proved par-
ticularly useful for tasks like dimensionality reduction [23].

Like CNNs, autoencoders have also been used for image
compression [38, 39].
However, to the best of our knowledge, DeepSqeeze

is the first semantic compression method that applies au-
toencoders to tabular data. Importantly, DeepSqeeze can
capture complex relationships across both categorical and
numerical columns, and we incorporate lossiness for nu-
merical values into the model through user-specified error
thresholds. Additionally, we propose several optimizations
that extend the basic model and adapt columnar compression
techniques for our approach. Sections 4-6 describe these key
distinguishing features in greater detail.

3 DEEPSQUEEZE

As explained in the previous section, existing semantic com-
pression algorithms can capture only simple columnar rela-
tionships in tabular data. DeepSqeeze, on the other hand,
uses autoencoders to map tuples to a lower-dimensional
space, allowing our approach to model complex relationships
among many columns. When combined with our specialized
columnar compression techniques, DeepSqeeze can pro-
duce extremely compact compressed outputs well-suited for
long-term data archival.
In particular, we envision two usage scenarios for Deep-

Sqeeze: (1) batch archival for compressing a large static
dataset for long-term storage, such as in scientific applica-
tions; and (2) streaming archival for compressing a large
volume of messages from many clients, such as autonomous
vehicles. For the streaming case, the encoder half of the
model can even be pushed to the clients to perform compres-
sion before transmission, perhaps with periodic retraining
to account for shifts in the underlying patterns present in
the data.

In this section, we provide a high-level overview of Deep-
Sqeeze’s compression and decompression pipelines. Then,
we discuss in detail the different stages of the compression
pipeline (i.e., preprocessing, model construction, and materi-
alization) in Sections 4-6.

3.1 Compression

Figure 1 illustrates DeepSqeeze’s compression pipeline. As
input, DeepSqeeze takes a tabular dataset consisting of any
combination of categorical and numerical columns, as well
as metadata specifying the column types.
The first step (Section 4) is to preprocess this input data

into a format upon which the model can operate. Depending
on the data type, we apply a variety of well-known transfor-
mations (e.g., dictionary encoding), as well as a version of
quantization that respects the specified error threshold for
numerical columns.

Research 19: Machine Learning Systems and Applications SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1735

Preprocessing

A

Model Construction

0
1
2
3
4
5
6
7
8

B C

Materialization

+
1

2

5

Codes1

X

X
A

Failures1
B

X

C

+
0

3

6

Codes2

7

X
X
A

Failures2
B

X

C

X

4

8 +
Codes3

X

A

Failures3

X
B C

Gate

Figure 1: High-level overview of DeepSqeeze’s compression pipeline.

In the next step (Section 5), we build a type of artificial
neural network called an autoencoder, which maps the pre-
processed input data to a lower-dimensional representation.
Autoencoders are similar to other dimensionality reduc-
tion techniques, but they have the ability to learn complex
relationships—which are common in real-world datasets—
across many columns at the same time. The unsupervised
training process proceeds iteratively over the dataset until
convergence, and we have developed several optimization
techniques to improve model construction. Importantly, un-
like traditional machine learning settings, our goal is to over-
fit the model to the input data in order to minimize the size
of the compressed output.
One way of overfitting the model to the training data

is to create a complex model capable of capturing all rela-
tionships in the dataset, whereas an alternative approach
involves building multiple simpler models, called a mixture
of experts, that are specialized for certain partitions of the
data that contain similar tuples. Figure 1 shows three spe-
cialized models, and tuples are routed to models by a gate
that learns the best partitioning of the data during training.

Finally, thematerialization step (Section 6) uses the trained
autoencoder to generate the lower-dimensional representa-
tion, labeled Codes in the figure. Each of these codes rep-
resents a single tuple and is much smaller in size than the
original. We must also save the decoder half of the model
in order to reconstruct the original tuples from the codes,
as well as failure values to correct mispredictions (denoted
with an X) from our model. We propose several extensions
to existing columnar compression techniques that we have
adapted to work in conjunction with our models.

3.2 Decompression

To decompress the data, we essentially perform the inverse
of each step in the compression process. Specifically, the
decompression pipeline begins by feeding the materialized
codes to the saved decoder to reconstruct an approximate
version of the preprocessed input. Then, we compare each
reconstructed tuple to the materialized failures and replace
any errors with the correct values. After a final step of in-
verting the preprocessing, we have recovered the original
dataset, with potential lossiness in numerical columns that
respects the user-specified error thresholds.

4 PREPROCESSING

As mentioned, the first step of DeepSqeeze’s compression
pipeline is preprocessing, which converts the data to a form
appropriate for training our models. This section describes
the different preprocessing techniques that we apply to each
type of column.

4.1 Categorical Columns

Categorical columns contain distinct, unordered1 values, usu-
ally represented as a string. For columns with few distinct
values, dictionary encoding is a well-known compression
technique that involves substituting larger data types with
smaller codes. DeepSqeeze replaces each distinct value in a
categorical column with a unique integer code, which serves
two purposes: (1) already reducing the size of the input data;
and (2) converting categorical values to a numerical type
required by the model. For example, DeepSqeeze would
1We do not consider string ordering (e.g., lexicographic order) in this work.

Research 19: Machine Learning Systems and Applications SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1736

replace the values {A,B,C,D} in a column with {0, 1, 2, 3},
respectively.
On the other hand, for categorical columns with many

distinct values (e.g., unique strings, primary keys), Deep-
Sqeeze automatically excludes them from the normal com-
pression pipeline and falls back to existing compression tech-
niques. However, in particular cases when the distribution
of the values is skewed, the infrequently occurring values
can be ignored during training such that the model is only
trained on the most frequently occurring categorical val-
ues. Since reducing the number of possible output values
for categorical columns can dramatically reduce the number
of parameters in the model, the small additional overhead
associated with mispredicting infrequent values is offset by
the substantial reduction in model size.

4.2 Numerical Columns

Numerical columns can contain either integers or floating-
point values. In both cases, the first step is to perform min-
max scaling to normalize all values to the [0, 1] range, which
prepares the numerical columns for model training and re-
solves scale differences among column values.
However, many applications can tolerate some degree of

imprecision, either because they do not require exact results
(e.g., visual data exploration [17, 18, 21]), or because some
other form of noise exists in the data generation process (e.g.,
limitations of sensor hardware). Thus, we also incorporate
efficient lossy compression for numerical values by allowing
user-specified error thresholds for each column.
One way to permit lossiness is to extend the lossless ver-

sion by accepting any prediction for a value that falls within
the specified error threshold. Additionally, we must modify
the associated loss function to account for the error thresh-
old so the model does not penalize these now-correct predic-
tions. While straightforward, this approach still requires us
to model a continuous function with a much broader range
of possible inputs, and mispredictions are difficult to materi-
alize efficiently because they can have arbitrary precision.

An alternative approach is to quantize the column, which
involves replacing the values with the midpoints of disjoint
buckets calculated using the specified error threshold. For ex-
ample, consider a numerical column with values in the range
from [0, 100] and a user-specified error threshold of 10%;
our quantization approach would replace these continuous
values with the discrete bucket midpoints: {10, 30, 50, 70, 90}.
Since quantization already incorporates the error threshold
into the bucket creation, we do not need to modify the model
or loss function.
Compared to the first approach, quantization allows the

model to learn discrete mappings, which has two main bene-
fits: (1) the model can be much simpler and, consequently,

Figure 2: Autoencoder for compressing a dataset with

one categorical (C) and three numerical (N) columns.

smaller in size; and (2) discrete values are easier to predict,
resulting in fewer materialized failures. Moreover, colum-
nar compression for the materialized failures of quantized
values is much more efficient than continuous values, as de-
scribed in Section 6. In Section 7.4.1, we show the impact of
quantization on the overall performance of DeepSqeeze.

5 MODEL CONSTRUCTION

This section describes the model construction step of Deep-
Sqeeze’s compression pipeline. First, we explain the basic
architecture of our model, followed by an extension that
uses specialized models for disjoint subsets of the data. Then,
we describe our approach for model training and choosing
appropriate hyperparameters.

5.1 Basic Architecture

As mentioned, DeepSqeeze uses autoencoders to capture
complex relationships among many columns, including both
categorical and numerical data types. An autoencoder is
an artificial neural network that takes the tuples from the
dataset as input, maps them to a lower-dimensional space,
and then attempts to reconstruct the original tuples from the
lower-dimensional representation. For comparison, a simple
autoencoder with only a single hidden layer and no nonlin-
ear activation functions offers modeling capacity similar to
principal component analysis techniques for dimensional-
ity reduction. By adding more hidden layers and nonlinear
activation functions, we can begin to model increasingly
complex relationships.

Figure 2 depicts an example autoencoder for compressing
a dataset with one categorical (C) and three numerical (N)
columns. As shown, the autoencoder consists of two nearly

Research 19: Machine Learning Systems and Applications SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1737

symmetric models: (1) an encoder that maps the input tuples
to a lower-dimensional space; and (2) a decoder that attempts
to reconstruct the input tuples. The shared middle layer
represents the learned representation for each tuple, called a
code. DeepSqeeze always constructs an autoencoder with
a smaller representation layer than the original input tuples,
which serves as a bottleneck to map the data into a lower-
dimensional space. As described in Section 6.2,DeepSqeeze
stores these codes and uses the decoder to recreate tuples
during decompression.
To handle the mixed categorical and numerical columns

often present in real-world datasets, DeepSqeeze needs to
dynamically adapt the basic autoencoder architecture based
on columnar type information. Notice that the numerical
columns in Figure 2 require exactly one node each in the out-
put layer, but categorical columns require one node for each
distinct value. In the previous example, a categorical column
with possible values {A,B,C,D} requires four output nodes
(blue in the figure). The outputs for a categorical column
produce a probability distribution over the possible values, a
fact that we leverage later during the materialization step,
which we describe in Section 6.

However, one of the key problems associated with inte-
grating categorical columns is a potential explosion in model
size caused by introducing a huge number of connections in
the final fully connected layer. To address this problem, we
utilize a parameter sharing technique that involves a shared
output layer for all categorical columns rather than individ-
ual nodes for each distinct value per column. The size of the
shared output layer, then, is bounded by the maximum num-
ber of distinct values in any categorical column. We must
also add an auxiliary layer before the output layer with one
node for each categorical column, as well as an additional
signal node. The signal node simply provides the index for
each categorical column, which informs the shared layer
how to interpret the values from the auxiliary layer for a
particular output.
Figure 3 depicts the last two layers of a decoder for a

dataset with three categorical columns for both the tradi-
tional architecture (left) and our version with parameter
sharing (right). Each column has a different number of dis-
tinct values, which are color-coded. Since the dataset has
three columns, our auxiliary layer contains three nodes plus
a signal node s. The shared output layer has five nodes, which
is the largest number of distinct values across all columns.
As shown, the auxiliary layer significantly reduces the size
of the fully connected layer.

Finally, the choice of model architecture (i.e., number and
sizes of layers) is critical for achieving good performance.
While many different heuristics exist, we use two hidden
layers, each with twice as many nodes as the number of
columns in the input data. We have found empirically that

Figure 3: Parameter sharing for categorical columns.

this configuration works well for a wide variety of real-world
datasets, such as those tested in our evaluation (Section 7).
The number of nodes in the representation layer (i.e., the code
size) is a hyperparameter chosen by our tuning algorithm,
which we describe later in Section 5.4.

5.2 Mixture of Experts

One straightforward way to improve model accuracy is to
increase the size of the network, which in turn increases
learning capacity. However, a larger model does not neces-
sarily produce commensurate accuracy improvements, and
the increased size might outweigh the compression gains
achieved by higher accuracy.
Rather than creating a larger model, an alternative in-

volves building several smaller and less complex models to
handle disjoint subsets of the data. The intuition behind this
approach is that each smaller model can learn a limited set
of simpler mappings.

The obvious choice for partitioning the dataset is to apply
a well-known clustering algorithm like k-means, with the
idea that tuples grouped into the same cluster will be best
represented by the same model. Surprisingly, though, clus-
tering the data might actually end up increasing the required
model complexity.
Consider the simple example shown in Figure 4, which

compares k-means to our mixture of experts approach for six
(x ,y) pairs. Using a traditional distance measure, k-means
with two centroids would partition the dataset into the two
oval-shaped clusters that mix both classes (i.e., gold stars
and blue circles). However, note that each of the classes falls
roughly along a dotted line, suggesting that they could be
easily captured using two simple linear models. Not only are
linear models easier to train, but they can also be much more
compact and, in this case, will likely produce more accurate
predictions.

Research 19: Machine Learning Systems and Applications SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1738

Figure 4: Simple example comparing k-means and

mixture of experts.

Based on this observation, we use a sparsely gated mixture
of experts [33] that learns how to best partition the dataset
in an unsupervised fashion rather than a traditional clus-
tering algorithm. At the core of this architecture is a gate,
which is an independent model that assigns tuples to the
best-suited expert (i.e., the model with the highest accuracy
for each tuple). Therefore, the gate requires one output for
each expert.
Figure 1 represents a logical view of the gate, which as-

signs each of the input tuples to one of the three experts.
In practice, though, the input tuples are fed to all experts
concurrently, and the gate produces a mask for all but the
chosen expert’s predictions.
Similar to code size, the number of experts is a hyperpa-

rameter that must be chosen on a case-by-case basis. Using
too few experts will result in poor model accuracy, while
too many experts will needlessly increase the size of the
model with no corresponding accuracy improvement. Typi-
cally, datasets that are smaller in size or have less variability
require fewer experts, whereas larger and complex datasets
require more. We explain how our hyperparameter tuning
algorithm picks an appropriate number of experts for each
dataset in Section 5.4.

5.3 Training

DeepSqeeze uses an end-to-end training procedure inwhich
all parts of the model, including the gate and individual ex-
perts, are trained simultaneously. The training process can
operate either on the entire dataset or, if the dataset is large,
using only a simple. Since a small sample may result in mod-
els that fail to generalize well on the full dataset, we show the
impact of the chosen sample size on the overall compression
ratio in our experimental evaluation (Section 7.4.4). We also

explain how our hyperparameter tuning algorithm ensures
the use of a sufficiently large sample in Section 5.4.
For training, we repeatedly feed batches of tuples to the

model until convergence. The input side of the model takes
tuples as-is (i.e., each column requires only a single node,
irrespective of type). Recall, however, that the output side
requires a special parameter sharing configuration for cate-
gorical columns (Section 5.1), where the number of output
nodes is equal to the largest number of distinct values across
all columns. Therefore, tuples must be reassembled from this
one-hot representation after decoding.

For mispredictions, we backpropagate errors to update the
weights of the expert responsible for the mispredicted tuple.
These backpropagated errors also update the gate, which
might choose to reassign the tuple to a different expert.
Importantly, we use different types of loss functions for

categorical and numerical columns because, as previously
mentioned, their optimization objectives are different. For
categorical columns, we use either binary or softmax cross-
entropy, depending upon the number of distinct values in
the column. Numerical columns, on the other hand, have
a closeness property, and we can leverage this fact during
the final materialization step (Section 6) to store only the
differences between actual and predicted values. Therefore,
we want the model to make predictions as close as possible
to the actual value, which makes the mean squared error
(MSE) a good loss function choice for numerical columns.

5.4 Hyperparameter Tuning

One of the main drawbacks of approaches based on deep
learning is the vast number of required hyperparameters.
These hyperparameters have a significant impact on model
performance and can vary greatly across datasets. As ex-
plained throughout this section, DeepSqeeze has several
hyperparameters, including the (1) code size, (2) number of
experts, and (3) training sample size. Manual tuning of these
hyperparameters, however, is often time-consuming and can
result in suboptimal models.
Bayesian optimization [34] is an effective search method

for finding the best combination of hyperparameters from
a range of possible values. Before each trial, an acquisition
function predicts the next most promising candidate combi-
nation of hyperparameters for the algorithm to try on the
next step based on past exploration. Together with the set
of candidate values, the algorithm receives a budget that
specifies the number of calls to some expensive function that
we want to optimize. In our case, this function is the com-
pression part of DeepSqeeze, which performs the model
training and compression for the specified raw file. The goal
of our hyperparameter tuning procedure is to minimize the
overall size of the compressed output.

Research 19: Machine Learning Systems and Applications SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1739

Figure 5 shows the pseudocode forDeepSqeeze’s tune()
function, which performs the hyperparameter tuning. The
parameters include the dataset to compress (x), a list of sam-
ple sizes to try for training the model (samples), and the
tolerable error thresholds for each column (errors). For the
hyperparameters that require tuning, the function also takes
codes, which is a list of potential output code sizes (i.e.,
number of nodes in the representation layer), and experts,
which is a list of the possible number of expert models to
try. Finally, eps is a user-specified threshold for determining
when training has finished.

The tuning function begins with a for loop over the pro-
vided list of sample sizes. If the candidate sample size s
is greater than the size of the full data x, we can call the
minimize() function to perform the Bayesian optimization
of the hyperparameters and then immediately return the
trained model over the whole dataset, as well as the com-
pressed representation. Otherwise, the function proceeds
by generating a random sample x1 from the data of size s,
which is used as the input to minimize().

The first argument to minimize() is the objective func-
tion, called train(), that returns a trained model m and the
compressed representation of the sample data y1. Again, the
goal of the optimization process is to choose the hyperparam-
eter values (i.e., codes and experts) that will minimize the
compressed size. Internally, the minimize() function main-
tains a history of past results for different hyperparameter
combinations in order to guide the search toward the most
promising candidate hyperparameters.

Next, we generate an independent random sample x2 (also
of size s) that is then compressed using the previously trained
model m, and we compare the sizes of the two compressed
outputs in a final cross-validation step. More specifically, we
compute the absolute difference in the compressed output
sizes normalized by the size of the original data, which gives
us a proxy for the generalizability of the model trained with
the chosen hyperparameters. If this value is less than the
specified eps threshold, then we can expect that the model
trained on the sample will provide similar performance when
applied to the full dataset, and we can therefore return the
trained model. Otherwise, the entire for loop repeats with a
larger sample size.

As mentioned, the eps threshold is a user-specified param-
eter that trades off compressed output size with total runtime.
Smaller eps values will ensure less variance in model perfor-
mance (i.e., the model will generalize better), which usually
requires a larger sample size and, consequently, longer total
hyperparameter tuning time. On the other hand, larger eps
values will result in much faster runtimes but produce less
generalizable models.
Finally, if none of the sample sizes converge, we simply

return the model trained using the largest sample.

def tune(x, samples, error, codes, experts, eps):
#iterate over candidate sample sizes
for s in samples:
#return model trained on full data if s is too big
if s >= len(x):

return minimize(train(x, error), codes, experts)

#train on sample
x1 = sample(x, s)
m, y1 = minimize(train(x1, error), codes, experts)

#compress separate sample using trained model
x2 = sample(x, s)
y2 = m.compress(x2, error)

#return if size difference within eps
if abs(y2.size() - y1.size()) / x.size() < eps:

return m, None

#return model built on largest sample
return m, None

Figure 5: Iterative Bayesian optimization approach for

hyperparameter tuning with increasing sample size.

6 MATERIALIZATION

The final step in DeepSqeeze’s compression pipeline is to
materialize all of the components necessary for the decom-
pression process, which include the (1) decoder, (2) codes,
(3) failures, and (4) expert mappings. The total size of the
compressed output, then, is calculated as the sum of each of
these individual components. In this section, we describe the
different techniques DeepSqeeze applies to further reduce
the size of each component.

6.1 Decoder

As previously explained, an autoencoder consists of an en-
coder that converts a tuple to a compressed code and a de-
coder that reconstructs (an approximate version of) the orig-
inal tuple from that compressed code. Since the encoder is
required exclusively during the compression process, Deep-
Sqeeze only needs to store the decoder half of the model,
which involves simply exporting the weights from each of
the experts.
We apply a final gzip compression step on the exported

weights to further reduce the decoder size, although this
optimization usually provides only a small additional benefit.
Other techniques for compressing neural networks are be-
yond the scope of this work, but they could potentially yield
a significant reduction in the size of the model. However, as
our experiments demonstrate (Section 7.2), the materialized
decoder often represents a relatively small fraction of the
overall compressed output size, suggesting that optimization
effort would be better spent elsewhere (e.g., reducing the
size of materialized failures).

Research 19: Machine Learning Systems and Applications SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1740

6.2 Codes

Again, the compressed codes produced by the encoder are
lower-dimensional representations of each input tuple. Our
models produce codes with a minimum width of 64 bits (i.e.,
a double-precision floating point value), but 64 bits is of-
ten unnecessarily large. Therefore, DeepSqeeze iteratively
truncates each code until the reduction in code size no longer
pays for the corresponding increase in number of failures.
Although we could achieve further compression by using
variable-length codes, we currently only truncate codes in in-
crements of one byte for simplicity. For several of the datasets
in our experiments (Section 7), we were able to decrease the
code sizes from 64 to 16 bits, resulting in a 4× size reduction
for this component of the compressed output.
Since floating-point values are generally difficult to com-

press, a final step to convert the codes to integers after the
truncation can further reduce the size. For this optimization,
we multiply the codes by the smallest power of ten necessary
to ensure that the code with the largest number of decimals
is converted to a whole number, and then we cast the result
to an integer type. The codes can then be compressed more
effectively using standard integer compression techniques
(e.g., delta encoding).

6.3 Failures

As our experimental evaluation in Section 7 shows, the ma-
terialization of failures represents the largest portion of the
compressed output size by far. Therefore, we have adapted
several traditional columnar compression techniques to min-
imize failure size, which is much more effective than other
semantic compression approaches that apply a final round
of general-purpose compression (e.g., gzip). In particular, we
use Parquet [2] to compress the materialized failures, and
we adapt the standard columnar compression techniques in
the following ways for specific column types.

6.3.1 Categorical Columns. For categorical columns, the
model outputs a probability distribution over the possible
values. Consider again the example categorical column with
distinct values {A,B,C,D}, and suppose our model produces
the following probability distribution for a particular tu-
ple: {A=15%,B=50%,C=5%,D=30%}. One straightforward
option is to predict the value with the highest probability
(i.e., B), materializing a sentinel value for correct predictions
and the actual value for mispredictions. Since most model
predictions will hopefully be correct, the repeated sentinel
values can be efficiently compressed.

However, if we instead sorted the predictions by decreas-
ing probability, we could store the index of the prediction
that matches the correct value. In the example, the value B
would be stored as 0, D as 1, A as 3, and C as 4. Assuming
the first few predictions of the model are often correct, a

variable-length compression scheme (e.g., Huffman coding)
could significantly reduce the size.
Binary columns, which have only two possible values,

are a special case of categorical columns. Like numerical
values, binary values require only a single output node in the
model. Rather than using sentinel values to denote correct
predictions, we instead encode them as 0 and failures as
1, thereby maintaining a storage size of only a single bit
per value. When decompressing, we simply XOR the model
predictions with the materialized failures, which will flip
values of mispredictions while maintaining the values for
correct predictions. Again, while this encoding requires the
same number of bits as the original binary column, the goal
is to produce long runs of either 0 or 1 values that can then
be effectively compressed, using simple run-length encoding
or even more advanced techniques [15, 28], when the model
makes many correct (or systematically incorrect) predictions.

For example, consider a binary column with eight alternat-
ing values: [1, 0, 1, 0, 1, 0, 1, 0]. Suppose the model correctly
predicts the first five values and mispredicts the final three,
in which case our materialization strategy would produce
the following output: [0, 0, 0, 0, 0, 1, 1, 1]. Compared to the
original alternating values, these long runs are much easier
for columnar techniques to compress.
Finally, while some semantic compression approaches

(e.g., Spartan [14]) support lossy compression for categori-
cal columns by permitting a bounded number of incorrect
values in the decompressed output, DeepSqeeze currently
only allows lossiness for numerical columns.

6.3.2 Numerical Columns. Unlike categorical columns, nu-
merical columns typically have a much wider range of dis-
tinct values. Additionally, the values are ordered, such that
some predictions are closer to the actual values than others.
DeepSqeeze leverages the ordered nature of numerical

values by storing the difference between the predicted and
actual values. For correct predictions, DeepSqeeze will
store the value 0, which reflects the fact that the predic-
tion matches the actual value. Again, the intuition is that
the predicted values will be close to the actual values, which
should significantly reduce the range of values that need
to be stored. This approach can even handle systematic er-
rors (e.g., model predictions that are frequently below the
actual value by a fixed amount), since the results will still be
amenable to columnar compression techniques.

6.4 Expert Mapping

For models with a single expert, we use a single decoder to
decompress all tuples. However, for models with multiple
experts, we also need to materialize the metadata that maps
codes to the correct decoder.

Research 19: Machine Learning Systems and Applications SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1741

We consider two ways of storing these mappings. The
first approach is depicted in Figure 1, where the codes and
failures are grouped by expert and stored along with their
original indexes. These indexes tell DeepSqeeze the order
in which to reconstruct the original file, and they can often
be compressed efficiently via delta encoding. The second ap-
proach involves storing all tuples together with an additional
expert assignment label for each tuple, which DeepSqeeze
can then use to select the correct decoder. Similar to storing
indexes, these labels can usually be efficiently compressed
using run-length encoding. The choice between these two
alternatives is data-dependent and must therefore be made
on a case-by-case basis.
In some cases, however, maintaining the exact order of

tuples in the original dataset is unnecessary, such as for
relational tables. Thus, we can save additional space by using
the first approach, which stores tuples grouped by expert,
without materializing the indexes.

7 EVALUATION

This section presents our experimental evaluation, which
uses several real-world datasets. We compare DeepSqeeze
against the state-of-the-art semantic compression frame-
work, Squish [22], in terms of both compression performance
and overall runtime. We also include results for gzip [9] and
Parquet [2], which perform lossless compression, as addi-
tional baselines.
In Section 7.1, we first describe the experimental setup

and tested datasets. Then, in Section 7.2, we compare the
compression ratio for DeepSqeeze to gzip, Parquet, and
Squish using the tested datasets for various error thresholds.
Section 7.3 measures the runtime of DeepSqeeze relative
to the other approaches. Finally, Section 7.4 presents mi-
crobenchmarks that show a baseline comparison and break-
down of our optimizations, as well as a detailed analysis of
the proposed mixture of experts, hyperparameter tuning,
and sampling techniques.

7.1 Setup

Since the key advantage of DeepSqeeze is the ability to
capture complex relationships among columns, we conduct
our evaluation using five real-world datasets, summarized in
Table 1. The Corel and Forest datasets have been used in the
evaluation of prior semantic compression work [14, 22, 26],
so we include them as a direct comparison point despite
their small size. To evaluate DeepSqeeze’s performance
on larger datasets, we also include three additional datasets:
Census, Monitor, and Criteo. We conducted all experiments
on a machine with two Intel Xeon E5-2660 v2 CPUs (2.2GHz,
10 cores, 25MB cache) and 256GB RAM.

Dataset

Size Columns

Raw Tuples Categorical Numerical
Corel [6] 20MB 68K - 32
Forest [7] 76MB 581K 45 10
Census [5] 339MB 2.5M 68 -
Monitor [10] 3.3GB 23.4M - 17
Criteo [8] 277GB 946M 27 13

Table 1: Summary of evaluation datasets.

7.2 Compression Ratio

Given our data archival use case, the primary performance
metric that we consider in this work is compression ratio,
which is defined as the size of the compressed output divided
by the size of the original dataset. We show the results for the
five real-world datasets in Figure 6, with compression ratio
expressed as a percentage (smaller is better); for example, a
compression ratio of 50% means that the compressed output
is half the size of the original dataset.

First, as a baseline, Figure 6a shows the compression ratios
on each dataset for two lossless compression algorithms:
gzip and Parquet. Overall, we see that Parquet generally
outperforms gzip on all datasets, ranging from 5% (Corel) up
to as much as 37% (Forest).
The remainder of the plots in Figure 6 compare Deep-

Sqeeze’s compression ratio to Squish, the state-of-the art
semantic compressor. For consistency with prior semantic
compression work [14, 22, 26], we report results for the fol-
lowing error thresholds: 0.5%, 1%, 5%, and 10%. As mentioned,
the same Corel and Forest datasets were also used in the
evaluation of these prior works. Note that, since we use a
version of the Census dataset where all numerical columns
have been prequantized, Figure 6d contains only a 0% error
threshold because neither DeepSqeeze nor Squish permits
lossiness for categorical columns. Moreover, this version of
Census allows us to test DeepSqeeze on a dataset with
purely categorical columns.

Since Squish strongly dominates other semantic compres-
sion algorithms (e.g., Spartan [14], ItCompress [26]), we com-
pare only against Squish. In Figure 6, we break down each of
the bars for DeepSqeeze into three parts that represent the
sizes of the (1) failures and expert mappings, (2) compressed
codes, (3) and decoder half of the model.
Overall, we see that DeepSqeeze outperforms Squish

across all datasets and error thresholds. In general, for larger
error thresholds, DeepSqeeze’s models can be simpler and
less accurate, leading to fewer failures and a much smaller
compression ratio.

For Corel (Figure 6b), DeepSqeeze uses around 25% less
space than Squish for an error threshold of 10%. In the same
dataset, for an error threshold of 0.5%, the compression ratios

Research 19: Machine Learning Systems and Applications SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1742

gzip Parquet Squish DS Failures DS Codes DS Decoder

Corel Forest Census Monitor Criteo
Dataset

0

5

10

15

20

25

30

Co
m

pr
es

si
on

 R
at

io
 (

%
)

(a) gzip & Parquet

0.5 1 5 10
Error Threshold (%)

0

1

2

3

4

5

6

Co
m

pr
es

si
on

 R
at

io
 (

%
)

(b) Corel

0.5 1 5 10
Error Threshold (%)

0

1

2

3

4

5

6

7

Co
m

pr
es

si
on

 R
at

io
 (

%
)

(c) Forest

0.0
Error Threshold (%)

0

2

4

6

8

10

12

Co
m

pr
es

si
on

 R
at

io
 (

%
)

(d) Census

0.5 1 5 10
Error Threshold (%)

0

2

4

6

8

10

12

14

Co
m

pr
es

si
on

 R
at

io
 (

%
)

(e) Monitor

0.5 1 5 10
Error Threshold (%)

0

2

4

6

8

10

12

14

Co
m

pr
es

si
on

 R
at

io
 (

%
)

(f) Criteo

Figure 6: Compression ratios for datasets summarized in Table 1.

achieved by the two methods are much closer. The results for
the Forest dataset (Figure 6c) show an even greater improve-
ment, with DeepSqeeze outperforming Squish by more
than 4×. In terms of dataset characteristics, Census is highly
dimensional with low sparsity, whereas Forest is also highly
dimensional but with high sparsity. This demonstrates Deep-
Sqeeze’s ability to capture complex relationships across
many columns.

For the other three datasets, the size reductions achieved
by DeepSqeeze are also significant. In Census (Figure 6d),
we see that DeepSqeeze offers a 34% improvement over
Squish. Similarly, for Monitor (which contains only numeri-
cal values), DeepSqeeze outperforms Squish by around 44%
with an error threshold of 0.5%, and by more than 63% for an
error threshold of 10%. Lastly, for Criteo, we see that Deep-
Sqeeze can still outperform Squish by up to almost 33%,
which shows that our techniques can scale to significantly
larger datasets.

7.3 Runtime

Although compression ratio is the primary concern for long-
term data archival, a reasonable overall runtime is also an
important factor. In the following, we compare the runtimes
for each approach on the same five datasets with a fixed

error threshold of 10%, with results broken down into the
time spent on hyperparameter tuning (HT), compression (C),
and decompression (D). Table 2 shows the results.
As described in Section 5.4, DeepSqeeze automatically

determines appropriate hyperparameters for a given dataset
using Bayesian optimization with increasing sample sizes. In
Table 2, we see that DeepSqeeze takes between 15 seconds
on the smallest dataset (Corel) to just over 1 hour on the
largest dataset (Criteo) for hyperparameter tuning. For Mon-
itor and Criteo, our iterative tuning algorithm terminates
with a 10% and 0.01% sample, respectively, but uses the full
dataset in all other cases.
On all datasets, our hyperparameter tuning process is al-

ways on par with or significantly faster than Squish. Also
note that the user has complete control over the amount of
time that DeepSqeeze spends on hyperparameter tuning,
offering the ability to trade off runtime with the overall com-
pression ratio. Moreover, for the streaming usage scenario
(Section 3), the cost of hyperparameter tuning is incurred
only once up front.

Similarly,DeepSqeeze also offers reasonable runtime per-
formance for both compression and decompression. Deep-
Sqeeze and Squish generally take longer than the other
approaches during compression due to the expensive model

Research 19: Machine Learning Systems and Applications SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1743

Algorithm

Corel Forest Census Monitor Criteo

HT C D HT C D HT C D HT C D HT C D
gzip - 2 1 - 3 1 - 15 2 - 138 16 - 6,325 618

Parquet - 3 2 - 21 4 - 113 16 - 296 183 - 7,737 6,392
Squish 15 78 12 128 196 45 6,500 388 322 8,000 954 928 64,800 144,426 140,604

DeepSqeeze 15 6 6 115 12 19 485 128 181 480 487 561 4,307 6,629 13,246
Table 2: Runtimes in seconds for hyperparameter tuning (HT), compression (C), and decompression (D).

Corel Forest Census Monitor Criteo
Dataset

0

2

4

6

8

10

12

14

16

18

Co
m

pr
es

si
on

 R
at

io
 (

%
) Single layer + linear activation

No quantization
Single expert
DeepSqueeze

Figure 7: Comparison of different optimizations.

training step. As shown, DeepSqeeze’s compression run-
times are reasonably close to that of both gzip and Par-
quet (within 2×) and, in some cases, even faster (Forest and
Criteo). While this result might seem surprising because
DeepSqeeze uses Parquet internally to materialize failures,
the failures produced by our approach are often easier for
Parquet to compress than the original data, since the model
will usually correctly predict the output values.

Interestingly, we see that DeepSqeeze is generally faster
at compression than decompression, likely due to the fact
that our current implementation does not pipeline the tuple
reconstruction with writing the output to a file. We plan to
implement this optimization in the future.

7.4 Microbenchmarks

This section includes microbenchmarks that evaluate the
behavior of DeepSqeeze under different settings. First, we
present results that show how DeepSqeeze compares to a
simple baseline, as well as the impact of each of our proposed
optimizations. Then, we evaluate our mixture of experts ap-
proach and hyperparameter tuning algorithm. Unless stated
otherwise, all microbenchmarks were conducted with a 10%
error threshold.

7.4.1 Optimization Comparison. In order to measure the
overall benefits of our proposed techniques, we show the
impact of each optimization on all tested datasets in Figure 7,

including the quantization of numerical columns and our
mixture of experts approach. We compare these techniques
against a simple baseline model with only a single layer and
linear activations.

As shown, the baselinemodel performs significantly worse
than DeepSqeeze for all datasets due to limited learning
capacity. Similarly, without quantization, the compressed
output is considerably larger for all datasets except Census,
which has no numerical columns. Finally, we see that using
multiple experts helps for the larger datasets like Monitor
and Criteo, while the impact is not noticeable on the smaller
Corel and Forest datasets.

7.4.2 Mixture of Experts. As explained in Section 5, cluster-
ing algorithms are a straightforward way of partitioning the
data in order to build a set of specialized individual models.
Most of these algorithms, however, cluster tuples based on
distance measurements rather than statistical or distribu-
tional properties. On the other hand, our mixture of experts
approach learns to explicitly partition the dataset during the
training process.

Figure 8 compares the mixture of experts to k-means for a
varying number of clusters/experts for the Monitor dataset.
Overall, the mixture of experts approach outperforms k-
means across the board. For the largest error threshold (Fig-
ure 8d), we see that the lowest compression ratio with no par-
titioning is around 3.8%. As the number of partitions grows
to four, the compression ratio gradually decreases to around
3.1% for the mixture of experts, representing a roughly 18%
improvement. On the other hand, the compression ratio ac-
tually increases when using k-means, since adding each new
model introduces additional storage overhead without im-
proving accuracy. The other error thresholds (Figures 8a-8c)
exhibit similar trends.

7.4.3 Hyperparameter Tuning. As explained in Section 5,
DeepSqeeze’s compression model has two main hyperpa-
rameters: (1) code size and (2) number of experts. Figure 9
illustrates the number of trials required for the hyperparam-
eter tuning algorithm to converge on each dataset.

Each dataset converges to a different set of hyperparame-
ters. For example, Corel requires a single expert and code size
of one, whereas Forest also uses one expert with a code size of

Research 19: Machine Learning Systems and Applications SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1744

k-means Experts

1 2 3 4 5 6 7 8 9 10
Clusters/Experts

7.5

8.0

8.5

9.0

9.5

Co
m

pr
es

si
on

 R
at

io
 (

%
)

(a) 0.5%

1 2 3 4 5 6 7 8 9 10
Clusters/Experts

6.5

7.0

7.5

8.0

Co
m

pr
es

si
on

 R
at

io
 (

%
)

(b) 1%

1 2 3 4 5 6 7 8 9 10
Clusters/Experts

6.0

6.5

7.0

Co
m

pr
es

si
on

 R
at

io
 (

%
)

(c) 5%

1 2 3 4 5 6 7 8 9 10
Clusters/Experts

3.0

3.5

4.0

4.5

Co
m

pr
es

si
on

 R
at

io
 (

%
)

(d) 10%

Figure 8: Compression ratios for k-means and mixture of experts with different error thresholds (Monitor).

0 4 8 12
Trials

0.75

1.00

1.25

1.50

1.75

Co
m

pr
es

si
on

 R
at

io
 (

%
)

(a) Corel

0 2 4 6 8
Trials

0.60

0.65

0.70

0.75

0.80

Co
m

pr
es

si
on

 R
at

io
 (

%
)

(b) Forest

0 4 8 12
Trials

7.0
7.5
8.0
8.5
9.0
9.5

Co
m

pr
es

si
on

 R
at

io
 (

%
)

(c) Census

0 2 4 6 8
Trials

3.00

3.25

3.50

3.75

4.00

Co
m

pr
es

si
on

 R
at

io
 (

%
)

(d) Monitor

0 4 8 12 16
Trials

5.5

6.5

7.5

8.5

9.5

Co
m

pr
es

si
on

 R
at

io
 (

%
)

(e) Criteo

Figure 9: Convergence plots for hyperparameter tuning algorithm.

0 20 40 60 80 100
Sample Size (%)

3.0

3.2

3.4

3.6

3.8

4.0

Co
m

pr
es

si
on

 R
at

io
 (

%
)

Figure 10: Sensitivity to sample size (Monitor).

two. DeepSqeeze utilizes only a single expert for these files
because of their small size, since adding an additional expert
increases compressed output size with no improvement in
accuracy. For the larger Census, Monitor, and Criteo datasets,
our algorithm converges to two, two, and nine experts, with
code sizes of two, four, and four, respectively.

7.4.4 Sample Size. For large datasets, DeepSqeeze can use
a sample of the data to train the models in order to reduce
the overall runtime of the hyperparameter tuning and com-
pression phases. In many cases, training over a sample can
offer large performance advantages with minimal loss in

generality. However, models that are trained using a small
or non-representative sample might not generalize well to
the entire dataset, therefore resulting in poor compression
performance.
Figure 10 shows the compression ratios for training the

model on various sample sizes of the Monitor dataset with
an error threshold of 10%. As shown, models trained using
sample sizes of less than around 10% are not robust enough
to generalize, leading to poor compression ratios. On the
other hand, models built using larger sample sizes offer little
additional benefit but take significantly longer to train.

8 CONCLUSION

This paper presented DeepSqeeze, a deep semantic com-
pression framework for tabular data. Unlike existing ap-
proaches, DeepSqeeze can capture complex relationships
among columns through the use of autoencoders. In addi-
tion to the basic model, we outlined several optimizations,
including automatic hyperparameter tuning and efficient
materialization strategies for mispredicted values. Overall,
we observed over a 4× reduction in compressed output size
compared to state-of-the-art alternatives.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and shep-
herd for their helpful feedback. This work was funded in
part by NSF IIS-1526639 and IIS-1514491.

Research 19: Machine Learning Systems and Applications SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1745

REFERENCES

[1] [n. d.]. Apache Hadoop. https://hadoop.apache.org/. ([n. d.]).
[2] [n. d.]. Apache Parquet. https://parquet.apache.org/. ([n. d.]).
[3] [n. d.]. Apache Spark. https://spark.apache.org/. ([n. d.]).
[4] [n. d.]. bzip2. http://sourceware.org/bzip2/. ([n. d.]).
[5] [n. d.]. Census. http://archive.ics.uci.edu/ml/datasets/US+Census+

Data+(1990). ([n. d.]).
[6] [n. d.]. Corel. http://archive.ics.uci.edu/ml/datasets/Corel+Image+

Features. ([n. d.]).
[7] [n. d.]. Covtype. http://archive.ics.uci.edu/ml/datasets/covertype. ([n.

d.]).
[8] [n. d.]. Criteo. http://labs.criteo.com/2013/12/conversion-logs-dataset/.

([n. d.]).
[9] [n. d.]. gzip. https://www.gnu.org/software/gzip/. ([n. d.]).
[10] [n. d.]. Monitor. https://github.com/crottyan/mgbench. ([n. d.]).
[11] [n. d.]. Tesla Autopilot. https://www.tesla.com/autopilot. ([n. d.]).
[12] Daniel J. Abadi, Samuel Madden, andMiguel Ferreira. 2006. Integrating

compression and execution in column-oriented database systems. In
SIGMOD. 671–682.

[13] N. Ahmed, T. Natarajan, and K. R. Rao. 1974. Discrete Cosine Trans-
form. IEEE Trans. Computers 23, 1 (1974), 90–93.

[14] Shivnath Babu, Minos N. Garofalakis, and Rajeev Rastogi. 2001. SPAR-
TAN: A Model-Based Semantic Compression System for Massive Data
Tables. In SIGMOD. 283–294.

[15] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. 2014.
Better bitmap performance with Roaring bitmaps. CoRR abs/1402.6407
(2014).

[16] Yann Collet and Murray S. Kucherawy. 2018. Zstandard Compression
and the application/zstd Media Type. RFC 8478 (2018), 1–54.

[17] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig,
and Tim Kraska. 2015. Vizdom: Interactive Analytics through Pen and
Touch. PVLDB 8, 12 (2015), 2024–2027.

[18] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig,
and Tim Kraska. 2016. The case for interactive data exploration accel-
erators (IDEAs). In HILDA@SIGMOD.

[19] Scott Davies and Andrew W. Moore. 1999. Bayesian Networks for
Lossless Dataset Compression. In SIGKDD. 387–391.

[20] Peter Deutsch. 1996. DEFLATE Compressed Data Format Specification
version 1.3. RFC 1951 (1996), 1–17.

[21] Alex Galakatos, Andrew Crotty, Emanuel Zgraggen, Carsten Binnig,
and Tim Kraska. 2017. Revisiting Reuse for Approximate Query Pro-
cessing. PVLDB 10, 10 (2017), 1142–1153.

[22] Yihan Gao and Aditya G. Parameswaran. 2016. Squish: Near-Optimal
Compression for Archival of Relational Datasets. In SIGKDD. 1575–
1584.

[23] Geoffrey E. Hinton and Ruslan Salakhutdinov. 2006. Reducing the
Dimensionality of Data with Neural Networks. Science 313, 5786 (2006),
504–507.

[24] David A. Huffman. 1952. A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the IRE 40, 9 (1952), 1098–1101.

[25] H. V. Jagadish, J. Madar, and Raymond T. Ng. 1999. Semantic Com-
pression and Pattern Extraction with Fascicles. In VLDB. 186–198.

[26] H. V. Jagadish, Raymond T. Ng, Beng Chin Ooi, and Anthony K. H.
Tung. 2004. ItCompress: An Iterative Semantic Compression Algo-
rithm. In ICDE. 646–657.

[27] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben
Vandier, Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic
Database: C-Store 7 Years Later. PVLDB 5, 12 (2012), 1790–1801.

[28] Daniel Lemire, Owen Kaser, Nathan Kurz, Luca Deri, Chris O’Hara,
François Saint-Jacques, and Gregory Ssi Yan Kai. 2017. Roaring
Bitmaps: Implementation of an Optimized Software Library. CoRR

abs/1709.07821 (2017).
[29] Mu Li, Wangmeng Zuo, Shuhang Gu, Debin Zhao, and David Zhang.

2018. Learning Convolutional Networks for Content-Weighted Image
Compression. In CVPR. 3214–3223.

[30] Bernard Marr. 2018. The Amazing Ways Tesla Is Using Artificial Intel-
ligence And Big Data. https://www.forbes.com/sites/bernardmarr/
2018/01/08/the-amazing-ways-tesla-is-using-artificial-intelligence-
and-big-data/. (2018).

[31] Vijayshankar Raman and Garret Swart. 2006. How to Wring a Table
Dry: Entropy Compression of Relations and Querying of Compressed
Relations. In VLDB. 858–869.

[32] Jorma Rissanen. 1978. Modeling by shortest data description. Autom.
14, 5 (1978), 465–471.

[33] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis,
Quoc V. Le, Geoffrey E. Hinton, and Jeff Dean. 2017. Outrageously
Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer.
In ICLR.

[34] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical
Bayesian Optimization ofMachine Learning Algorithms. InNIPS. 2960–
2968.

[35] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen,
Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel
Madden, Elizabeth J. O’Neil, Patrick E. O’Neil, Alex Rasin, Nga Tran,
and Stanley B. Zdonik. 2005. C-Store: A Column-oriented DBMS. In
VLDB. 553–564.

[36] James A. Storer and Thomas G. Szymanski. 1982. Data compression
via textual substitution. J. ACM 29, 4 (1982), 928–951.

[37] Nikolaj Tatti and Jilles Vreeken. 2008. Finding Good Itemsets by
Packing Data. In ICDM. 588–597.

[38] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár.
2017. Lossy Image Compression with Compressive Autoencoders. In
ICLR.

[39] George Toderici, Sean M. O’Malley, Sung Jin Hwang, Damien Vincent,
David Minnen, Shumeet Baluja, Michele Covell, and Rahul Sukthankar.
2016. Variable Rate Image Compression with Recurrent Neural Net-
works. In ICLR.

[40] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. 2018. Deep
Image Prior. In CVPR. 9446–9454.

[41] Jilles Vreeken. 2009. Making Pattern Mining Useful. Ph.D. Dissertation.
Utrecht University, Netherlands.

[42] Terry A. Welch. 1984. A Technique for High-Performance Data Com-
pression. IEEE Computer 17, 6 (1984), 8–19.

[43] Jacob Ziv and Abraham Lempel. 1977. A universal algorithm for
sequential data compression. IEEE Trans. Inf. Theory 23, 3 (1977),
337–343.

[44] Jacob Ziv and Abraham Lempel. 1978. Compression of individual
sequences via variable-rate coding. IEEE Trans. Inf. Theory 24, 5 (1978),
530–536.

[45] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter A. Boncz. 2006.
Super-Scalar RAM-CPU Cache Compression. In ICDE. 59.

Research 19: Machine Learning Systems and Applications SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1746

https://hadoop.apache.org/
https://parquet.apache.org/
https://spark.apache.org/
http://sourceware.org/bzip2/
http://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
http://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
http://archive.ics.uci.edu/ml/datasets/covertype
http://labs.criteo.com/2013/12/conversion-logs-dataset/
https://www.gnu.org/software/gzip/
https://github.com/crottyan/mgbench
https://www.tesla.com/autopilot
https://www.forbes.com/sites/bernardmarr/2018/01/08/the-amazing-ways-tesla-is-using-artificial-intelligence-and-big-data/
https://www.forbes.com/sites/bernardmarr/2018/01/08/the-amazing-ways-tesla-is-using-artificial-intelligence-and-big-data/
https://www.forbes.com/sites/bernardmarr/2018/01/08/the-amazing-ways-tesla-is-using-artificial-intelligence-and-big-data/

	Abstract
	1 Introduction
	2 Related Work
	2.1 General-Purpose Compression
	2.2 Columnar Compression
	2.3 Semantic Compression
	2.4 Deep Compression

	3 DeepSqueeze
	3.1 Compression
	3.2 Decompression

	4 Preprocessing
	4.1 Categorical Columns
	4.2 Numerical Columns

	5 Model Construction
	5.1 Basic Architecture
	5.2 Mixture of Experts
	5.3 Training
	5.4 Hyperparameter Tuning

	6 Materialization
	6.1 Decoder
	6.2 Codes
	6.3 Failures
	6.4 Expert Mapping

	7 Evaluation
	7.1 Setup
	7.2 Compression Ratio
	7.3 Runtime
	7.4 Microbenchmarks

	8 Conclusion
	References

