
D

Distributed Machine Learning

Alex Galakatos1;2, Andrew Crotty2, and
Tim Kraska2
1Database Group, Brown University,
Providence, RI, USA
2Department of Computer Science, Brown
University, Providence, RI, USA

Synonyms

Data mining; Large-scale learning; Machine
learning

Definition

Distributed machine learning refers to multi-
node machine learning algorithms and systems
that are designed to improve performance, in-
crease accuracy, and scale to larger input data
sizes. Increasing the input data size for many
algorithms can significantly reduce the learning
error and can often be more effective than using
more complex methods [8]. Distributed machine
learning allows companies, researchers, and in-
dividuals to make informed decisions and draw
meaningful conclusions from large amounts of
data.

Many systems exist for performing machine
learning tasks in a distributed environment.

These systems fall into three primary categories:
database, general, and purpose-built systems.
Each type of system has distinct advantages and
disadvantages, but all are used in practice de-
pending upon individual use cases, performance
requirements, input data sizes, and the amount of
implementation effort.

Historical Background

Before the advent of distributed frameworks,
users were required to create handwritten
solutions in which they were solely responsible
for explicitly controlling all aspects of execution.
This error-prone and laborious process included
managing data distribution, parallelization,
synchronization, and fault tolerance, which led to
a lengthy development cycle where users had
difficulty debugging existing algorithms and
implementing new ones.

However, new programming frameworks such
as MapReduce [4] greatly simplified the process
of distributed computing and allowed users to
effortlessly scale algorithms to larger datasets.
These frameworks provide primitives with well-
defined parallelization semantics along with a
distributed runtime environment and file system,
thereby allowing users to focus on implementing
algorithms rather than managing low-level de-
tails.

© Springer Science+Business Media LLC 2017
L. Liu, M.T. Özsu (eds.), Encyclopedia of Database Systems,
DOI 10.1007/978-1-4899-7993-3_80647-1

http://link.springer.com/Data mining
http://link.springer.com/Large-scale learning
http://link.springer.com/Machine learning


2 Distributed Machine Learning

Scientific Fundamentals

Performing machine learning algorithms in a dis-
tributed environment first involves conceptually
converting single-threaded algorithms to parallel
algorithms. This step can often be the most diffi-
cult because it is algorithm-specific and requires
that the user has a strong understanding of the
underlying algorithm. The second step involves
actually implementing the parallel algorithms,
requiring the user to understand the semantics
and runtime of the system in order to achieve
correct and efficient parallel execution.

Parallelizing Algorithms
Machine learning algorithms can be divided into
two categories: supervised and unsupervised. Su-
pervised learning takes labeled inputs (e.g., a set
of emails labeled spam/not spam) and builds a
model that can be used to predict future unlabeled
inputs. Unsupervised learning aims to discover
properties about the data without relying on la-
beled instances (e.g., clustering customers into
categories for market analysis).

The next section provides an overview of and
parallelization details for gradient descent, re-
gression, and k-means clustering, followed by al-
ternative parallelization strategies, including en-
semble learning techniques and parallel model
training. Note that the following algorithms and
strategies are included as examples and that many
other methods are used in practice.

Gradient Descent
Gradient descent is a general optimization algo-
rithm used extensively in machine learning that
aims to minimize a loss function f . This loss
function can be modified to perform a variety of
machine learning tasks such as linear regression,
recommendation, and support vector machines
(SVMs). An example of a loss function for linear
regression is the mean squared error, which in-
tuitively measures the average distance between
the actual and predicted values across all training
instances.

The result of the gradient descent algorithm
is a vector � , often referred to as a model or

weight vector, which contains the loss function
coefficients that best fit the training data. Once
constructed, the model � can be used to predict
unlabeled input data items.

Gradient descent begins with a randomly ini-
tialized weight vector that is iteratively updated
by stepping in the direction of the largest neg-
ative gradient of the loss function. As shown
in Algorithm 1, the new weight vector �jC1 is
updated by taking the current weight vector �j
and subtracting the gradient of the loss function
evaluated with the current model, where ˛ is the
learning rate. In this variant of gradient descent,
referred to as batch gradient descent, the weights
are only updated after processing all n training
instances.

Stochastic gradient descent updates model
weights for each randomly sampled training
instance and is therefore significantly more
scalable than batch gradient descent. Stochastic
gradient descent has been shown to converge
faster than batch gradient descent due to the fact
that updates to the model are applied immediately
for each instance; hence, each successive instance
interacts with a more accurate model. In many
cases, stochastic gradient descent can converge
on optimal model parameters after only a single
pass over the training data.

Algorithm 1 Batch gradient descent
Randomly initialize �
while !converged do

�jC1 D �j � ˛rf .�j /
end while

Regression
Linear and logistic regression are discriminative
classification algorithms that use labeled training
instances to find a hyperplane w that optimally
separates two classes of data. More specifically,
given a set of n training instances, each of the
form fx1; x2; :::; xm; yg, where xi is a feature
value and y is the binary label, the algorithm
determines the m coefficients � of the linear or
logistic function that best fit the training data.



Distributed Machine Learning 3

D

Once constructed, this model can be used to
classify unlabeled input data.

Using a least squares method such as ordinary
least squares, a closed-form solution for solving
linear regression exists and can be calculated di-
rectly. Given the set of feature vectors X and the
set of corresponding labels y, � can be computed
using the following equation:

� D .XTX/�1XT y (1)

Although the closed-form solution given in
Eq. 1 is straightforward to compute using stan-
dard linear algebra techniques, the matrix inver-
sion is computationally expensive and does not
scale to a large number of training instances.
For this reason, the previously described meth-
ods based on gradient descent are often used
for performing regression tasks in a distributed
setting. In this case, each parallel worker locally
computes and stores updates to the model using
a disjoint subset of the input data. After each
worker has finished computing local updates to
the model, these updates are then combined glob-
ally and redistributed on the subsequent iteration.

K-Means Clustering
K-means clustering is an unsupervised iterative
machine learning algorithm that partitions input
data into k clusters. K-means selects random
initial cluster centroids and then assigns each
input data item to the closest centroid. After all
data points have been assigned, the algorithm
determines the new centroid values by averaging
the feature values of all input data items per
centroid. The algorithm repeats these steps until
completing a set number of iterations or meeting
some convergence criteria.

K-means clustering can be executed in a
distributed setting using data-level parallelism,
where each compute node operates on disjoint
data subsets. In this scenario, workers compute
the distance to all current centroids and determine
the closest centroid to each local data item. Next,
for a given data item d assigned to centroid
c, the algorithm sets sumc D sumc C d and
countc D countc C 1. After all compute nodes

have processed their local input data items,
the sum and count values across all nodes are
globally aggregated to compute the new centroid
values.

Ensemble Learning
Ensemble learning involves building a set of
diverse classifiers in order to improve the overall
accuracy for classification tasks. By building and
combining multiple weak learners, users can cre-
ate a single strong learner with a higher accuracy
than any one individual weak learner.

To implement ensemble methods in a dis-
tributed environment, users can train each weak
learner in parallel using a local subset of the
input data. After training n of these classifiers,
where n is the number of distributed workers,
users can choose between two primary strategies
for creating a single strong learner that they can
then use to classify unlabeled input data. The first
strategy involves actually combining the models
from each of the n classifiers to create a single
classifier. This method is easy to implement for
ensembles that use the same learning algorithm
but is generally not possible for ensembles with
classifiers that represent their models differently
(e.g., decision trees vs. regression models).

For this reason, the second and more popular
strategy for merging n distributed classifiers is
to combine the output value from each classi-
fier. Bootstrap aggregation, often referred to as
bagging, is a simple yet popular way to combine
the outputs from multiple classifiers. Bootstrap
aggregation determines the final output value by
selecting the mode of the n output values.

Frameworks
A number of systems have been developed to
support machine learning applications in a dis-
tributed setting. Systems for distributed machine
learning can be grouped broadly into three pri-
mary categories: database, general, and purpose-
built systems. This section summarizes a variety
of systems that fall into each category, but note
that it is not intended to be a complete survey of
all existing systems for machine learning.



4 Distributed Machine Learning

Database Systems
A number of solutions have been proposed for
implementing and executing machine learning
tasks using traditional database management
systems (DBMSs). Extensions/modifications
are generally required to perform most of these
tasks inside a DBMS, since the SQL standard
cannot easily express many important aspects of
machine learning algorithms (e.g., iteration). The
following systems add additional functionality
that allows users to execute machine learning
tasks directly inside a DBMS.

Bismarck [5] implements an abstraction layer
that provides a “unified architecture” and focuses
specifically on gradient descent. Users can im-
plement new ML algorithms by specifying an
objective function as a user-defined aggregate for
the new gradient descent operator.

Other systems such as MADlib [9] provide
extensions to SQL that permit users to execute
built-in machine learning tasks. For example, a
user can perform logistic regression in an existing
database by writing a query of the form:

SELECT madlib.logregr_train(
source_table,
out_table,
dependent_varname,
independent_varname,
grouping_cols,
max_iter,
optimizer,
tolerance,
verbose
)

Generally, systems in this category enable
users to run machine learning tasks on data that
is already stored in a DMBS, thus eliminating
the need to transfer data into an alternate system.
However, users must often transform their data
to fit the specified format and are limited to a
predefined set of algorithms.

General Frameworks
General frameworks allow users to write custom
data processing workflows using a set of API op-
erators directly inside a host language. Although
many of these frameworks provide built-in im-

plementations for common machine learning al-
gorithms, they are fundamentally designed for
extensibility and arbitrary workloads. Systems in
this category range from low-level frameworks
that provide only basic functionality to high-
level frameworks that provide advanced features,
including automatic fault tolerance and a flexible
API.

Message Passing Interface (MPI) [6] is a low-
level framework designed for high-performance
distributed computation. MPI offers many
primitives (e.g., send, receive, broadcast, scatter,
gather) that allow users to implement a wide
range of applications, including machine learning
algorithms. However, due to its low-level nature,
implementing many machine learning tasks
using MPI is often quite labor-intensive and
error-prone, since developers must explicitly
manage aspects such as data distribution and
fault tolerance.

Hadoop [1] is a popular, open-source MapRe-
duce implementation designed for executing
workflows on large clusters of commodity
machines. Hadoop provides automatic fault
tolerance, a distributed file system, and a simple
programming abstraction that allows users to
analyze petabyte-scale data across thousands
of machines. However, Hadoop cannot natively
or efficiently support iterative workflows and
requires that the user submit a single job for every
iteration. Furthermore, intermediate results must
be materialized to disk, causing the performance
of iterative queries to suffer. Mahout [2] is
a library that provides implementations of
several machine learning tasks using the Hadoop
distributed runtime without requiring users to
translate algorithms to the MapReduce paradigm.

Spark [15] is a distributed framework that
targets in-memory computations and allows users
to compose workflows using a set of predefined
API operators in Scala, Java, or Python. A driver
program coordinates the parallel execution of
tasks and handles synchronization for iterative
queries. Spark extends the MapReduce paradigm
by providing a more descriptive set of operators,
including f ilter , join, and union, that make
it easier to express many machine learning al-
gorithms. Additionally, by keeping the working



Distributed Machine Learning 5

D

dataset in memory, Spark can efficiently support
iterative algorithms.

DryadLINQ [14] is a system developed by
Microsoft that compiles programs written in the
LINQ programming language into jobs that are
executed using the Dryad distributed runtime.
LINQ is a high-level data manipulation language
with a C# programming interface that provides
many specialized objects that are useful for ma-
chine learning, and Dryad is a parallel execution
engine that models tasks as dataflow graphs.

Tupleware [3] is an in-memory analytics sys-
tem that focuses specifically on complex work-
loads such as machine learning. Unlike other
systems, Tupleware compiles workflows writ-
ten in any LLVM-based programming language
into highly optimized distributed executables for
deployment in a cluster. By directly compiling
workflows, Tupleware eliminates the substantial
overhead associated with interpreted execution
models and can also apply many optimizations to
the code generation stage that consider properties
about the input data, user-defined computations,
and underlying hardware.

Purpose-Built Frameworks
Many purpose-built systems have been designed
specifically for machine learning. These systems
provide either domain-specific languages for ma-
chine learning or algorithm-specific optimiza-
tions that are not generally applicable.

SystemML [7] offers a declarative, high-level
language that can be used to implement machine
learning tasks. This language has an R-like syntax
and provides many built-in operators for perform-
ing matrix operations. Workflows submitted to
the system are translated into MapReduce jobs
and optimized to avoid multiple passes over the
input data.

OptiML [13] provides a Scala-embedded,
domain-specific language that is based on
linear algebra operations. The language includes
Vector, Matrix, and Graph data types, as well
as subtypes that permit additional optimizations.
The system then generates execution code that
targets specialized hardware (e.g., GPUs) and
single machines with multiple cores.

Hogwild! [12] is a lock-free implementation
of stochastic gradient descent. The system elimi-
nates all locking by allowing processors to update
any portion of the model, which is stored in
shared memory. This technique eliminates the
substantial overhead associated with locking and
allows other processors to immediately view the
most recent version of the model. The authors
show that the elimination of locking yields a
sufficiently low error rate while allowing the
algorithm to converge significantly faster.

Columbus [10] is a framework specifically
designed for performing feature selection in a
variety of analytics systems. Columbus provides
a set of operations and corresponding optimiza-
tions that make it easy and efficient to determine
the optimal features for a machine learning task.

MLbase [11] is a system that enables users
to specify machine learning tasks using a high-
level declarative language. The system’s opti-
mizer takes a learning task (e.g., classify a given
dataset) and chooses the best algorithm, param-
eters, and validation strategies. The system then
automatically performs the task in a cluster and
returns the resulting model and summary to the
user.

Key Applications

Machine learning has many important applica-
tions, including image recognition, spam filter-
ing, recommendation systems, natural language
processing, and bioinformatics. In virtually ev-
ery application, increasing amounts of data are
becoming available, and users need a simple
and efficient means of analyzing these disparate
data sources. Distributed machine learning allows
users to draw conclusions from massive datasets
in their entirety within a reasonable amount of
time.

Cross-References

�Data Mining
�Distributed Systems
�Machine Learning

http://link.springer.com/Data Mining
http://link.springer.com/Distributed Systems
http://link.springer.com/Machine Learning


6 Distributed Machine Learning

Recommended Reading

1. Apache hadoop. http://hadoop.apache.org.
2. Apache mahout. http://mahout.apache.org.
3. Crotty A, Galakatos A, Dursun K, Kraska T, Binnig

C, Çetintemel U, Zdonik S. An Architecture for Com-
piling UDF-centric Workflows. PVLDB, 8(12):1466–
1477, 2015.

4. Dean J, Ghemawat S. Mapreduce: simplified data
processing on large clusters. In: Proceedings of the
6th Conference on Symposium on Operating Systems
Design and Implementation (OSDI’04). USENIX As-
sociation; 2004.

5. Feng X, Kumar A, Recht B, Ré C. Towards a unified
architecture for in-rdbms analytics. In: Proceedings
of the 2012 ACM SIGMOD International Conference
on Management of Data (SIGMOD’12). New York:
ACM; 2012. p. 325–36.

6. Forum MP. Mpi: a message-passing interface stan-
dard. Technical report, Knoxville; 1994.

7. Ghoting A, Krishnamurthy R, Pednault E, Reinwald
B, Sindhwani V, Tatikonda S, Tian Y, Vaithyanathan
S. Systemml: declarative machine learning on mapre-
duce. In: Proceedings of the 2011 IEEE 27th Interna-
tional Conference on Data Engineering (ICDE’11).
Washington, DC: IEEE Computer Society; 2011.
p. 231–42.

8. Halevy A, Norvig P, Pereira F. The unreasonable
effectiveness of data. IEEE Intell Syst. 2009;24(2):
8–12.

9. Hellerstein JM, Ré C, Schoppmann F, Wang DZ,
Fratkin E, Gorajek A, Ng KS, Welton C, Feng
X, Li K, Kumar A. The MADlib analytics li-
brary: or MAD skills, the SQL. Proc VLDB Endow.
2012;5(12):1700–11.

10. Konda P, Kumar A, Ré C, Sashikanth V. Feature se-
lection in enterprise analytics: a demonstration using
an r-based data analytics system. Proc VLDB Endow.
2013;6(12):1306–9.

11. Kraska T, Talwalkar A, Duchi JC, Griffith R, Franklin
MJ, Jordan MI. Mlbase: a distributed machine-
learning system. In: CIDR; 2013. www.cidrdb.org.

12. Niu F, Recht B, Ré C, Wright SJ. Hogwild: a lock-
free approach to parallelizing stochastic gradient de-
scent. In: NIPS; 2011.

13. Sujeeth AK, Lee H, Brown KJ, Chafi H, Wu M,
Atreya AR, Olukotun K, Rompf T, Odersky M.
Optiml: an implicitly parallel domainspecific lan-
guage for machine learning. In: Proceedings of the
28th International Conference on Machine Learning
(ICML); 2011.

14. Yu Y, Isard M, Fetterly D, Budiu M, Erlingsson U,
Gunda PK, Currey J. Dryadlinq: a system for general-
purpose distributed data-parallel computing using
a high-level language. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design
and Implementation (OSDI’08). Berkeley: USENIX
Association; 2008. p. 1–14.

15. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, Mc-
Cauley M, Franklin MJ, Shenker S, Stoica I. Resilient
distributed datasets: a fault-tolerant abstraction for in-
memory cluster computing. In: Proceedings of the 9th
USENIX Conference on Networked Systems Design
and Implementation (NSDI’12). Berkeley: USENIX
Association; 2012. p. 2.

http://hadoop.apache.org
http://mahout.apache.org

	Distributed Machine Learning
	Synonyms
	Definition
	Historical Background
	Scientific Fundamentals
	Parallelizing Algorithms
	Gradient Descent
	Regression
	K-Means Clustering
	Ensemble Learning

	Frameworks
	Database Systems
	General Frameworks
	Purpose-Built Frameworks


	Key Applications
	Cross-References
	Recommended Reading




