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Abstract—Research projects will often use the latest hardware
to achieve orders-of-magnitude performance improvements while
ignoring the (usually hefty) associated price tag. Real-world
deployments typically follow suit, requiring expensive computing
infrastructures that cost even more to power and cool.

In this paper, we challenge the conventional wisdom that
high-end hardware is absolutely necessary for state-of-the-art
performance and instead advocate for a radically different
approach based on cheap single-board computers (SBCs). While
others have previously explored similar ideas for computationally
simple and easily partitionable use cases (e.g., key-value stores),
so-called “wimpy” nodes have traditionally been rejected as
unsuitable for more complex workloads. We believe, however, that
recent hardware advancements driven by the mobile computing
market call this orthodoxy into question. For example, our
microbenchmarks show that one popular SBC, the Raspberry Pi
3B+, offers single-core compute performance that is surprisingly
competitive with many server-grade Intel Xeon and ARM-based
CPUs at a fraction of the cost and energy consumption.

To make our case, we conducted an extensive experimental
study, beginning with a series of microbenchmarks to identify the
strengths and weaknesses of SBCs relative to server-grade CPUs.
Then, to evaluate the ability of SBCs to handle more complex
use cases, we analyzed the performance of an in-memory OLAP
workload in both single-node and distributed settings. Overall,
our results demonstrate up to several orders of magnitude in
cost reductions coupled with substantial energy savings when
compared to traditional on-premises and cloud deployments, all
without a significant increase in absolute runtimes.

I. INTRODUCTION

Modern data analytics frameworks traditionally favor high-
end hardware, with deployments typically ranging from a
single machine to small clusters [1], [2]. For example, Amazon
EC2 [3] offers the X1 instance type, which is optimized
for “in-memory databases and big data processing engines.”
These X1 instances include up to four Intel Xeon E7-8880 v3
CPUs [4]—each costing almost $6,000—as well as up to 2 TB
of memory and nearly 4 TB of local SSD storage. Other
cloud providers, including Google Cloud [5] and Microsoft
Azure [6], have similar configurations available.

On the other end of the spectrum are inexpensive single-
board computers (SBCs), which integrate all hardware com-
ponents necessary for a full-fledged computer into a single
circuit board. For example, the SBC shown in Figure 1 is the
Raspberry Pi 3B+ [7], which costs only $35 despite boasting
a quad-core processor, 1 GB of memory, and a variety of
ports for peripheral devices (e.g., USB, microSD, HDMI). In
recent years, SBCs have become increasingly commonplace
for certain data management use cases, most notably sensor
networks and edge processing [8], [9], [10], [11], [12].

Fig. 1: Raspberry Pi 3B+

At the same time, the ubiquity of mobile devices has led
to staggering hardware advancements that have also benefited
SBCs, since they share many of the same components [13],
[14]. While older Raspberry Pi models, for instance, had only
weak single-core CPUs, current versions include powerful
multi-core CPUs with advanced features (e.g., superscalar pro-
cessing, out-of-order execution). Surprisingly, our microbench-
marks even show that the single-core compute performance of
a Raspberry Pi 3B+ is competitive with many server-grade
Intel Xeon and ARM-based CPUs.

SBCs also consume substantially less energy than traditional
servers. For example, at peak CPU utilization, a Raspberry
Pi 3B+ draws at most 5.1 watts, whereas server-grade CPUs
typically draw hundreds of watts under normal load [14]. This
estimate does not even include other essential components
(e.g., memory, persistent storage), which can often represent
the majority of a server’s total power draw [15], [16], [17],
[18], nor does it consider the operational electricity costs,
which typically eclipse the cost of the initial hardware pur-
chase [19]. Moreover, as a consequence of their low energy
requirements, SBCs produce significantly less heat, thereby
eliminating the need for special cooling equipment.

Based on these observations, we believe that SBCs have
actually become a viable alternative to traditional servers.
Unlike past work that focuses on computationally simple and
easily parallelizable use cases (e.g., key-value stores [20],
web servers [21], search engines [22]), we demonstrate that
SBCs are indeed capable of handling complex workloads
like in-memory OLAP, and our results open the door for
exploring the feasibility of running other computationally
intensive workloads (e.g., machine learning).
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This paper makes the case that SBCs can provide signif-
icantly more “bang for the buck” in the context of these
more complex workloads, especially for use cases that are
not latency-sensitive (e.g., batch processing). Through an
extensive experimental study, we show that SBCs can achieve
competitive in-memory OLAP performance while simultane-
ously offering two major advantages over traditional servers:
(1) lower cost and (2) reduced energy consumption. In fact, our
results directly contradict past studies [23], [21] that dismiss
SBCs as unsuitable for computationally intensive workloads.

In summary, we make the following contributions:
• Using a series of microbenchmarks, we identify the

strengths and weaknesses of a popular SBC, the Rasp-
berry Pi 3B+, relative to a wide range of server-grade
Intel Xeon and ARM-based CPUs.

• We conduct TPC-H benchmarks for all comparison
points, evaluating the Raspberry Pi 3B+ in both a single-
node and distributed setting. As part of our study, we also
built WIMPI, a cluster of Raspberry Pi 3B+ nodes that
allows us to test different cluster sizes.

• Based on these results, we provide a detailed cost and
energy consumption analysis, and we show that a cluster
of SBCs can offer substantial benefits in both dimensions
while achieving competitive absolute runtimes.

The remainder of this paper is organized as follows. Sec-
tion II presents the setup and results of our experimental study.
Then, in Section III, we analyze these results in terms of
both cost and energy consumption, as well as highlight other
important considerations for complex workloads on SBCs.
Finally, we discuss related work in Section IV and summarize
our findings in Section V.

II. EXPERIMENTAL STUDY

This section presents our experimental study, which com-
pares a popular SBC, the Raspberry Pi 3B+, to a variety
of server-grade Intel Xeon and ARM-based CPUs. We first
provide an overview of the tested hardware and describe our
prototype WIMPI cluster, followed by a detailed discussion of
the results obtained from our benchmarks.

A. Tested Hardware

We begin with a brief overview of the hardware specifica-
tions for each of the comparison points in our study, which are
summarized in Table I. For simplicity, we focus only on the
characteristics of the CPUs, since they have the largest impact
on in-memory OLAP performance. Other necessary hardware
components (e.g., persistent storage) can vary greatly and have
virtually no performance implications for our target use case,
so we do not consider them in this study.

1) On-Premises: Our research group operates two tradi-
tional servers, denoted in the table as the On-Premises group.
The first server (op-e5) has an Intel Xeon E5-2660 v2
CPU [24], which is on the lower end of our comparison points,
while the second (op-gold) has a more recently released
Intel Xeon Gold 6150 CPU [25].

Since these two CPUs were developed for the retail market,
Intel makes detailed product specifications publicly available.
In particular, we focus on the manufacturer’s suggested retail
price (MSRP), which is the list price recommended by Intel
for retail sellers, and the thermal design power (TDP), which
refers to the average power dissipation for CPUs operating at
base frequency under a heavy workload. We use this informa-
tion for the cost and energy analyses presented in Section III.
Other important CPU characteristics include clock frequency,
number of cores, and size of the last level cache (LLC), all
of which can have a substantial impact on performance for an
in-memory OLAP workload.

Note that we chose not to include estimated hourly operating
costs for the On-Premises group, which we could calculate
as the total power consumption of all hardware components
multiplied by the kilowatt-hour energy price. We felt that this
metric would unfairly disadvantage these servers, since they
were built for general-purpose use prior to our study and do
not necessarily have the most energy-efficient components. For
this same reason, our energy comparisons (Section III-B) for
the servers conservatively use only the TDP of the CPU.

2) Cloud: To expand the range of tested hardware, we also
included seven different instance types from Amazon EC2,
labeled as the Cloud group in the table. Five instance types
had Intel Xeon CPUs, with the first three (c4.8xlarge,
m4.10xlarge, m4.16xlarge) from the E5 family and the
other two (z1d.metal, m5.metal) from the newer Plat-
inum family. The remaining two instance types (a1.metal,
c6g.metal) had custom ARM-based CPUs built by AWS.
Specifically, the a1.metal instance uses the first-generation
Graviton, which has four 2.3 GHz quad-core ARM Cortex-
A72 CPUs, whereas the c6g.metal instance has the newer
Graviton2, which is based on the ARM Neoverse N1 microar-
chitecture and has a total of 64 cores on a single socket.

Although Amazon EC2 offers many options, we chose
these specific instance types because they are guaranteed (or
highly likely) to be backed by a single physical processor
rather than sharing resources with other users in a virtualized
environment, thereby enabling more accurate performance
measurements. However, since all of these CPUs are custom
SKUs for Amazon EC2, the MSRP and TDP are not publicly
available. Therefore, for the Cloud group, we include only
the hourly price [26] charged by Amazon EC2, which ranges
from $0.408 for the a1.metal instance to $4.608 for the
m5.metal instance.

3) SBC: The Raspberry Pi is one of the most popular
series of SBCs, with use cases ranging from small hobby
projects to industrial IoT applications. Due to the lightweight
requirements for most of these use cases, Raspberry Pis were
designed to have a small form factor and power-conscious
hardware at a very low price point. These characteristics,
though, might give the false impression that currently available
Raspberry Pi models share the same weak performance of
wimpy nodes explored in previous studies. On the contrary,
SBCs have recently benefited greatly from rapid hardware
advancements in the mobile device market, and we believe
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Category Name CPU Frequency Cores LLC MSRP Hourly TDP

On-Premises op-e5 Intel Xeon E5-2660 v2 2.2 GHz 10 25 MB $1,389 - 95 W
op-gold Intel Xeon Gold 6150 2.7 GHz 18 24.75 MB $3,358 - 165 W

Cloud

c4.8xlarge Intel Xeon E5-2666 v3 2.9 GHz 9 25 MB - $1.591 -
m4.10xlarge Intel Xeon E5-2676 v3 2.4 GHz 10 30 MB - $2.00 -
m4.16xlarge Intel Xeon E5-2686 v4 2.3 GHz 16 45 MB - $3.20 -
z1d.metal Intel Xeon Platinum 8151 3.4 GHz 12 24.75 MB - $4.464 -
m5.metal Intel Xeon Platinum 8259CL 2.5 GHz 24 35.75 MB - $4.608 -
a1.metal AWS Graviton 2.3 GHz 16 8 MB - $0.408 -
c6g.metal AWS Graviton2 2.5 GHz 64 32 MB - $2.176 -

SBC Pi 3B+ ARM Cortex-A53 1.4 GHz 4 512 KB $35 $0.0004 5.1 W

TABLE I: Hardware Specifications

that they have become competitive with traditional servers in
the context of more complex workloads like in-memory OLAP.

Specifically, we selected the Raspberry Pi 3B+ to represent
the SBC category in our study. The Raspberry Pi 3B+ has a
1.4 GHz quad-core ARM Cortex-A53 CPU with a 512 KB
LLC. The Cortex-A53 has found widespread use in SBCs
as well as a variety of other devices, including Amazon
Fire tablets, Roku streaming media players, and the Nintendo
Switch video game console.

The current MSRP for the Raspberry Pi 3B+ is just $35,
although the price is likely to decrease as newer models (e.g.,
the Raspberry Pi 4B [27]) come to market. For the TDP shown
in Table I, we actually report the maximum power draw of the
entire SBC (i.e., 5.1 watts), not the TDP of the CPU alone. We
then estimate the hourly operating cost for a single Raspberry
Pi 3B+ by multiplying the maximum possible power draw by
the US national average price per kilowatt-hour [28], which
yields a rate of less than $0.0004 per hour.

These choices actually result in a pessimistic analysis for
the Raspberry Pi 3B+, since they do not always operate at
sustained maximum power draw. Moreover, as mentioned, our
analyses for the traditional servers do not include the energy
consumption of hardware components other than the CPU.
We further explain the rationale behind these decisions in
Section III.

B. WimPi Cluster

In spite of its low price point, the Raspberry Pi 3B+ clearly
has quite impressive specifications, but it also has certain
limitations that might prevent a single node from effectively
handling larger data sizes. For example, the Raspberry Pi 3B+
has only four physical cores, whereas the server-grade CPUs
that we tested range from nine physical cores (18 virtual cores
when considering Hyper-Threading) to as many as 64. We
therefore anticipate that many use cases will actually require
a cluster comprised of several Raspberry Pi 3B+ nodes, so
one of the key questions we sought to answer in our study is
how many nodes would be required to match (or exceed) the
performance of a traditional server.

To answer this question, we built a prototype Raspberry Pi
3B+ cluster, called WIMPI, that allows us to evaluate query
performance with different cluster sizes. WIMPI consists of 24
Raspberry Pi 3B+ nodes connected via Ethernet on a Gigabit
switch, offering a total of 96 physical cores and 24 GB of

aggregate memory. The cluster requires four power supplies,
each with six ports that connect to the nodes via USB to
Micro-USB cables. The total cost was approximately $840
(i.e., 24 nodes at $35 each), excluding peripherals (e.g., mi-
croSD cards, Ethernet cables). However, depending on quality
and bulk purchasing discounts, these peripherals only increase
the cost of each node by roughly $10–15. Section III-A
provides a more detailed price analysis.

In addition to performance and cost, energy consumption is
another major factor for real-world deployments. As a back-of-
the-envelope calculation using the peak power consumption of
5.1 watts for each Raspberry Pi 3B+ node, the total maximum
power draw of our entire WIMPI cluster is roughly 122 watts
(i.e., 24 nodes at 5.1 watts each). On the other hand, the power
consumption for a single CPU in the On-Premises servers
ranges from 95–165 watts, as shown in Table I.

Decreased power consumption not only lowers operational
electricity costs but also has the added benefit of reducing
the associated cooling costs, which can be substantial [19],
[29]. In fact, given the dramatically lower power consumption,
our WIMPI cluster requires none of the expensive cooling
equipment necessary for operating traditional servers.

C. Microbenchmarks

As a first step, we obtained a rough performance baseline for
each comparison point using several common microbenchmark
suites, many of which appear in similar previous studies [14],
[21]. In particular, we focus on CPU performance and memory
bandwidth, which represent the two primary bottlenecks for in-
memory OLAP workloads. Additionally, since we consider the
Raspberry Pi 3B+ in a distributed setting, we also measured
the network bandwidth between nodes in our WIMPI cluster.

1) CPU: We evaluated CPU performance using three well-
known microbenchmarks: (1) Whetstone [30], (2) Dhrys-
tone [31], and (3) sysbench [32]. On every comparison
point, we ran each microbenchmark first using only a single
core and then with all available cores. For the Intel Xeon CPUs
in the latter set of experiments, we set the number of threads to
twice the count of physical cores shown in Table I, as we found
that Hyper-Threading improved performance. On the other
hand, the Raspberry Pi 3B+ and ARM-based Cloud servers
(i.e., a1.metal and c6g.metal) used only one thread per
physical core.
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Fig. 2: Microbenchmark Results

Figures 2a and 2b plot the MWIPS (Millions of Whetstone
Instructions Per Second) and DMIPS (Dhrystone Millions
of Instructions Per Second), respectively. Higher values (i.e.,
more instructions per second) are better.

Both of these microbenchmarks show that the single-core
compute performance of the Raspberry Pi 3B+ is only between
2–3× worse than the op-e5 server, ranging up to roughly
5–6× worse than the higher-end op-gold and m5.metal
servers. This result is especially impressive, considering that
the Raspberry Pi 3B+ costs roughly two orders of magnitude
less than these server-grade CPUs. The z1d.metal instance,
which has a sustained clock speed of 3.4 GHz, unsurprisingly
exhibits the best single-core performance.

When looking at the results for all cores, though, the
server-grade CPUs range from 10–90× more powerful, due to
their significantly greater parallelism. In particular, the AWS
Graviton2 CPU in the c6g.metal instance type, which has
64 physical cores, achieves the best performance by a wide
margin. For comparison, recall that the Raspberry Pi 3B+ has
only four cores.

The results for the sysbench [32] microbenchmark, which
involves a tight loop testing for prime numbers, are shown in
Figure 2c. Unlike the previous two microbenchmarks, lower
values (i.e., shorter runtimes) are better.

Surprisingly, the single-core performance of a Raspberry
Pi 3B+ is nearly identical to the Intel E5-2660 v2 in the
op-e5 server. In fact, the other server-grade CPUs only offer
between 1.2–3.9× better performance. When considering the
performance for all cores, the server-grade CPUs only beat
the Raspberry Pi 3B+ by 4–14×, with the exception of the
c6g.metal instance type.

Overall, these microbenchmark results suggest that the
Raspberry Pi 3B+ should exhibit unexpectedly good perfor-
mance for computationally intensive use cases, which directly
contradicts the conclusions of another recent study [21].
Specifically, the authors found that an Intel Edison SBC could
only achieve roughly 5–6% of the single-core performance of
a server-grade Xeon CPU. When examining the performance
for all cores, they observed a roughly 100× slowdown, leading
them to the conclusion that SBCs were ill-suited for CPU-
bound workloads.

2) Memory: Another critical aspect to consider is the
memory bandwidth of the CPU. Whereas memory access
latency might be more important for key-value stores or
OLTP applications that perform many point lookups, memory
bandwidth can often become a bottleneck in OLAP workloads,
which are typified by scanning large tables.

We use the memory bandwidth test included in the
sysbench toolkit, which allocates a large buffer of memory
and measures the time required for the CPU to sequentially
read the entire buffer. Again, we run the microbenchmarks
on each comparison point using both a single core and all
available cores. Unlike the CPU microbenchmarks, we found
that Hyper-Threading did not improve memory bandwidth
results, so we only used one thread per physical core for the
Intel Xeon CPUs.

As shown in Figure 2d, we see that a single core on
the Raspberry Pi 3B+ has roughly 5–11× lower memory
bandwidth than the server-grade CPUs. When looking at all
cores, the bandwidth for the Raspberry Pi 3B+ remains nearly
the same, since it has a single memory channel that can be
almost fully saturated by one core. The server-grade CPUs
therefore exhibit between 20–99× higher bandwidth than the
Raspberry Pi 3B+. These results comport with another recent
study that investigated similar hardware [21].

Although our 24-node WIMPI cluster provides aggre-
gate memory bandwidth equivalent to the op-e5 and
m4.10xlarge CPUs, we would need to triple the number
of nodes to match the op-gold and m5.metal CPUs. Even
then, the total cost for the entire cluster would only be $2,500,
which is still less expensive than a single Xeon Gold 6150
CPU. When adding the cost of all the other necessary server
components, even such a large Raspberry Pi 3B+ cluster still
maintains a large price advantage.

3) Network: Network bandwidth is not relevant for the
traditional servers in our study, since all processing occurs on a
single node. However, since we consider the Raspberry Pi 3B+
in a distributed setting, network bandwidth will become an
increasingly important consideration as the cluster size grows.

Again, nodes in our WIMPI cluster are connected via
Ethernet on a Gigabit switch, but each node can only use
about 20% of the available bandwidth because the Ethernet
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Category Name Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

On-Premises op-e5 0.161 0.008 0.080 0.061 0.082 0.028 0.052 0.116 0.116 0.062 0.017 0.036 0.196 0.019 0.034 0.156 0.101 0.130 0.027 0.045 0.155 0.112
op-gold 0.056 0.008 0.046 0.025 0.041 0.012 0.024 0.069 0.055 0.031 0.011 0.020 0.121 0.011 0.015 0.084 0.051 0.063 0.020 0.022 0.199 0.063

Cloud

c4.8xlarge 0.054 0.008 0.021 0.016 0.020 0.006 0.022 0.037 0.033 0.017 0.006 0.011 0.097 0.006 0.011 0.045 0.022 0.050 0.018 0.016 0.068 0.038
m4.10xlarge 0.056 0.007 0.021 0.017 0.021 0.007 0.021 0.041 0.034 0.019 0.006 0.013 0.111 0.007 0.012 0.048 0.022 0.057 0.021 0.018 0.087 0.044
m4.16xlarge 0.043 0.007 0.023 0.015 0.021 0.006 0.023 0.043 0.032 0.022 0.006 0.014 0.116 0.009 0.012 0.045 0.016 0.059 0.029 0.020 0.237 0.043
z1d.metal 0.073 0.012 0.079 0.052 0.057 0.027 0.035 0.096 0.083 0.054 0.024 0.032 0.196 0.018 0.031 0.167 0.089 0.084 0.037 0.047 0.169 0.094
m5.metal 0.034 0.010 0.033 0.023 0.026 0.008 0.025 0.053 0.043 0.031 0.010 0.018 0.135 0.011 0.017 0.074 0.027 0.064 0.031 0.024 0.248 0.064
a1.metal 0.270 0.009 0.062 0.064 0.087 0.025 0.071 0.126 0.123 0.053 0.018 0.046 0.330 0.015 0.026 0.190 0.077 0.135 0.024 0.032 0.085 0.143
c6g.metal 0.049 0.005 0.045 0.026 0.047 0.011 0.038 0.079 0.057 0.052 0.011 0.032 0.204 0.020 0.018 0.117 0.040 0.083 0.017 0.022 0.620 0.081

SBC Pi 3B+ 1.772 0.044 0.227 0.222 0.283 0.099 0.486 0.244 0.684 0.221 0.034 0.154 1.771 0.076 0.093 0.302 0.220 0.394 0.140 0.141 0.603 0.269

TABLE II: Runtimes (s) for SF 1

op-e5 op-gold c4.8xlarge m4.10xlarge m4.16xlarge z1d.metal m5.metal a1.metal c6g.metal
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Fig. 3: Speedups for SF 1 (left) and SF 10 (right)

Category Name Q1 Q3 Q4 Q5 Q6 Q13 Q14 Q19

On-Premises op-e5 1.474 0.603 0.465 0.542 0.191 2.405 0.153 0.131
op-gold 0.482 0.341 0.212 0.278 0.086 1.817 0.055 0.072

Cloud

c4.8xlarge 0.554 0.183 0.144 0.161 0.054 1.897 0.047 0.063
m4.10xlarge 0.566 0.201 0.154 0.167 0.054 1.963 0.045 0.063
m4.16xlarge 0.388 0.203 0.140 0.140 0.041 1.644 0.051 0.065
z1d.metal 0.600 0.364 0.225 0.300 0.105 1.787 0.082 0.092
m5.metal 0.306 0.189 0.117 0.135 0.038 1.351 0.047 0.065
a1.metal 2.972 0.692 0.620 0.925 0.219 6.651 0.132 0.173
c6g.metal 0.452 0.372 0.258 0.290 0.078 3.505 0.059 0.077

SBC

Pi 3B+ ×4 57.814 53.424 9.492 47.147 0.303 103.604 0.280 0.624
Pi 3B+ ×8 2.319 5.920 0.928 12.165 0.238 103.604 0.167 0.423

Pi 3B+ ×12 1.561 0.813 0.636 1.999 0.134 103.604 0.108 0.351
Pi 3B+ ×16 1.242 0.761 0.506 1.730 0.138 103.604 0.103 0.325
Pi 3B+ ×20 0.705 0.562 0.348 1.143 0.094 103.604 0.085 0.270
Pi 3B+ ×24 0.678 0.538 0.342 0.868 0.108 103.604 0.104 0.220

TABLE III: Runtimes (s) for SF 10

port shares a bus with the lower-bandwidth USB 2.0 ports. To
validate this estimate, we measured the network bandwidth
between two WIMPI nodes using the iperf [33] tool. The
result was a transfer speed of about 220 Mbps, which is in
line with the expected bandwidth limitation.

D. TPC-H

Unlike previous work, the goal of this paper is to make the
case that so-called “wimpy” nodes can actually handle more
complex workloads like in-memory OLAP. We first ran the
well-known TPC-H benchmark on each comparison point at
scale factors (SFs) 1 and 10 using a popular OLAP DBMS.
Then, to identify any hidden performance differences that may
have been obscured by the system-level benchmarks, we also
conducted a series of low-level experiments that isolated and

evaluated three different query execution strategies. In the
following, we describe the results of our TPC-H evaluation.

1) SF 1: We began with the relatively small (but nontrivial)
SF 1, which fits entirely in memory on all comparison points,
including the 1 GB of available memory on a single Raspberry
Pi 3B+. To run the benchmark, we chose MonetDB [34], a
mature and widely used column-oriented DBMS with many
advanced features. We used gcc-9.3.0 to build MonetDB
v11.39.11 (Oct2020 Release) from source on each comparison
point for consistency, since no compatible pre-built release
binary existed for the ARM-based comparison points.

The absolute runtimes appear in Table II, with speedups
shown in Figure 3. For almost all queries, the Raspberry Pi
3B+ achieves reasonable absolute runtimes and is, on average,
only about 10× slower than the traditional servers. More
specifically, the median performance of the Raspberry Pi 3B+
relative to the servers ranges from about 0.1–0.3×, which is
impressive considering that the much more expensive server-
grade CPUs have higher clock speeds, more cores, larger
LLCs, and significantly greater memory bandwidths. In some
cases (e.g., Q11), the relative performance of the Raspberry
Pi 3B+ is as high as 0.5–0.7× of the traditional servers, and
in one case (Q21), the Raspberry Pi 3B+ is even able to
outperform the c6g.metal instance.

As expected, the Raspberry Pi 3B+ is most competitive
for CPU-bound queries. Specifically, we observed the smallest
gaps in performance for queries that either do not include the
very large lineitem table (e.g., Q11, Q16) or have highly
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selective predicates (e.g., Q8). On the other hand, we observed
the worst performance for Q1, which scans almost the entire
lineitem table and is therefore heavily memory-bound on
the Raspberry Pi 3B+.

2) SF 10: Next, we increased the database size to SF 10,
which required us to utilize multiple Raspberry Pi 3B+ nodes
in the WIMPI cluster to keep all processing purely in memory.
Consequently, we also evaluated the distributed scalability
of WIMPI by running queries at six different cluster sizes,
ranging from 4–24 nodes.

We again ran the benchmarks with MonetDB, although we
did not use the built-in distributed query processing capabili-
ties due to extremely poor performance for queries that pro-
duce large intermediate results (e.g., during join processing).
Instead, we used the MonetDB Python client API to build
a simple driver program that aggregates partial results from
each node in the cluster. Moreover, since MonetDB does not
currently provide transparent partitioning of large tables, we
needed to manually distribute the data across the nodes in
the WIMPI cluster. Therefore, similar to the setup in previous
experimental studies of wimpy clusters [35], [36], we fully
replicated all tables except lineitem, which we partitioned
evenly across each of the nodes on the l_orderkey column.
Section III-C provides further details about this setup.

Due to space constraints, we focus only on the subset of
TPC-H queries used in recent papers [37], [38] that cover the
main chokepoints of the TPC-H benchmark [39]. The absolute
runtimes appear in Table III, with speedups again shown in
Figure 3. Overall, the Raspberry Pi 3B+ was much more
competitive in the distributed SF 10 experiments compared
to the single-node setting for SF 1. With larger cluster sizes,
WIMPI can often achieve greater than 0.5× the performance
of the traditional servers, and in five of the eight tested queries
(i.e., Q1, Q3, Q4, Q6, Q14), it can even outperform at least
one of the comparison points.

For several queries (e.g., Q1, Q3, Q4, Q5), WIMPI per-
formance did not scale uniformly as we added more nodes.
Rather, we observed extremely poor performance at the initial
cluster size of four nodes, followed by a huge jump (as
much as 10–100× performance improvement) after doubling
or tripling the number of nodes. For example, recall the poor
Raspberry Pi 3B+ performance on Q1 from the previous SF 1
experiments. Since Q1 is heavily memory-bound, adding more
nodes to the cluster increases the aggregate memory bandwidth
and alleviates the bottleneck. At some point, the data may be
able to fit entirely in LLC, avoiding the memory bandwidth
bottleneck altogether.

In some cases (e.g., Q6, Q14), however, we noticed that
increasing the cluster size beyond a certain point had dimin-
ishing returns, since network latency becomes the bottleneck.
Similarly, notice that adding more nodes has no impact on
the performance of Q13. Since this query does not include
the partitioned lineitem table, it is executed using only a
single node. A more sophisticated distributed query process-
ing approach that could also parallelize joins between other
tables would likely yield performance trends similar to those

observed for the other queries, but this type of optimization is
beyond the scope of this paper.

3) Execution Strategies: While benchmarking a real system
like MonetDB gives important insights into how SBCs like
the Raspberry Pi 3B+ might perform in practice, evaluating
performance at such a high level introduces many confounding
factors that could obscure the impacts of hardware character-
istics. Therefore, to supplement our system-level benchmarks,
we also conducted a low-level analysis using three different
query execution paradigms that appear in a recent paper [38],
including: (1) data-centric, (2) hybrid, and (3) access-aware.
Each strategy was hand-coded in C and compiled with
gcc-9.3.0, with all experiments run single-threaded.

We again use the same eight representative TPC-H queries
from the distributed experiments, returning to SF 1 in order to
ensure that the data fits in the memory of a single Raspberry
Pi 3B+. Due to space constraints, we only compare the perfor-
mance of the Raspberry Pi 3B+ to the On-Premises servers,
since the Cloud servers exhibited similar trends. Figure 4
shows the results.

The runtimes for the Raspberry Pi 3B+ range between 2–
19× slower than the same strategy executed on the traditional
servers, comporting with the previous results for MonetDB
at SF 1. The median performance gap, though, is now sig-
nificantly reduced, due to the elimination of system-level
overheads. As seen in the original paper [38], access-aware
always performs the best and data-centric the worst, with
hybrid somewhere in between.

Surprisingly, all of the strategies exhibit fairly consistent
behavior across comparison points, although the performance
advantages of the hybrid and access-aware strategies on the
Raspberry Pi 3B+ were less pronounced. Given the limited
memory bandwidth of the Raspberry Pi 3B+, this result is
somewhat unexpected for the access-aware strategy in partic-
ular, which often trades extra memory accesses in exchange
for more consistent access patterns.

III. DISCUSSION

As mentioned, the two main advantages of the Raspberry
Pi 3B+ compared to traditional servers are (1) much lower
cost and (2) significantly reduced energy consumption. In this
section, we evaluate the TPC-H performance results obtained
from our study (Section II-D) relative to these two metrics.

Specifically, we normalize the absolute runtimes for each
comparison point by the metric under consideration. For exam-
ple, a cost improvement of 5× could mean that the Raspberry
Pi 3B+ configuration is 5× faster than the traditional server
while having the same cost, or that the Raspberry Pi 3B+
configuration takes twice as long to run a query but costs
10× less. The break-even point of 1× (i.e., when both exhibit
equal normalized performance) is denoted on each plot as a
dotted black line, with values above the line indicating that the
Raspberry Pi 3B+ configuration is better and numbers below
the line indicating that the traditional server is better.

Again, the traditional servers actually have many other nec-
essary hardware components (e.g., memory, persistent storage)
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Fig. 4: Execution strategy results for op-e5 (top), op-gold (middle), and Pi 3B+ (bottom)

that contribute greatly to both the overall cost and energy
consumption. However, since the On-Premises servers were
built for general-purpose use prior to this study, they do not
include the most cost-effective or energy-efficient components.
Our analyses therefore consider only the cost (i.e., MSRP) and
energy consumption (i.e., TDP) of the CPU.

The result, then, is a pessimistic analysis; that is, a full
cost comparison that includes all peripherals would actually be
much better for WIMPI. While we could have leveraged this
fact to make our results appear more favorable (e.g., artificially
inflating total server costs by factoring in large and expensive
memory), we believe that our current methodology yields a
fair representation of the strengths and weaknesses of the
Raspberry Pi 3B+.

A. Price Comparison

In the following, we analyze the results from our TPC-H
benchmarks in terms of MSRP and hourly costs. We then
conclude with a brief discussion of other cost metrics.

1) MSRP: Our first price analysis considers performance
relative to the total cost of each comparison point, with
runtimes normalized by the MSRP (Figure 5). Again, since
the CPUs for the Cloud servers are custom SKUs for Amazon
EC2, we cannot determine the MSRP and thus compare only
against the On-Premises servers. Note that, since op-e5 and
op-gold are dual-socket, our calculation doubles the MSRP
values from Table I.

For SF 1, the single Raspberry Pi 3B+ always outperforms
the traditional servers, with a roughly 7–41× improvement
over op-e5 and 6–64× improvement over op-gold, with
median values of 22× and 29×, respectively. The Raspberry
Pi 3B+ has a 30% greater improvement over op-gold com-

pared to op-e5, which suggests that the significantly more
expensive Xeon Gold 6150 CPU does not offer commensurate
performance benefits for this workload.

The comparison for SF 10 is similarly promising, with
WIMPI demonstrating improvements on seven of the eight
tested queries. For half of the queries (Q1, Q3, Q4, Q5), a
smaller number of four (or in some cases even eight) nodes do
not offer sufficient performance to exceed the break-even cost
threshold, but adding enough nodes to produce the aforemen-
tioned performance jumps makes WIMPI between 2–8× more
cost-effective. Adding more nodes beyond this point results
in performance increases that keep pace with the additional
costs, such that we observe no additional improvements in
normalized performance at larger cluster sizes. In three of the
other queries (Q6, Q14, Q19), we actually observe the opposite
trend where additional nodes hurt the normalized performance.

Finally, in the case of Q13, the traditional servers are
always better, irrespective of cluster size. Recall that this query
executes using only a single node in our cluster, so additional
nodes increase the total cost without reducing query runtime.

2) Hourly: Similar to our MSRP analysis, we normalize
runtimes for the Cloud group using the hourly cost charged
by Amazon EC2 [26]. For the Raspberry Pi 3B+, recall that
we calculate the estimated hourly cost of $0.0004 using the
maximum possible power draw and US national average price
per kilowatt-hour [28]. The results appear in Figure 6.

In some ways, the particulars of the hourly cost comparison
are less interesting than the MSRP analysis, since the Rasp-
berry Pi 3B+ outperforms all Cloud servers for all queries
in both the single-node (up to 10,000× improvement) and
distributed (up to 1,200× improvement) settings. Even for Q13
in SF 10, where WIMPI was much worse for all cluster sizes
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Fig. 5: MSRP comparison for SF 1 (left) and SF 10 (right)
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Fig. 6: Hourly cost comparison for SF 1 (left) and SF 10 (right)

in the MSRP analysis, we observed a 3–10× improvement
over the Cloud servers in the worst case (24 nodes).

Despite the enormous cost savings, cloud deployments
obviously have significant advantages in terms of ease of use,
since cluster operation and maintenance is outsourced to the
cloud provider. In the case of a cluster like WIMPI, on the
other hand, one may need to manage dozens of SBC nodes. We
discuss ease of use, as well as other important considerations,
separately in Section III-C.

3) Other Metrics: So far, we have analyzed performance
in terms of both MSRP and hourly cost, and the SBCs
demonstrate clear advantages in these comparisons. However,
many other common metrics exist for evaluating cost.

For example, the total cost of ownership (TCO) is a popular
metric that has appeared in several similar evaluations [20],
[23], [14], [21]. As stated earlier, this metric is difficult
to assess accurately given the wide variability in terms of
additional components, both for the traditional servers and

the Raspberry Pi 3B+. Moreover, many of the peripherals
required for the Raspberry Pi 3B+ (e.g., Ethernet cables,
microSD cards) are relatively inexpensive compared to all of
the hardware components necessary for a traditional server,
which include memory, persistent storage, a motherboard,
power supplies, and fans, among others.

An even larger challenge arises when attempting to incor-
porate electricity costs for power and cooling into a TCO
analysis. In addition to large variability in price, the aforemen-
tioned components can also have huge differences in energy
requirements. For example, servers today will typically have a
large amount of memory [1], [2], but this type of provisioning
might result in unnecessarily high energy consumption for
workloads that do not require it.

For these reasons, we chose to forego a formal TCO
analysis, which would have heavily favored the Raspberry Pi
3B+ due to much cheaper peripherals and significantly reduced
energy costs.
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B. Energy Comparison

The second key advantage of SBCs is their reduced power
consumption. As explained, since the specifications for EC2
instances are not public, we evaluate only the energy consump-
tion for the On-Premises servers.

1) Active: Figure 7 shows our TPC-H results normalized
by energy consumption. Similar to past studies [40], [15],
[41], we use the reported TDP (Table I) to estimate CPU
energy consumption for the servers. Again, like our MSRP
comparison, we do not consider the energy consumption for
other server components, resulting in a pessimistic analysis for
the Raspberry Pi 3B+.

The SF 1 results show that a single Raspberry Pi 3B+
offers between 2–22× better energy efficiency, with a median
improvement of around 10×. The improvements for SF 10
are less pronounced but still promising: Raspberry Pi 3B+ has
better energy efficiency on six of the eight queries, with the
maximum improvements in the range of 5–6×.

These results contradict another recent study [14] that
concluded SBCs should exhibit the best energy efficiency
for memory-bound scan queries like Q1. However, given the
extremely limited memory bandwidth of the Raspberry Pi
3B+, these types of queries end up executing for much longer
relative to computationally intensive queries, leading to an
underutilized CPU and greater sustained power draw compared
to the traditional servers. Rather, as shown in our experiments,
highly selective queries (e.g., Q6) that do not exhaust the
memory bandwidth show the best speedup and, consequently,
best improvement in energy consumption.

2) Idle: Since clusters often spend a significant amount
of time idle [42], power consumption during these idle pe-
riods is an important consideration. Ideally, servers should
be energy-proportional [42], such that the power draw is
commensurate with the amount of work being performed.
However, traditional servers almost always have very poor
energy proportionality, since certain components like memory
require constant power draw to operate, regardless of the
current load. On the other hand, the Raspberry Pi 3B+ nodes
that comprise WIMPI are highly energy-proportional, and they
use very little power when idle.

Further, we believe that one of the key benefits of SBC
clusters like WIMPI is the ability to add or remove resources
at a very fine level of granularity in order to maximize
performance while minimizing wasted energy. When not in
use, individual Raspberry Pi 3B+ nodes could easily be turned
off to save power. At the same time, should cluster utilization
increase, SBCs can boot up much faster than traditional
servers, allowing a cluster of SBCs to respond much more
quickly to changes in demand.

3) Cooling: One final aspect of energy consumption that
we do not directly measure is the cost of cooling, since
isolating this cost for a single machine in a server room is
impracticable. However, since cooling still represents one of
the largest components of total operating costs [19], [29], we
highlight some advantages of SBCs in this regard.

As previously mentioned, our WIMPI cluster does not
require any external cooling infrastructure. The low energy
consumption of the Raspberry Pi 3B+ allows WIMPI to be
entirely air-cooled at normal room temperature, with spacers
installed to ensure sufficient distance between stacked nodes
for proper airflow.

If individual nodes were to become overheated, though, they
would throttle the CPU, leading to degraded performance and
potential node failures. While running our benchmarks, we
monitored the CPU temperature for each Raspberry Pi 3B+
using the built-in monitoring tools. Even for experiments with
sustained heavy load (e.g., the CPU microbenchmarks from
Section II-C), the observed temperatures always remained
within normal operating thresholds and never resulted in
throttling. In settings where the Raspberry Pi 3B+ might be
placed in a protective casing that obstructs airflow (e.g., for
industrial use cases), overheating may become a problem,
but we never encountered issues operating at normal room
temperature with our cluster setup.

C. Other Factors

Overall, we have shown that currently available SBCs like
the Raspberry Pi 3B+ can offer significant cost and energy sav-
ings for in-memory OLAP workloads. We also demonstrated
that a cluster of Raspberry Pi 3B+ nodes can even maintain
these same benefits while providing absolute query runtimes
on par with traditional servers. However, operating a cluster
like WIMPI comes with a variety of unique challenges, several
of which we discuss in the following.

1) Memory Size: One main drawback of SBCs is their
limited memory sizes. As mentioned, the Raspberry Pi 3B+
SBCs that we used in this study have only 1 GB of memory.
While MonetDB’s in-memory storage format allows TPC-H
SF 10, including the base tables and all intermediate query
results, to fit comfortably in the aggregate memory of just four
WIMPI nodes, larger databases might exceed the capacity of
a reasonably sized cluster.

Limited memory sizes are especially problematic for
some popular distributed data processing frameworks (e.g.,
Hadoop [43], Spark [44]) that have high memory overheads.
For example, when we tested Spark on WIMPI, we found that
nearly half of the available 1 GB of memory was consumed by
the JVM and Spark runtime, leaving only 500 MB for the base
data and intermediate query results. Past studies [14], [21] that
evaluated JVM-based systems encountered frequent crashes
during their experiments, which may have informed their
conclusion that SBCs are ill-suited for complex workloads.

However, just as memory prices continue to drop for tra-
ditional servers, SBCs are experiencing a similar trend. The
Raspberry Pi 4B [27] already comes in a variant with 8 GB of
memory, but these larger memory sizes are naturally more ex-
pensive. Additionally, more memory also means more energy
consumption. Weighing these trade-offs is not straightforward,
but they allow for the intriguing possibility of tailoring the
node composition of SBC clusters to individual workloads.
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Fig. 7: Energy comparison for SF 1 (left) and SF 10 (right)

Of course, if the data becomes too large, the DBMS could
always just spill to persistent storage, but the microSD cards
used in the WIMPI cluster have extremely limited bandwidth.
Unfortunately, the solution is not as simple as upgrading the
hardware. Equipping all nodes with SSDs, for instance, would
drastically change the price and energy considerations for the
cluster, and the SSD would also face the same bandwidth
limitations as network I/O due to the shared bus.

Therefore, one interesting alternative is a network-attached
memory (NAM) architecture [45], where a single traditional
server would host a large memory pool that can be remotely
accessed by the Raspberry Pi 3B+ nodes. This configuration
also provides unique query processing opportunities in which
the server could perform tasks that require a large amount
of memory, such as an aggregation with many distinct keys
or performing a join. We believe that these types of hybrid
clusters [46], [47], [21] that combine the benefits of both
platforms represent a strong avenue for future investigation.

2) Memory Bandwidth: A related issue is the limited ag-
gregate memory bandwidth of the WIMPI cluster compared
to the traditional servers. As mentioned, WIMPI has a total
bandwidth of about 48 GB/s, and our experimental results
(Section II-D) demonstrated the impact of this shortcoming
on query performance.

One possibility is to leverage more aggressive compression
to help alleviate the memory bandwidth bottleneck. While in-
memory DBMSs have traditionally favored computationally
lightweight techniques at the expense of greater memory
consumption (e.g., fixed-width dictionary encoding), the com-
paratively excellent CPU performance could open the door for
algorithms previously considered too costly.

Similarly, DBMSs will often avoid performing redundant
work by carefully materializing intermediate results. However,
to reduce memory bandwidth pressure, completely recomput-
ing some of these intermediates might actually be better than
caching them.

3) Usability: For any real-world deployment, ease of use
remains one of the largest factors in the decision-making
process. While running a single machine is always simpler
than managing an entire cluster, we found that WIMPI was
surprisingly easy to set up and use.

The first task was to distribute the data across nodes in the
cluster. For WIMPI, we chose to use HDFS, though many
other distributed file systems exist. In recent years, a huge
number of distributed data processing frameworks have also
emerged, making it easier than ever to run a wide variety of
data analytics workloads on a cluster.

As previously explained, we selected MonetDB for our
TPC-H experiments. Since no pre-built release binary existed
for several of our target hardware platforms, we had to build
from source, which was an extremely straightforward process.
Although MonetDB comes with built-in distributed query
processing capabilities, we found that the distributed query
planner was not particularly advanced and implemented only
a few basic optimizations. For example, the planner would
push down only selections and aggregations to remote nodes
while sending large intermediate results to a single node in
order to perform all joins locally. Although this execution
strategy worked fine for queries like Q1 and Q6 that can
simply perform parallel scans of the lineitem table, the
entire WIMPI cluster ground to a halt when attempting to
transmit large intermediate results to a single Raspberry Pi
3B+ node due to the limited network bandwidth and single-
node memory capacity.

We therefore wrote a very simple driver program using the
MonetDB Python client API that runs on one of the WIMPI
nodes and aggregates partial results after join processing is per-
formed locally on each node. Due to the substantial reduction
in network traffic, this straightforward optimization decreased
runtimes for many queries by several orders of magnitude,
and we expect future development of MonetDB’s distributed
processing functionality will incorporate more advanced tech-
niques (e.g., distributed joins) that can achieve even better

741



performance. Other related features, such as transparent table
partitioning and replication, would also go a long way to
improve usability.

4) Reliability: Finally, we address the common miscon-
ception that SBCs are much less reliable than server-grade
hardware. In the case of the Raspberry Pi 3B+ SBCs used in
this study, ongoing design improvements have made current
models much more stable than previous generations, despite
their enduring $35 price tag.

In our experience, node failures in the distributed setting
almost always resulted from virtual memory thrashing; WIMPI
nodes would become generally unresponsive when either the
database size or intermediate query results exceeded the avail-
able memory. Again, this problem stems from the extremely
limited bandwidth of the microSD cards used in the WIMPI
cluster for persistent storage. We were able to resolve the issue
by disabling the swap space on all nodes to prevent inadvertent
thrashing, which allowed isolated out of memory errors to
occur without crashing an entire node.

After turning off swapping, we did not encounter any further
node failures during the entire duration of our benchmark-
ing study, nor did we run into any hardware failures. Our
experience comports with another similar study [21], which
reported only a single failure of a breakout board during ten
months of operating a wimpy cluster comprised of 35 Intel
Edison SBCs, with no failures of the actual SBCs themselves.
Although anecdotal, these experiences support the idea that
modern SBCs are actually quite robust, suggesting that fears
about reliability might be somewhat outdated.

IV. RELATED WORK

In this section, we provide a consolidated summary of
the related work that was interspersed throughout the paper.
Broadly, our study has overlap in the areas of (1) wimpy
clusters and (2) energy efficiency.

A. Wimpy Clusters

The idea of replacing server-grade CPUs with a cluster
of wimpy nodes is not new, with numerous examples of
research, commercial, and even hobbyist prototypes. However,
past work typically dismisses wimpy clusters as unsuitable for
complex workloads, instead focusing on other use cases.

For instance, FAWN [20] investigated the use of wimpy
nodes in the context of a key-value store, which involves
many random accesses to small data items (i.e., point lookups)
rather than the large scans typical of OLAP workloads. Others
have explored the feasibility of leveraging wimpy nodes for
web servers [21], search engines [22], and distributed data
processing frameworks (e.g., Hadoop [43]) for I/O-bound
batch processing [48], [14], [21]. In fact, some have even
argued that wimpy nodes are completely unable to handle
computationally intensive workloads [23], [21].

On the contrary, we have shown that recent hardware
advancements have yielded vast performance improvements
for currently available SBCs like the Raspberry Pi 3B+. Our
microbenchmarks demonstrate that these so-called “wimpy”

nodes actually have comparable core-to-core performance with
some server-grade CPUs for computationally intensive tasks,
and the TPC-H experiments show that the WIMPI cluster
can even offer competitive performance for in-memory OLAP
workloads while maintaining benefits in terms of cost and
energy consumption.

Finally, as mentioned, some existing work has explored
wimpy nodes in the context of heterogeneous clusters with
virtualization over a collection of different machine types [46],
[47] or architectures where a traditional server manages many
wimpy worker nodes [21]. All of these approaches attempt to
create a more balanced computing infrastructure, which is a
promising direction that we intend to explore in the future.

B. Energy Efficiency

Energy consumption has become an increasingly important
topic, and several studies have investigated the energy usage
of DBMSs [40], [15], [17], [18]. Some have advocated for
making DBMSs energy-aware by treating energy consumption
as a first-class citizen in the optimizer, with the end goal of
trading off energy for performance [19], [16], [49], [41], [50].
In this study, we considered only straightforward distributed
query processing techniques, but the incorporation of energy
consumption estimates during the query planning stage is an
interesting idea for future work.

Other approaches have looked into achieving energy propor-
tionality [42], [29], [51] by switching individual components
(e.g., CPU [52], memory [53], disk [54]) or entire nodes in
a cluster [55], [56], [57], [35], [36] into low-power states, or
even by completely powering them off. We believe that these
types of optimizations represent a major opportunity for SBC
clusters like WIMPI, since they enable much more fine-grained
resource control than in a traditional server.

V. CONCLUSION

This paper made the case that inexpensive SBCs like
the Raspberry Pi 3B+ can serve as a viable alternative to
high-end hardware for in-memory OLAP workloads. Our
microbenchmarks demonstrated that a single Raspberry Pi
3B+ is surprisingly competitive with server-grade CPUs in a
core-to-core performance comparison, and our analysis of the
reported TPC-H results showed that a cluster of Raspberry Pi
3B+ nodes like WIMPI can achieve reasonable runtimes at a
fraction of the cost, as well as other long-term advantages in
terms of reduced energy consumption and cooling costs.

We believe that these results provide a solid foundation
for continued investigation, as we have identified many of
the core strengths and weaknesses of SBCs relative to server-
grade CPUs. In the near future, we plan to extend our study
with other computationally intensive workloads, in particular
machine learning. Consequently, we also plan to evaluate
how the Raspberry Pi 3B+ compares to hardware traditionally
used for machine learning tasks (e.g., GPUs) and specialized
accelerators (e.g., TPUs).
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