
Towards Interactive Data Exploration

Carsten Binnig1,2(B), Fuat Basık4, Benedetto Buratti1, Ugur Cetintemel2,
Yeounoh Chung2, Andrew Crotty2, Cyrus Cousins2, Dylan Ebert2,

Philipp Eichmann2, Alex Galakatos2, Benjamin Hättasch1, Amir Ilkhechi2,
Tim Kraska2,3, Zeyuan Shang2, Isabella Tromba3, Arif Usta4,
Prasetya Utama2, Eli Upfal2, Linnan Wang2, Nathaniel Weir2,

Robert Zeleznik2, and Emanuel Zgraggen2

1 TU Darmstadt, Darmstadt, Germany
carsten.binnig@cs.tu-darmstadt.de
2 Brown University, Providence, USA

3 Massachusetts Institute of Technology, Cambridge, USA
4 Bilkent University, Ankara, Turkey

Abstract. Enabling interactive visualization over new datasets at
“human speed” is key to democratizing data science and maximizing
human productivity. In this work, we first argue why existing analyt-
ics infrastructures do not support interactive data exploration and out-
line the challenges and opportunities of building a system specifically
designed for interactive data exploration. Furthermore, we present the
results of building IDEA, a new type of system for interactive data explo-
ration that is specifically designed to integrate seamlessly with exist-
ing data management landscapes and allow users to explore their data
instantly without expensive data preparation costs. Finally, we discuss
other important considerations for interactive data exploration systems
including benchmarking, natural language interfaces, as well as interac-
tive machine learning.

1 Introduction

Truly interactive visualization applications allow users to make data-driven deci-
sions at “human speed,” but traditional analytical DBMSs for OLAP workloads
are ill-suited to serve this class of applications. Historically, DBMSs for OLAP
workloads are optimized for data warehousing scenarios that can afford long data
loading times (e.g., for index construction), and only have to support a fixed num-
ber of pre-defined reports. Moreover, traditional analytical DBMS implement an
execution paradigm that run OLAP queries until completion before returning
an exact result to the user which can take seconds or minutes on large data sets.
All these reasons make traditional analytical DBMS solutions an exceptionally
bad fit for interactive data exploration (IDE). At the same time, the expectation
that a new system supporting interactive data exploration will replace existing
data management stacks for analytics is, simply, unrealistic. Instead, a system
designed specifically for interactive data exploration must integrate and work
seamlessly with existing data infrastructures (e.g., data warehouses, distributed
file systems, analytics platforms).
c© Springer Nature Switzerland AG 2019
M. Castellanos et al. (Eds.): BIRTE 2015/2016/2017, LNBIP 337, pp. 177–190, 2019.
https://doi.org/10.1007/978-3-030-24124-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24124-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-24124-7_11

178 C. Binnig et al.

We thus argue that we need to rethink the design of the data management
stack to better support interactive data exploration scenarios. To illustrate the
needs for a new backend, we illustrate an example workflow as shown in Fig. 1. In
this example, a user wants to determine which features (shown as boxes on the
left) in the US census dataset [19] affect whether an individual earns a salary
of more than $50k annually. To answer this question, the user first drags out
the sex attribute to the canvas (Step A) to view the distribution of males and
females. The user then drags out the salary attribute, links these two visual-
izations, and selects the female bar to view the filtered salary distribution for
females only (Step B). A duplicate of the salary visualization connected with
a negated link (dotted line) allows a comparison of the relative salaries of males
and females (Step C). After some analysis, the user decides to check whether an
individual’s education level coupled with sex has an impact on salary. Finally,
linking education to each of the salary visualizations and selecting only individ-
uals with a PhD (a rare subpopulation) creates a complex workflow comparing
the respective salaries of highly educated males and females (Step D). From this
analysis, the data seem to suggest that highly educated females earn less money
annually than their male counterparts. To further explore this finding, the user
might continue the analysis by testing the impact of additional attributes, apply-
ing statistical techniques (e.g., a t-test) to validate the finding, or performing
various ML tasks (e.g., classification, clustering) to test other hypotheses. A
more complete demonstration of this scenario in Vizdom is available at https://
vimeo.com/139165014.

Fig. 1. Example workflow to analyze salary distributions

https://vimeo.com/139165014
https://vimeo.com/139165014

Towards Interactive Data Exploration 179

We therefore suggest dropping the assumptions of traditional DBMSs for
OLAP workloads and propose a new breed of systems that supports (1) immedi-
ate exploration of new datasets without the need for expensive data preparation,
(2) a progressive query execution model that supports interactive query response
times and refines results over time, and (3) more “conversational” query inter-
faces that allow domain experts to incrementally explore all facets of a new data
set in order to better support query processing for visual data exploration tools
such as Vizdom [8].

One of the most important aspects is that throughout the data exploration
process, the database backend system must be able to consistently provide
response times low enough to guarantee fluid user interactions in the frontend
to all queries. In fact, a recent study [20] shows that even small delays (more
than 500ms) significantly decrease a user’s activity level, dataset coverage, and
insight discovery rate. No existing techniques, though, can guarantee interactive
latencies while also addressing all of our previously stated goals. For example,
existing data warehouses require a full copy of the data and suffer from long
loading times, which contradicts our goal of being able to start exploring a new
dataset immediately without expensive data preparation (e.g., indexing, com-
pression). Furthermore, many existing data warehouse indexing techniques suf-
fer from the “curse of dimensionality” and do not scale well beyond a handful
of attributes [5]. Restricting the number of attribute combinations is also not
an option, since the core idea of data exploration is to look for new, unexplored
relationships in the data. Finally, dynamic data reorganization techniques (e.g.,
cracking [17]) do not solve the high-dimensionality problem and require sorting
the data based on user access patterns, thereby violating the key randomness
assumption of many online algorithms.

In order to return early results for long-running queries over large datasets
and refine results progressively, online aggregation techniques [16,23] provide
approximate answers with an estimated error, and several newer analytics frame-
works (e.g., Spark [29], Flink [2]) now support online aggregation using a stream-
ing execution model. We therefore believe that online aggregation is a good
starting point since these techniques will allow the system to quickly provide
initial results that are refined over time as more data is scanned. However, while
online aggregation techniques work well for approximating results to queries on
common subpopulations in the data, they start to break down when applied to
increasingly rare subpopulations (e.g., when the user in the example selected
individuals with a PhD), since scanning the base data in a random order might
not provide enough of these instances to provide an accurate estimate. This
problem is quite common in many interactive data exploration use cases, where
rare events often contain the most interesting insights (e.g., the habits of the few
highly valued customers). Although disproportionate stratified sampling can help
in these cases by overrepresenting rare data items, these samples typically need
to be fully constructed before data exploration even begins [1,6], contradicting
our goal of enabling immediate exploration of new datasets. More importantly,
though, most of these systems make the strong assumption that the entire work-
load is known a priori in order to create appropriate samples, whereas our goal
is to allow users to explore data in new and potentially unanticipated directions.

180 C. Binnig et al.

This paper gives an overview of our keynote given at BIRTE 20171 and
assembles results from different previously published papers [3,4,9,10,12,13,15,
32]. In summary, in this paper we make the case for a new bread of systems for
interactive data exploration and present the results of our own implementation
called IDEA (Interactive Data Exploration Accelerator), which allows users to
connect to existing data sources and immediately begin the process of interactive
data exploration. The outline of the paper is organized as follows:

– We first outline the overall challenges and opportunities associated when
building a new system for interactive data exploration (Sect. 2).

– We then describe the design and unique contributions of our system called
IDEA (Sect. 3).

– We discuss other important considerations for interactive data exploration
including benchmarking, natural language interfaces, as well as interactive
machine learning and outline our contributions in those directions as well
(Sect. 4).

– We finally conclude in Sect. 5.

2 Challenges and Opportunities

Designing a system for interactive data exploration with a human-in-the-loop
frontend requires solving a set of very unique research challenges while also
opening the door to several interesting opportunities. In this section, we first
outline some of the requirements and challenges, followed by an overview of
some of the unique opportunities to address them.

2.1 Challenges

Interactive data exploration has a very unique set of requirements (e.g., response
time guarantees), many of which are pushing the boundaries of what is feasible
today.

Interactive Latencies: By far, the most important challenge in supporting inter-
active data exploration is to display a result within the latency requirement.
As [20] showed, even small delays of more than 500 ms can significantly impact
the data exploration process and the number of insights a user makes. Therefore,
a new system for IDE need to maintain certain response time guarantees in order
to provide a fluid user experience. Moreover, we believe that a system should
be able to refine the query answer progressively. This allows users to get a more
accurate answer while visually inspecting the query results.

1 http://db.cs.pitt.edu/birte2017/keynote.html.

http://db.cs.pitt.edu/birte2017/keynote.html

Towards Interactive Data Exploration 181

Conversational Queries: Different from classical OLAP workloads, users want to
explore all different factets of a data set instead of browsing a fixed set of reports.
This is very different from whart existing analytical databases assume since they
expect that the workload is known a priori to create the “right” indexes/samples,
whereas the goal of data exploration is to explore and visualize the data in new
ways. Moreover, indexes and data cubes suffer from the curse of dimensionality,
since memory required is exponential with the number of attributes, making it
almost impossible to build an index over all attributes or without knowing the
data exploration path ahead of time.

Rare Data Items: Data exploration often involves examining the tails of a distri-
bution to view the relatively rare data items. For example, real world datasets
are rarely perfectly clean and often contain errors (which are typically rare) that
can still have a profound effect on the overall results. Similarly, valid outliers
and the tails of the distribution are often of particular interest to users when
exploring data (e.g., the few billionaires in a dataset, the super users, the top-k
customers, the day with the highest traffic). Unfortunately, for rare events and
the tail of the distribution, sampling techniques do not work well since they often
miss rare items or require a priori knowledge of the workload, a challenge when
designing an system for IDE.

Connect and Explore: Ideally, the user should be able to connect to a dataset
and immediately start exploring it. However, this requirement implies that there
is no time for data preparation and the system has to build all internal storage
structures such as indexes on the fly. Another implication of the connect and
explore paradigm is that the system has to stream over larger datasets (from the
sources) and may not be able to hold the entire dataset in memory (or even on
disk). As outlined in the introduction, online aggregation methods are a good fit
to overcome this challenge, since they provide an immediate estimate (with error
bars) over the incoming stream. However, online aggregation techniques assume
that the data is random, which might be false since some data sources (e.g., data
warehouses) often sort the data on some attribute. This can result in a biased
estimate of the result and invalid error bars. Similarly, no good estimates are
possible if the source returns the data in some chronological order and if there
is some (unknown) correlation between time and the value of interest (e.g., the
sales are increasing over time).

Quantifying Risk: An interactive data exploration system with a visual interface
allows users to explore hundreds of hypotheses in a very short amount of time.
Yet, with every hypothesis test (either in the form of an explicit statistical test
or through a more informal visualization), the chance of finding something by
chance increases. Additionally, the visual interface can make it easier to overlook
other challenges, (e.g., “imbalance of labels” for a classifier) which can lead to
incorrect conclusions. Therefore, quantifying the risk is extremely important for
an interactive data exploration system.

182 C. Binnig et al.

2.2 Opportunities

Although there are several challenges to address, there are many unique oppor-
tunities, since data exploration involves close interactions between analysts and
the system. Many of these challenges have not yet been explored within the data
management community.

Think Time: Although the user expects subsecond response times from the
system, the system’s expectation from the user is different; there might be several
seconds (or sometimes even minutes) between user interactions. During this time,
the system not only has the chance to improve the current answers on the screen,
but also prepare for any future operations. For instance, in our running example,
the user might have already dragged out the sex and salary attribute, but
not yet linked them together. Given that both attributes are on the screen, the
system might begin creating an index for both attributes. Should the user decide
to link the two visualizations and use one as a filter, the index is already created
to support this operation.

Interaction Times: Similar to think time, the system can also leverage the user
interaction time to provide faster and more accurate answers. For example, it
takes several hundred valuable milliseconds to drag an attribute on the interac-
tive whiteboard or to link two visualizations together. In contrast to the previous
think time, user interactions are much shorter but usually provide more infor-
mation to the system about the intent of the user.

Incremental Query Building: In contrast to one-shot DBMS queries, data explo-
ration is an iterative, session-driven process where a user repeatedly modifies a
workflow after examining the results until finally arriving at some desired insight.
For example, think of the session shown in Fig. 1 where the user first filteredn
salary by gender and then added a filter on education. This session-driven discov-
ery paradigm provides a lot of potential to reuse results between each interaction
and modification.

Data Source Capabilities: Traditional analytics systems like Spark and stream-
ing systems like Streambase assume that they connect to a “dumb” data source.
However, many data sources are far from “dumb”. For instance, commonly the
data source is a data warehouse with existing indexes, materialized views, and
many other advanced capabilities. While these capabilities do not directly fulfill
the needs for interactive data exploration, they can still be used to reducing
load and network traffic between the data warehouse and the accelerator. Fur-
thermore, there has been work on leveraging indexes [22] to retrieve random
samples from a DBMS. These techniques, together with the possibility to push
down user-defined functions (UDFs) to randomize data, provide a feasible solu-
tion to the previously mentioned bias problem.

Towards Interactive Data Exploration 183

Human Perception: One of the most interesting opportunities stems from the
fact that all results are visualized. Therefore, often precise answers are not needed
and approximations suffice. Furthermore, the human eye has limitations and
humans are particularly bad at understanding the impact of error bars [11]. The
system can exploit both of these properties to provide faster response times (i.e.,
only compute what is perceived by the user).

Modern Hardware: Finally, there are several modern hardware trends that can
significantly improve the amount of work that can be done in less than 500 ms.
While there has been already a lot of work in leveraging GPUs for data explo-
ration [21], most of the existing solutions focus on single machine setups and
ignore the potential of small high-performance clusters. Small high performance
clusters can help to significantly increase the amount of available main mem-
ory (1–2 TB of main memory is not uncommon with 8 machine cluster), which
is crucial for interactive speeds, while avoiding the problems of fault-tolerance
and stragglers that come with large cloud deployments. At the same time, fast
network interconnects with RDMA capabilities are not only more affordable
for smaller clusters, but also offer unique opportunities to decrease latencies.
However, taking full advantage of the network requires carefully redesigning the
storage layer of the system in order to enable remote direct memory access [4].

Fig. 2. The IDEA system architecture overview

3 The IDEA System

The IDEA system is the first system built specifically to enable users to visu-
ally explore large datasets through “conversational” interactions. Our prototype
addresses many of the previously mentioned challenges (Sect. 2), applying novel
progressive sampling, indexing, and query optimization techniques in order to
provide interactive response times. In this section, we first provide an overview
of our proposed architecture, followed by highlights of research insights and
contributions.

184 C. Binnig et al.

3.1 Architecture

The architecture of IDEA is shown in Fig. 2. The Vizdom frontend provides
a visual data exploration environment specifically designed for pen and touch
interfaces, such as the recently announced Microsoft Surface Hub. A demo video
of Vizdom can be found here [7]. Currently, Vizdom connects to IDEA using a
standard REST interface, which in turn connects to the data sources using the
appropriate protocols (e.g., ODBC). These data sources can include anything
from legacy data warehouses to raw files to advanced analytics platforms (e.g.,
Spark [30], Hadoop [26]). As shown in Fig. 2, Vizdom connects to IDEA, which
acts as an intelligent cache for those data sources and executes user queries
interactively using a novel AQP engine.

IDEA’s AQP engine is the core of IDEA and divides the memory into three
parts: the Result Cache, the Sample Store, and space for Indexes. When trig-
gered by an initial user interaction, IDEA translates it into a query and begins
ingesting required data from the various data sources, speculatively performing
operations and caching the results in the Result Cache to support possible future
interactions. At the same time, IDEA also caches all incoming data in the Sam-
ple Store using a compressed row format. When the available memory for the
Sample Store is depleted, IDEA starts to update the cache using a reservoir
sampling strategy to eventually create a representative sample over the whole
dataset. Furthermore, IDEA might decide to split up the reservoir sample into
several stratified subsamples to overrepresent the tails of the distribution, or
to create specialized Indexes on the fly to better support visual workloads. All
these decisions are constantly optimized based on both past and current user
interactions. For example, if the user drags a new attribute onto the canvas, the
system might allocate more resources to the dragged attribute and preparation
for potential follow-up queries. At the same time, IDEA constantly streams
increasingly precise results to the frontend as the computation progresses over
the data, along with indications about both the completeness and current error
estimates.

3.2 Research Findings and Contributions

In this section, we highlight a few selected research findings and contributions
of IDEA.

Progressive AQP Engine: IDEA’s engine is neither a classical DBMS execution
engine nor a streaming engine, instead has an entirely unique semantics. Unlike
DBMSs, queries are not one-shot operations that return exact results; rather,
data exploration workflows are constructed incrementally, requiring fast response
times and progressive results that refine over time. At the same time, stream-
ing engines traditionally deploy predefined queries over infinite data streams,
whereas IDEA is meant to enable free-form exploration of data sampled from a
deterministic system (e.g., a finite data source).

Towards Interactive Data Exploration 185

Fundamentally, IDEA acts as an intelligent, in-memory caching layer that
sits in front of the much slower data sources, managing both progressive results
and the samples used to compute them. Oftentimes, IDEA has the opportu-
nity to offload pre-filtering and pre-aggregation operations to an underlying
data source (e.g., perform a predicate pushdown to a DBMS), or even trans-
form the base data by executing a custom UDF in an analytics framework.
Finally, in contrast to traditional DBMSs and streaming engines, users compose
queries incrementally, therefore resulting in simultaneous visualizations of many
component results with varying degrees of error. Maintaining different partial
results rather than a single, exact answer imposes a completely new set of chal-
lenges for both expressing and optimizing these types of queries. Currently, our
IDEA prototype uses a preliminary interaction algebra to define a user’s visual
queries [10].

Probabilistic Query Formulation: While developing the AQP enfine of IDEA,
we observed that many visualizations rely on the observed frequencies in the
underlying data, or estimates of the probability of observing certain data items.
For example, a bar chart over a nominal attribute is simply a visualization of
the relative frequencies of the possible attribute values (i.e., a probability mass
function), and a histogram of a continuous attribute visually approximates the
attribute’s distribution (i.e., a probability density function). Although seemingly
trivial, this observation prompted us to reconsider online aggregation as a series
of probability expressions.

This novel probability formulation actually permits a wide range of interest-
ing optimizations including taking advantage of the Bayes’ theorem to maximize
the reuse of results. Our current implementation of IDEA therefore manages a
cache of results that stores previously computed frequencies and error estimates
for reuse in future queries [15].

Visual Indexes: Similar to the algebra and optimizer, we also found that tra-
ditional indexes are not optimal for interactive data exploration tasks. Most
importantly, existing techniques either sort the data (e.g., database cracking) or
do not naturally support summary visualizations. As previously mentioned, sort-
ing can destroy data randomness and, consequently, the ability to provide good
estimates. Similarly, indexes generally index every tuple without considering
any properties of the frontend (e.g., human perception limitations, visualization
characteristics). This approach often results in very large indexes, especially with
increasingly large samples or highly dimensional data.

For example, some visualizations (e.g., histograms) require the system to scan
all leaf pages in a traditional B-tree, since this index is designed for single range
requests rather than providing visual data summaries. We therefore developed
VisTrees [13], a new dynamic index structure that can efficiently provide approx-
imate results specifically to answer visualization requests. The core idea is that
the nodes within the index are “visually-balanced” to better serve visual user
interactions and then compressed based on perception limitations. Furthermore,

186 C. Binnig et al.

these indexes are built on the fly during the think-time of users to avoid heavy
upfront cost which would violate out connect-and-explore paradigm.

Sample Store: As previously mentioned, IDEA caches as much data as possible
from the underlying data sources in order to provide faster approximate results,
since most data sources are significantly slower. For example, the memory band-
width of modern hardware ranges from 40–50 GB/s per socket [4], whereas we
recently measured that PostgreSQL and a commercial DBMS can only export
40–120 MB/s, even with a warm cache holding all data in memory. Although
DBMS export rates may improve in the future, IDEA’s cache will still remain
crucial for providing approximate answers to visual queries and supporting more
complex analytics tasks (e.g., ML algorithms).

If the cached data exceeds the available memory, IDEA needs to carefully
evict stored tuples while retaining the most important data items in memory.
For example, caching strategies like LRU do not necessarily maintain a represen-
tative sample. Therefore, IDEA uses reservoir sampling instead to evict tuples
while preserving randomness. Furthermore, IDEA also needs to maintain a set
of disproportionate stratified samples that overrepresent uncommon data items
in order to support operations over rare subpopulations. The necessity to main-
tain different types of potentially overlapping samples poses many interesting
research challenges. For example, deciding when and what to overrepresent is a
very interesting problem, and IDEA uses a cost model to make this decision as
described in [15].

Inconsistencies: Interactive response times often require computing approximate
answers in parallel, which can lead to inconsistencies in concurrent views (e.g.,
the combined salary bars shown in Fig. 1(B) may not sum to the total number
of females). Similarly, an outlier that appears in one result visualization may
not yet be reflected in another, causing the user to draw a potentially incorrect
conclusion.

Although initially assuming that inconsistencies would pose an important
challenge for IDEA, we found that this problem only arises in a few corner
cases, and we did not observe any consistency issues during various user studies
[10,15,31]. In particular, IDEA’s result reuse and sampling techniques work
together to mitigate many potential consistency problems, and any noticeable
differences tend to disappear before the user can even recognize them.

4 Other Considerations

In addition to the core challenges that we address in IDEA to support a backend,
there are many other considerations when building a novel data management
system for interactive data exploration.

Towards Interactive Data Exploration 187

4.1 Benchmarking IDE Systems

Existing benchmarks for analytical database systems such as TPC-H [28] and
TPC-DS [27] are designed for static reporting scenarios. However, those bench-
marks are not suitable for evaluating new backends for interactive data explo-
ration because of different reasons. For instance, the main metric of these bench-
marks is the performance of running individual SQL queries to the end, thereby
not supporting more recent systems which return approximate results such as
IDEA [10], approXimateDB/XDB [18], or SnappyData [24]. More importantly,
workloads of traditional analytical benchmarks do not meet the complexity of
actual data exploration workflows where queries are built and refined incremen-
tally.

We have therefore started to work a novel benchmark called IDEBench [12]
that can be used to evaluate the performance of IDE systems under realistic
conditions in a standardized, automated, and re-producible way. An initial ver-
sion of the benchmark and results of running the benchmark on several data
analytics backends for interactive data exploration is available2.

4.2 Natural Language Interfaces

While visual exploration tools have recently gained significant attention, Nat-
ural Language Interfaces to Databases (NLIDB) appeared as a high-promise
alternative as it enables users to pose complex ad-hoc questions in a concise and
convenient manner. For example, imagine that a medical doctor starts her new
job at a hospital and wants to find out about the age distribution of patients with
the longest stays in the hospital. This question typically requires the doctor—
when using a standard database interface directly—to write a complex nested
SQL query. Even with a visual exploration tool such as Tableau [25] or Vizdom
[8], a query like this is far from being trivial since it requires the user to exe-
cute multiple query steps and interactions. Alternatively, with an exploration
tool that provides a natural language interface, the query would be as simple as
stating “What is the age distribution of patients with the longest stays in the
hospital?”. However, understanding natural language questions and translating
them accurately to SQL is a complicated task, and thus NLIDBs have not yet
made their way into commercial products.

We therefore developed DBPal, a relational database exploration tool that
provides an easy-to-use natural language (NL) interface aimed at improving the
transparency of the underlying database schema and enhancing the expressive-
ness and flexibility of human-data interaction through natural language. Differ-
ent from existing approaches, our system leverages deep models to provide a more
robust query translation. Our notion of model robustness is defined as the effec-
tiveness of the translation model to map linguistically varying utterances to finite
pre-defined relational database operations. Take, for example, a SQL expression
SELECT * FROM patients WHERE diagnosis=‘flu’. There are numerous corre-
sponding natural language utterances for this query, such as “show all patients
2 https://idebench.github.io/.

https://idebench.github.io/

188 C. Binnig et al.

with diagnosis of flu” or simply “get flu patients”. We aim to build a translating
system that is invariant towards these linguistic alterations, no matter how com-
plex or convoluted. The video at https://vimeo.com/user78987383/dbpal shows
a recording of a representative user session in our system.

4.3 Interactive Model Curation

Extracting actionable insights from data has been left to highly trained individu-
als who have a background in machine learning. For example, it is common prac-
tice for corporations to employ teams of data scientists that assist stakeholders in
building models to find qualitative, data-driven insights to inform possible busi-
ness decisions. Having such a high-entry bar to data analysis however presents
several challenges. For one, it presents a bottleneck. While research is trying to
understand and promote visualization and data literacy and educational insti-
tutions are ramping up their data science curricula there is still a shortage of
skilled data scientists. And second, and more importantly, restricting data anal-
ysis to those with a computational and machine learning background creates an
inequality. Small business owners without those skills or research domains where
computational background might not be as prevalent are at a disadvantage as
they can not capitalize on the power of data.

We believe that there is an opportunity for tool builders to create systems for
people who are domain experts but neither ML experts. We are therefore working
on a new system for Quality-aware Interactive Curation of Models, called QuIC-
M [3]. Through QuIC-M domain experts can build these pipelines automatically
from high level tasks specification and at a fast pace without the need to involve a
data scientist and without sacrificing quality. Making sense of data is exploratory
by nature, and demands rapid iterations and all but the simplest analysis tasks,
require humans-in-the-loop to effectively steer the process. QuIC-M exposes a
simple model building interface allowing domain experts to seamlessly interleave
data exploration with curation of machine learning pipelines. However, empow-
ering novice users to directly analyze data also comes with drawbacks. It exposes
them to “the pitfalls that scientists are trained to avoid” [14]. We discussed and
described such “risk” factors and QuIC-M’s user interface in related works [9,32].

5 Conclusion

In this paper, we presented the case for a new bread of data management sys-
tems which seek to maximize human productivity by allowing users to rapidly
gain insights from new large datasets. We outlined the research challenges and
opportunities when building such a new system and discussed the insights we
gained from building our system called IDEA. Finally, we discussed other impor-
tant considerations in the context of building interactive data exploration sys-
tems including benchmarking, natural language interfaces, as well as interactive
machine learning.

https://vimeo.com/user78987383/dbpal

Towards Interactive Data Exploration 189

References

1. Agarwal, S., et al.: BlinkDB: queries with bounded errors and bounded response
times on very large data. In: EuroSys, pp. 29–42 (2013)

2. Apache Flink. http://flink.apache.org/
3. Binnig, C., et al.: Towards interactive curation & automatic tuning of ML pipelines.

In: 1st Inaugural Conference on Systems ML (SysML) (2018)
4. Binnig, C., et al.: The end of slow networks: it’s time for a redesign. In: VLDB, pp.

528–539 (2016)
5. Böhm, C., Berchtold, S., Kriegel, H., Michel, U.: Multidimensional index structures

in relational databases. J. Intell. Inf. Syst. 15, 51–70 (2000)
6. Chaudhuri, S., Das, G., Narasayya, V.R.: Optimized stratified sampling for approx-

imate query processing. TODS 32, 9 (2007)
7. Crotty, A., et al.: Vizdom Demo Video. https://vimeo.com/139165014
8. Crotty, A., et al.: Vizdom: interactive analytics through pen and touch. In: VLDB,

pp. 2024–2035 (2015)
9. Crotty, A., Galakatos, A., Zgraggen, E., Binnig, C., Kraska, T.: Vizdom: interactive

analytics through pen and touch. Proc. VLDB Endow. 8(12), 2024–2027 (2015)
10. Crotty, A., Galakatos, A., Zgraggen, E., Binnig, C., Kraska, T.: The case for inter-

active data exploration accelerators (IDEAs). In: HILDA@SIGMOD, p. 11. ACM
(2016)

11. Cumming, G., Finch, S.: Inference by eye: confidence intervals and how to read
pictures of data. Am. Psychol. 60, 170–180 (2005)

12. Eichmann, P., Zgraggen, E., Zhao, Z., Binnig, C., Kraska, T.: Towards a benchmark
for interactive data exploration. IEEE Data Eng. Bull. 39(4), 50–61 (2016)

13. El-Hindi, M., Zhao, Z., Binnig, C., Kraska, T.: VisTrees: fast indexes for interactive
data exploration. In: HILDA (2016)

14. Fisher, D., DeLine, R., Czerwinski, M., Drucker, S.: Interactions with big data
analytics. Interactions 19(3), 50–59 (2012)

15. Galakatos, A., Crotty, A., Zgraggen, E., Binnig, C., Kraska, T.: Revisiting reuse
for approximate query processing. PVLDB 10(10), 1142–1153 (2017)

16. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In: SIGMOD, pp.
171–182 (1997)

17. Idreos, S., Kersten, M.L., Manegold, S.: Database cracking. In: CIDR, pp. 68–78
(2007)

18. Li, F., Wu, B., Yi, K., Zhao, Z.: Wander join: online aggregation via random walks.
In: ACM SIGMOD, pp. 615–629. ACM (2016)

19. Lichman, M.: UCI Machine Learning Repository (2013)
20. Liu, Z., Heer, J.: The effects of interactive latency on exploratory visual analysis.

TVCG 20, 2122–2131 (2014)
21. Liu, Z., Jiang, B., Heer, J.: imMens: real-time visual querying of big data. In:

EuroVis, pp. 421–430 (2013)
22. Olken, F., Rotem, D.: Random sampling from relational databases. In: VLDB, pp.

160–169 (1986)
23. Pansare, N., Borkar, V.R., Jermaine, C., Condie, T.: Online aggregation for large

MapReduce jobs. In: VLDB, pp. 1135–1145 (2011)
24. Snappy data. https://www.snappydata.io/. Accessed 02 Nov 2017
25. Tableau. http://www.tableau.com. Accessed 02 Nov 2017
26. The Apache Software Foundation. Hadoop. http://hadoop.apache.org
27. TPC-DS (2016). http://www.tpc.org/tpcds/. Accessed 02 Nov 2017

http://flink.apache.org/
https://vimeo.com/139165014
https://www.snappydata.io/
http://www.tableau.com
http://hadoop.apache.org
http://www.tpc.org/tpcds/

190 C. Binnig et al.

28. TPC-H (2016). http://www.tpc.org/tpch/. Accessed 02 Nov 2017
29. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:

fault-tolerant streaming computation at scale. In: SOSP, pp. 423–438 (2013)
30. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for

in-memory cluster computing. In: NSDI, pp. 15–28 (2012)
31. Zgraggen, E., Galakatos, A., Crotty, A., Fekete, J., Kraska, T.: How progressive

visualizations affect exploratory analysis. IEEE Trans. Vis. Comput. Graph. 23(8),
1977–1987 (2017)

32. Zhao, Z., De Stefani, L., Zgraggen, E., Binnig, C., Upfal, E., Kraska, T.: Controlling
false discoveries during interactive data exploration. In: Proceedings of the 2017
ACM International Conference on Management of Data, pp. 527–540. ACM (2017)

http://www.tpc.org/tpch/

	Towards Interactive Data Exploration*-10pt
	1 Introduction
	2 Challenges and Opportunities
	2.1 Challenges
	2.2 Opportunities

	3 The IDEA System
	3.1 Architecture
	3.2 Research Findings and Contributions

	4 Other Considerations
	4.1 Benchmarking IDE Systems
	4.2 Natural Language Interfaces
	4.3 Interactive Model Curation

	5 Conclusion
	References

