
Discrete Time Specifications In
Temporal Queries

Philipp Eichmann
Andrew Crotty
Alex Galakatos
Emanuel Zgraggen
Brown University
Providence, RI 02912, USA
peichmann@cs.brown.edu
crottyan@cs.brown.edu
agg@cs.brown.edu
ez@cs.brown.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s).
CHI’17 Extended Abstracts, May 06-11, 2017, Denver, CO, USA
Copyright © 2017 ACM 978-1-4503-4656-6/17/05.
http://dx.doi.org/10.1145/3027063.3053222

Abstract
Analysis, exploration, and visualization of time-oriented
data are ubiquitous tasks in various application domains,
all of which involve the execution of temporal queries. Prior
research in interactively specifying the time component for
such queries has been focused on defining temporal rela-
tionships in data, i.e., querying event sequences through
ordinal patterns. However, there has been much less em-
phasis on how to specify time as a quantitative data dimen-
sion in temporal queries. Motivated by the advent of the
Internet of Things (IoT), we present a formal model that
can be used to represent complex time specifications. Our
model is the first step in an effort to enhance temporal user
interfaces that enables discrete time specifications through
a visual query interface.

Author Keywords
Temporal queries; query interfaces; visual query language;
query specification

ACM Classification Keywords
H.5.m [Information Interfaces and Presentation: Miscella-
neous]:

Late-Breaking Work CHI 2017, May 6–11, 2017, Denver, CO, USA

2536

Introduction
Various research efforts have identified and formulated both
goals and tasks for information visualization, many of which
include interaction in addition to visual tasks. Shneider-
man [11], for instance, defined a task by data type taxon-
omy that comprises interaction tasks such as zoom, filter,
and extract. Similarly, Yi et al [14] derived categories of
interaction tasks, including “show me a different arrange-
ment,” “show me a different representation,” and “show me
something conditionally.” While many interactive data ex-
ploration systems [2, 3] have built features to support these
kinds of tasks for various data types, most offer only limited
support for performing such tasks on time-oriented data.

An exception to this observation is the large body of work in
the area of event sequence analysis, which has produced
user interfaces that overcome the limited expressiveness of
ordinal time specification techniques (e.g., [15, 8, 9, 13, 5]).
However, such systems mainly focus on ordinal time, i.e.,
the relationship between events. Other applications treat
discrete time as a regular, linear, and quantitative data di-
mension, where interactive parametrization is often limited
to defining the start and end point of a time interval. Moti-
vated by an IoT scenario, we argue that such systems are
not suitable to express queries that exceed the complex-
ity of simple interval- or calendar-based filters, since they
either lack expressiveness or have a steep learning curve
due to dialog-heavy interfaces or complex query languages.

As part of our endeavor to create a gestural interface for
specifying time for temporal queries while also encouraging
iterative and fluid exploration, this paper investigates a com-
pact and expressive structure to parametrize discrete time
using the basic time building blocks instants, intervals, and
spans.

Motivating Examples
Our work is motivated by a recent experiment we con-
ducted in the computer science building at Brown Univer-
sity. Throughout the building, we installed a number of IoT
devices that record measurements and events, such as the
current energy consumption of printers and vending ma-
chines, as well as motion in classrooms and when doors
are opened or closed. An example of recorded data can be
found in Table 1. In the following, we provide use cases to
illustrate the importance of temporal interfaces that enable
users to specify complex queries.

Time Type Value Dev Id Dev Type

1483030839180 open NULL d1:front door
1483030842534 watts 669 v1:coke outlet
1483030843573 closed NULL d2:front door
1483030844573 watts 669.7 v1:coke outlet
1483030852564 watts 668.7 v1:coke outlet
1483030853525 watts 669.2 v1:coke outlet
1483030857530 watts 668.2 v1:coke outlet
1483030858033 open NULL d1:front door
1483030858549 watts 669.1 v1:coke outlet
1483030861628 watts 668.4 v1:coke outlet
1483030863981 closed NULL d1:front door
1483030866552 watts 669.4 v1:coke outlet
1483030867478 watts 668.8 v1:coke outlet
1483030873516 watts 667.7 v1:coke outlet
1483030874589 watts 668.2 v1:coke outlet
1483030876625 watts 667.7 v1:coke outlet
1483030878471 watts 666.4 v1:coke outlet

Table 1: A sample from our IoT dataset showing measurements
made for two doors (d1,d2) and a vending machine (v1).

Late-Breaking Work CHI 2017, May 6–11, 2017, Denver, CO, USA

2537

Example 1
The facilities department is responsible for management,
maintenance, and scheduling of the building. In regular in-
tervals, a facilities manager opens a web-based monitoring
application, which displays information for all motion and
temperature sensors as well as energy monitoring devices
installed in the building. He is interested in finding anoma-
lies in the recorded temperatures of all rooms in the build-
ing. While the application displays a linearly re-sampled
representation of all temperature time series so they vi-
sually fit on the screen, he wants to zoom into last week’s
records in order to look at a more fine-grained resolution
and detect unusual patterns.

Example 2
The facilities manager notices that the energy consumption
of one of two co-located vending machines has remained
steady over the course of the past 24 hours, indicating that
no sales have been recorded. Since this is abnormal, he
then decides to manually examine the machine and deter-
mines that there is indeed a technical issue. Because repair
work on either vending machine can disrupt the service of
the other, he wants to find suitable time slots for scheduling
a repairman at times where the working vending machine
is used the least. Knowing that repair work typically takes a
maximum of two hours, he wants to find times on workdays
between 9am and 3pm with low vending machine usage
(i.e., low energy consumption). Based on the visualization
shown in Figure 1, he schedules an appointment with the
repairman.Figure 1: A sample visualization

where a facilities manager
executed a query to find time slots
of two hours in length where the
usage of a vending machine is
below some threshold (shown in
green).

Background
The goal of our work is to provide a formal description of a
structure that can be used to parametrize time as an argu-
ment for temporal queries. We first recapitulate important
time modeling design aspects that are typically considered

when visualizing time-oriented data. We then give a brief
description of a few selected systems that support data se-
lection by time, before formally defining our model in the
next section.

Time Modeling
A wide variety of models have been proposed in past re-
search. In the following, we provide a brief overview (based
on [1] and [4]) of time-related objects and the properties
most relevant to our work.

Time Domain Time can be categorized into either an
ordinal, discrete, or continuous domain. Ordinal time only
defines relative order relations, such as before and af-
ter. Continuous time most closely models physical time,
where an infinite number of points in time exist between
any other two points. Discrete time uses a discrete time
unit (e.g., a UNIX timestamp denoting the number of
elapsed seconds since January 1, 1970).

Time Primitives Time Primitives are the building blocks
of a time model. We distinguish between instants, inter-
vals, and spans. An instant refers to a point in time with
finite precision in the discrete time domain and infinite
precision in the continuous time domain. We define an
interval as a closed interval between two instants. Both
instants and intervals are anchored, meaning that they
have a fixed position in time. Spans represent a duration
of time (e.g., three seconds) and are, therefore, unan-
chored.

Granularity Time can be represented at different lev-
els of granularity. The granularity of time determines how
temporal primitives are transformed to other conceptual
units of time. For instance, the Gregorian calendaric el-
ements Saturday and Sunday can be summarized as a
weekend, or a day can be represented as 24 hours.

Late-Breaking Work CHI 2017, May 6–11, 2017, Denver, CO, USA

2538

Rind et al. presented similar work on a software library
called TimeBench [10], that provides data structures and
algorithms for visual analytics of time-oriented data. In par-
ticular, they developed a data model that captures the com-
plexity of time-oriented data by mapping data objects to a
set of time primitives and vice-versa. Our work, in turn, fo-
cuses on a more formal and expressive notation for time
specifications that parametrize time as an argument for
temporal queries.

Time Specification Techniques
A common technique to drill down in time series data (used
by systems such as ChronoLenses [17] and KronoMiner
[16]) is to select regions of interest using rubber band se-
lections. In both systems, selected time ranges can be
shifted using a drag-and-drop gesture. With KronoMiner,
start and end values can be adjusted precisely using a
pop-up dialog. TimeSearcher [6] uses a concept called
timeboxes, which are similarl to the rubber band selection.
Timeboxes are rectangles that can be drawn directly on a
line graph visualization of a time series. While the extent of
a timebox along the horizontal axis defines the time range
of interest, the location on the vertical axis and height of the
rectangle specifies the desired amplitude range. Queries
can be refined in either dimension using range sliders. A
more recent example of an application that allows users to
explore time-oriented data and offers similar basic opera-
tions is LiveRAC [7], a system tailored to the visual analysis
of large collections of system management time series.
Tableau [12] offers a way to create parametrization controls,
which can be applied as filters. A parameter (e.g., a start
date) can be defined with a minimum and maximum value
as well as a step size. An interactive slider control can then
be used to set the parameter.

Time Specifications
In this section, we introduce a model that can be used to
parametrize temporal queries, such as the ones outlined in
the previous section. Because time in information technol-
ogy is usually represented in the discrete domain, we will
assume discrete time for all primitives.

We first describe a time-oriented query function Q that we
aim to parametrize.

Q({ts0, ..., tsn}, λ, d) (1)

Queries on time-oriented data are typically defined by tem-
poral and non-temporal parameters, {ts0, ..., tsn} and λ,
respectively, as well as the data d for which the query is de-
fined. We call each ts a Time Specification. A Time Speci-
fication is a set of Time Primitives that each can represent
an instant, interval, or span, as we will show. More formally,
we define a Time Primitive tp as a tuple 〈S, δ, σ〉, where
the start time S and duration δ represent a time interval
[S, S + δ). σ indicates a stride or time step that we will use
to support temporal partitioning. All values in ts are defined
in a time unit (e.g, milliseconds or ticks). Typically, S is de-
fined in N, δ is in Z, and σ can be set to either a value in
N+ or to∞. The non-temporal argument λ is defined as a
function that takes in a finite set of data satisfying the tem-
poral constraint given by all ts. This could be an aggregate
function, such as an average for a particular data attribute.
Conceptually, Q first partitions the data based on the tem-
poral specifications given by t and then applies λ to each
partition.

With tp, an instant can expressed by setting S to the times-
tamp of the instant, the duration δ to zero, and the stride σ
to∞. To describe intervals, we set S to the start time, δ to
the difference between the start and end times, and σ to

Late-Breaking Work CHI 2017, May 6–11, 2017, Denver, CO, USA

2539

∞. By definition, spans are unanchored, i.e., they are not
specified by a start time and end time, but rather only by
duration. However, spans are typically used to parametrize
windowed functions in order to extract intervals of a given
span duration (time span) at discrete steps (temporal parti-
tioning). This is reflected in our model by the stride param-
eter σ. Setting a stride to infinity, as done for instants and
intervals, means that λ is only applied to a single partition
of data (an instant or interval). Conversely, setting a stride
to a positive integer σ, can lead to one or many potentially
overlapping partitions, which can be seen as defining mul-
tiple Time Primitives at once, each of duration δ but with
varying start times. We formally define tp as

〈S, δ, σ〉 =
n−1⋃
i=0

〈S + i · σ, δ,∞〉 (2)

where

n =

{
floor(δσ), if σ 6=∞
1, otherwise

(3)

To illustrate the applicability of Time Specifications, we pro-
vide a number of examples that show how both simple and
more complex time constraints can be represented using
our model. For simplicity and readability, we do not use a
particular time unit in the following specifications.

Examples
11am, January 1st, 2017

↓
{〈11am, January 1st, 2017, 0,∞〉}

A single instant can be represented by a Time Specification
with a single time primitive.

January 1st and January 3rd, 2017
↓

{〈January 1st, 2017, 0,∞〉}
∪

{〈January 3rd, 2017, 0,∞〉}
Consequently, n non-consecutive instants are represented
by n time primitives.

10am to 2pm, February 20st, 2017
↓

{〈February 20st 10am, 4h,∞〉}
An single interval is represented by setting the duration.
Analogous to the previous example, non-consecutive inter-
vals can be expressed by defining multiple time primitives.

Past hour
↓

{〈Current time, -1h,∞〉}
Negative durations can be used to specify an interval from
S − δ to S.

All weekends
↓

{〈First Saturday 1970 in Unix Time, 2d, 7d〉}
A span is defined by setting the stride to a positive integer,
in this case seven days. Since “all weekends” does not con-
strain the time range in which weekend intervals are to be
queried, the start time of this specification is set to the first
occurrence of a Saturday in the given time unit.

All 24h windows with stride of 1h in the past week
↓

{〈Current Time, -7d,∞〉}
∩

{〈First Unix day, 24h, 1h〉 }

Late-Breaking Work CHI 2017, May 6–11, 2017, Denver, CO, USA

2540

In this example, the user is looking for a span (24h) within a
certain interval (past week). Since the query has to satisfy
each of the time constraints imposed by a time specifica-
tion, we can limit the temporal search space for a span by
adding an additional interval primitive to the time specifica-
tion.

Su Mo WeTu Th Fr Sa

29 30 131 2 3 4

5 6 87 9 10 11

12 13 1514 16 17 18

19 20 2221 23 24 25

26 27 128 2 3 4

Mo WeTu Th Fr

Februrary 2017

Figure 2: Depicts a possible
scenario of how a time primitive
can be turned into a new time
specification. In this case, an
interval (Mo, Feb 20 to Fr, Feb 24)
is dragged out of its original context
(the calendar) and thereby
converted to all weekdays
(query-by-example).

Mo WeTu Th Fr

Query

9am 5pm

Figure 3: Shows two time
specifications (Mo-Fr and
9am-5pm) that fully specify the
temporal argument of a query.

Discussion and Future Work
Time Specifications compactly describe discrete time in-
stants and intervals as well as periodic intervals and can
easily be translated into queries over data (e.g., using SQL).
Their expressiveness has been particularly useful to for-
mulate sample queries, which we used to determine and
compare the capabilities of existing interactive data explo-
ration systems that support time-based data. Consider our
motivational examples: a possible time specification for last
week in Example 1 could be 〈Current time, -7d,∞〉. The
time constraints in Example 2 could be described by first
specifying weekdays as 〈First Monday in Unix Time, 5d, 7d〉
and then intersecting it with the daily time range
〈First Unix day 9am, 8h, 1d〉.

Although our model makes it easy to reason about and ex-
press time-dependant queries, there are many open ques-
tions that must be answered so that users can easily and
naturally express queries in a visual interface. While we
showed that a wide set of time-based constraints can be
specified using just three parameters, a remaining chal-
lenge is to determine how users can define the parameters
to construct a time specification in a user interface, and
which operations they can use to derive parameters from
existing specifications. A key aspect thereof is the notion of
granularity, since humans use abstractions when they talk
about time. The parameters in the example time specifica-
tions shown in the previous section are defined in different
time units such as hours, days, weekends, and years. Al-

though many systems provide mappings from higher level
granularities to a discrete time domain (e.g., Unix time and
vice versa), many support only a fixed set of pre-defined
granularities, as Rind et al. [10] point out. While useful in
some some cases, we believe that an expressive visual
query language should facilitate intuitive ways to define,
modify, and derive the parameters used in our model at
both pre-defined as well as custom granularities. Figure 2
schematically depicts a case where an anchored interval
can be turned into a span by moving it out of its original
context.

Based on this work, we are currently designing a novel ges-
tural interface that allows for incremental specifications of
time-oriented queries. We envision an iterative query build-
ing workflow that resembles the iterative build-up of for-
mal specifications. As described in the previous paragraph,
a user with the intention to constrain a temporal query to
hours 9am - 5pm on weekdays would split up the query into
(1) specifying weekdays, (2) specifying the hours, and (3)
connecting the two specifications to fully define the tem-
poral arguments of the query. Figure 3 schematically illus-
trates such a scenario.

References
[1] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann,

and Christian Tominski. 2011. Visualization of time-
oriented data. Springer Science & Business Media.

[2] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen,
Carsten Binnig, and Tim Kraska. 2015. Vizdom: Inter-
active Analytics through Pen and Touch. In PVLDB.

[3] Cody Dunne, Nathalie Henry Riche, Bongshin Lee,
Ronald A. Metoyer, and George G. Robertson. 2012.
GraphTrail: analyzing large multivariate, heteroge-
neous networks while supporting exploration history.
In CHI.

Late-Breaking Work CHI 2017, May 6–11, 2017, Denver, CO, USA

2541

[4] Iqbal A Goralwalla, M Tamer Ozsu, and Duane
Szafron. 1998. A framework for temporal data models:
exploiting object-oriented technology. In Technology
of Object-Oriented Languages and Systems, 1997.
TOOLS 23. Proceedings. IEEE, 16–30.

[5] David Gotz and Harry Stavropoulos. 2014. Decision-
flow: Visual analytics for high-dimensional temporal
event sequence data. IEEE transactions on visual-
ization and computer graphics 20, 12 (2014), 1783–
1792.

[6] Harry Hochheiser and Ben Shneiderman. 2001. In-
teractive exploration of time series data. In Interna-
tional Conference on Discovery Science. Springer,
441–446.

[7] Peter McLachlan, Tamara Munzner, Eleftherios Kout-
sofios, and Stephen North. 2008. LiveRAC: interactive
visual exploration of system management time-series
data. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 1483–
1492.

[8] Megan Monroe, Rongjian Lan, Hanseung Lee, Cather-
ine Plaisant, and Ben Shneiderman. 2013a. Temporal
event sequence simplification. IEEE transactions on
visualization and computer graphics 19, 12 (2013),
2227–2236.

[9] Megan Monroe, Rongjian Lan, Juan Morales del Olmo,
Ben Shneiderman, Catherine Plaisant, and Jeff Mill-
stein. 2013b. The challenges of specifying intervals
and absences in temporal queries: A graphical lan-
guage approach. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems.
ACM, 2349–2358.

[10] Alexander Rind, Tim Lammarsch, Wolfgang Aigner,
Bilal Alsallakh, and Silvia Miksch. 2013. Timebench: A

data model and software library for visual analytics of
time-oriented data. IEEE Transactions on Visualization
and Computer Graphics 19, 12 (2013), 2247–2256.

[11] Ben Shneiderman. 1996. The eyes have it: A task by
data type taxonomy for information visualizations. In
Visual Languages, 1996. Proceedings., IEEE Sympo-
sium on. IEEE, 336–343.

[12] Tableau 2017. Tableau. http://www.tableau.com. (2017).
Accessed: 2017-01-01.

[13] Krist Wongsuphasawat, John Alexis Guerra Gómez,
Catherine Plaisant, Taowei David Wang, Meirav Taieb-
Maimon, and Ben Shneiderman. 2011. LifeFlow: vi-
sualizing an overview of event sequences. In Proceed-
ings of the SIGCHI conference on human factors in
computing systems. ACM, 1747–1756.

[14] Ji Soo Yi, Youn ah Kang, John Stasko, and Julie
Jacko. 2007. Toward a deeper understanding of the
role of interaction in information visualization. IEEE
transactions on visualization and computer graphics
13, 6 (2007), 1224–1231.

[15] Emanuel Zgraggen, Steven M Drucker, Danyel Fisher,
and Robert Deline. 2015. (s| qu) eries: Visual Reg-
ular Expressions for Querying and Exploring Event
Sequences. (2015).

[16] Jian Zhao, Fanny Chevalier, and Ravin Balakrishnan.
2011a. Kronominer: using multi-foci navigation for the
visual exploration of time-series data. In Proceedings
of the SIGCHI Conference on Human Factors in Com-
puting Systems. ACM, 1737–1746.

[17] Jian Zhao, Fanny Chevalier, Emmanuel Pietriga, and
Ravin Balakrishnan. 2011b. Exploratory analysis of
time-series with chronolenses. IEEE Transactions on
Visualization and Computer Graphics 17, 12 (2011),
2422–2431.

Late-Breaking Work CHI 2017, May 6–11, 2017, Denver, CO, USA

2542

http://www.tableau.com

	Introduction
	Motivating Examples
	Example 1
	Example 2

	Background
	Time Modeling
	Time Specification Techniques

	Time Specifications
	Examples

	Discussion and Future Work
	References

