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ABSTRACT
Visual data exploration tools allow users to quickly gather
insights from new datasets. As dataset sizes continue to in-
crease, though, new techniques will be necessary to maintain
the interactivity guarantees that these tools require. Ap-
proximate query processing (AQP) attempts to tackle this
problem and allows systems to return query results at “hu-
man speed.” However, existing AQP techniques start to
break down when confronted with ad hoc queries that tar-
get the tails of the distribution.

We therefore present an AQP formulation that can pro-
vide low-error approximate results at interactive speeds, even
for queries over rare subpopulations. In particular, our for-
mulation treats query results as random variables in order
to leverage the ample opportunities for result reuse inher-
ent in interactive data exploration. As part of our approach,
we apply a variety of optimization techniques that are based
on probability theory, including new query rewrite rules and
index structures. We implemented these techniques in a pro-
totype system and show that they can achieve interactivity
where alternative approaches cannot.

1. INTRODUCTION
The widespread popularity of visual tools [31, 8, 36, 6] for

interactive data exploration has empowered domain experts
in a broad range of fields to make data-driven decisions.
However, a key requirement of these tools is the ability to
provide query results at “human speed,” even over large
datasets. For example, a recent study [24] demonstrated
that delays longer than even 500ms can negatively impact
user activity, dataset coverage, and insight discovery.

As dataset sizes continue to increase, traditional DBMSs
designed around a blocking query execution paradigm can-
not scale to meet these interactivity requirements. Tech-
niques that pre-aggregate data on top of a DBMS (e.g.,
materialized views, data cubes [10]) can significantly re-
duce query latency, but they require extensive preprocessing
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and suffer from the curse of dimensionality. Unfortunately,
attempts to overcome these problems (e.g., imMens [25],
NanoCubes [23]) usually restrict the number of attributes
that can be filtered at the same time, severely limiting the
possible exploration paths.

Rather, in order to achieve low latency for ad hoc queries,
new systems targeting interactive data exploration must in-
stead rely upon approximate query processing (AQP) tech-
niques, which provide query result estimates with bounded
errors. Many AQP systems use some form of biased sam-
pling [1] (e.g., AQUA [2], BlinkDB [3], DICE [19]), but these
approaches usually require a priori knowledge of the work-
load or substantial preprocessing time. While useful for
many applications, this approach is at odds with interac-
tive data exploration, which is characterized by the free-
form analysis of new datasets where queries are typically
unknown beforehand.

On the other hand, AQP systems that perform online ag-
gregation [13] (e.g., CONTROL [12], DBO [18], HOP [5],
FluoDB [35]) can generally only provide good approxima-
tions for queries over the mass of the distribution, while
queries over rare subpopulations yield results with loose er-
ror bounds or runtimes that vastly exceed the interactiv-
ity threshold. Since the exploration of rare subpopulations
(e.g., high-value customers, anomalous sensor readings) of-
ten leads to the most significant insights, online aggregation
falls short when confronted with these types of workloads.

We therefore argue that neither biased sampling nor on-
line aggregation is ideal in this setting, since systems for in-
teractive data exploration must provide high quality approx-
imate results for any query—even over rare subpopulations—
at interactive speeds without requiring foreknowledge of the
workload or extensive preprocessing time. While seemingly
impossible, these systems have the opportunity to leverage
the unique properties of interactive data exploration. Specif-
ically, visual tools have encouraged a more conversational
interaction paradigm [15], whereby users incrementally com-
pose and iteratively refine queries throughout the data ex-
ploration process. Moreover, this style of interaction also
results in several seconds (or even minutes) of user “think
time” where the system is completely idle. Thus, these two
key features provide an AQP system with ample opportuni-
ties to (1) reuse previously computed (approximate) results
across queries during a session and (2) take actions to pre-
pare for possible future queries.

To take advantage of these opportunities, we present an
AQP formulation that maximizes the reuse potential of ap-
proximate results across queries during an exploration ses-
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Figure 1: An example exploration session where the user is trying to understand which attributes affect an
individual’s salary. First, the user examines the sex attribute (Step A) to view the distribution of ‘Male’
and ‘Female’ values. The user then links sex to salary and filters the salary distribution to only ‘Female’
(Step B). A second salary bar chart with a negated link (dotted line) compares the salaries for ‘Male’ and
‘Female’ subpopulations (Step C). Finally, linking education to each of the salary visualizations and selecting
only individuals with a ‘PhD’ shows the respective salaries of highly educated males and females (Step D).

sion while at the same time permitting formal reasoning
about error propagation. Our approach is a reformulation
of online aggregation that treats aggregate query results as
random variables, unlocking a completely new set of query
rewrite rules based on probability theory. To support queries
over rare subpopulations, we additionally present the Tail
Index, a low-overhead partial index that integrates with our
AQP formulation and enables low-error result approxima-
tion at interactive speeds.

In summary, we make the following contributions:

• We propose an AQP formulation that treats aggregate
query answers as random variables to enable reuse of ap-
proximate results with formal reasoning about error prop-
agation across overlapping queries.

• To enable exploration of rare subpopulations, we present
(1) novel query rewrite rules based on probability the-
ory and (2) Tail Indexes that help to achieve low-error
approximate results.

• We implemented our techniques in a prototype Interac-
tive Data Exploration Accelerator [7] (IDEA), and our
benchmarks use real world datasets to demonstrate that
we can achieve interactive latencies in many cases where
alternative approaches cannot.

2. OVERVIEW
In interactive data exploration tools, many types of visu-

alizations (e.g., bar charts, histograms) serve to convey high
level statistics about datasets, such as value distributions or
relationships between attributes. As previously mentioned,
interaction with these tools is conversational in nature, as
users incrementally build up and iteratively refine queries
by manipulating visualizations. This exploratory process
precludes techniques that require a priori knowledge of the
workload, since users compose unforeseen queries in order
to derive new insights from the data.

As an illustrative example of this process, consider the
sample exploration session shown in Figure 1, which is drawn
from a past user study [7]. In the exploration session, the
user is analyzing data from the 1994 US census [22] using
Vizdom [6] in order to understand which attributes affect an

individual’s annual salary. While online aggregation can be
used to provide progressive results for these visualizations,
it treats each query as “one-shot” (i.e., a slightly modified
version of a past query is treated as a completely new query)
and therefore does not effectively model the conversational
interaction paradigm. At the same time, existing techniques
for query result reuse [33, 16, 26, 9] do not consider partially
computed results.

In this section, we first introduce our AQP formulation
(Section 2.1), which is an extension of online aggregation
that treats aggregate query results as random variables. We
then describe how our prototype IDEA implementation exe-
cutes an aggregate query using this formulation (Section 2.2),
as well as how we quantify the error associated with approx-
imate results returned to the user (Section 2.3).

2.1 Formulating a Simple Query
The simplest type of visualization we consider is a bar

chart that expresses the count of each attribute value. For
example, Step A of Figure 1 shows a bar chart of the sex
attribute, which can be represented by the following SQL
query:

SELECT sex, COUNT(*)
FROM census
GROUP BY sex

One way to model a group-by attribute is to treat it
as a categorical random variable X, where X can assume
any one of the possible outcomes from the sample space
ΩX . For example, a random variable modeling the sex at-
tribute can take on an outcome in the sample space Ωsex =
{Male,Female}. The discrete probability distribution θX
represents the likelihood that X will assume each outcome,
with θx denoting the probability that X will assume out-
come x. In the example query, for instance, the probability
of observing a ‘Male’ tuple is θMale ≈ 2/3.

As previously mentioned, an AQP engine needs to use
techniques to compute an approximation θ̂X of the true
θX , since processing a large dataset in a blocking fashion
can easily exceed interactivity requirements. Therefore, for
each distinct value x in ΩX , maximum likelihood estima-
tion (MLE) can produce an approximation θ̂MLE

x of the true
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Figure 2: Full execution path through the system to produce the sex bar chart from Step A of Figure 1.

θx by scanning a random sample of the underlying data to
compute:

θ̂MLE
x =

nx

n
(1)

Equation 1 shows that each θx is approximated by divid-
ing nx (i.e., the number of observed instances of x in the
sample) by the total sample size n. Intuitively, this ap-
proximation represents the estimated frequency of x in the
dataset. Multiplying a frequency estimate θ̂x by the total
number of tuples N in the full dataset will therefore yield
an approximate count for x:

count(x) ≈ Nθ̂x (2)

These techniques can be extended to support histograms
(i.e., a count grouped by a continuous attribute like age) by
partitioning the domain of the group-by attribute into finite
bins. Then, these bins can be treated the same as a nomi-
nal attribute. We use similar techniques to compute other
aggregates (e.g., average, sum) and more complex visualiza-
tions (e.g., heatmaps), as well as queries involving joins, all
of which are discussed in Section 5.

2.2 Executing a Query
One of the key contributions of this paper is to show how

query processing changes in the context of our AQP formu-
lation. To understand how to execute a query and produce a
visualization using the formulation presented in the previous
section, consider again the example query representing the
sex bar chart (Step A in Figure 1). Figure 2 shows the full
execution path through the system, from issuing the query
in the frontend to the final progressive result visualization.

As the first step in an exploration session, a user will typ-
ically connect to a completely new data source (e.g., the
census data stored in a data warehouse). Upon connect-
ing, the AQP engine immediately begins to populate the
Sample Store by streaming in tuples from the underlying
data source. Since our techniques rely on a random sample
in order to get a good approximation, we use methods to
access the underlying data source in a random order (e.g.,
reservoir sampling, randomized index traversal [27]). The
Sample Store caches a subset of tuples from the data source
(or the entire dataset if memory permits) that serves as the
basis for answering queries using our AQP techniques.

When the user creates the visualization shown in Step A of
Figure 1 in the frontend by dragging out the sex attribute to

the screen, the Translator receives the visualization parame-
ters (i.e., attribute, aggregate function, selection predicates)
and generates a corresponding SQL query. The Query En-
gine then executes this query by spawning several executor
threads, which draw tuples from the Sample Store to com-
pute an approximate result.

When reading these tuples, the Query Engine uses our
AQP formulation to compute θ̂sex (using Equation 1) for all

attribute values in sex (i.e., θ̂Male and θ̂Female). The resulting

probabilities (e.g., θ̂Male ≈ 2/3) are stored in the Result
Cache. The Query Engine can leverage these cached results
(e.g., Step B can reuse θ̂Female) for computing the results to
future queries, explained further in Section 3.

In addition to computing the frequencies, the Query En-
gine also constructs Tail Indexes, low-overhead index struc-
tures built on a subset of tuples in the Sample Store that help
provide high-quality approximations for subsequent queries
on rare subpopulations. We discuss how and when to build
indexes in Section 4.

Finally, the frontend polls the Result Cache to receive the
current approximation for each of the group-by values in the
specified visualization.

2.3 Quantifying Result Error
As previously mentioned, the Query Engine updates the

approximate results that are stored in the Result Cache as
more data is processed. Therefore, we need a way of quanti-
fying the uncertainty, or error, associated with each approx-
imate result.

In the context of our AQP formulation, the previously
described estimators are said to be asymptotically normal
with the sample size n; that is, the estimator θ̂x is equal to
the actual θx plus some normally distributed random noise
given a sufficiently large sample. The standard error ap-
proximates this deviation of the observed sample from the
true data. Formally, the normalized standard error of θ̂x is
given by the square root of the variance of a categorical ran-
dom variable divided by the sample size n, then normalized
by θ̂x :

error(x ) =
1

θ̂x

√
θ̂x (1− θ̂x )

n
(3)

Note that Equation 3 does not consider the total data
size N , which implies that, for smaller N , we might over-
estimate the error. We can address this issue using common
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techniques such as the finite population correction factor,
but we leave this extension to our formulation for future
work.

In order to calculate the error for a query grouped by an
attribute X (e.g., the query to compute the sex bar chart
in Step A of Figure 1), we compute the sum of the relative
standard errors (Equation 3) for all attribute values x ∈
ΩX . Note, however, that metrics other than the sum (e.g.,
average, max) or alternative definitions [20] can be used to
quantify result error.

3. APPROXIMATE RESULT REUSE
As previously mentioned, our AQP formulation is designed

to leverage the unique reuse opportunities that exist in in-
teractive data exploration sessions. In this section, we first
show how our formulation extends to queries with selections
and allows us to integrate the results of past queries that
have already been (partially) computed. To facilitate result
reuse, we also introduce several new rewrite rules based in
probability theory that enable the Query Engine to optimize
queries similarly to how a traditional DBMS uses relational
algebra rules to optimize SQL queries. Finally, since we are
reusing approximate results, we discuss the intricacies of er-
ror propagation and how to choose among several possible
rewrites.

3.1 Queries with Selections
Section 2 showed how we can use our AQP formulation to

express a single bar chart. One of the key features of data
exploration tools, though, is the ability to create complex
filter chains in order to explore specific subpopulations; that
is, visualizations act as active controls and can be linked
together, where selections in upstream visualizations serve
as filters for downstream visualizations. For example, Step B
of Figure 1 shows a filtered salary bar chart for only the
‘Female’ subpopulation, which translates to the following
SQL query:

SELECT salary, COUNT(*)
FROM census
WHERE sex = 'Female'
GROUP BY salary

To answer this query, we need to estimate the probability
of each possible salary value for only the ‘Female’ subpop-
ulation. More formally, given a group-by attribute X and
a selection attribute Y = y, we are trying to estimate the
joint probability θx ,y for every x value in ΩX . By extending
Equation 1 from Section 2.1, we can approximate each θx ,y
using the MLE:

θ̂MLE
x ,y =

nx,y

n
(4)

3.1.1 Reformulating Joint Probabilities
Although formally correct, the estimator θ̂MLE

x ,y given in
Equation 4 introduces a new issue that does not arise in
the simple case of estimating θx . Namely, computing θ̂MLE

x ,y

the same way as θ̂MLE
x (described in Section 2.2) considers

all estimates as independent, which could lead to inconsis-
tencies [34] across different visualizations. For instance, an
inconsistency could arise in Step B of the example explo-
ration session if the sum of the two estimated salary values
exceeded the total number of all ‘Female’ tuples, which is
clearly impossible.

Since our AQP formulation treats query results as random
variables, we can avoid this issue by leveraging the Chain
Rule from probability theory to rewrite θ̂x ,y into a different
form:

θ̂x ,y = θ̂x |y θ̂y (5)

In this new form, we can therefore estimate θx ,y by reusing

the previously computed estimate θ̂y and computing a new
estimate for θx |y , again using the MLE:

θ̂MLE
x |y =

nx|y

ny
(6)

For example, we can apply the Chain Rule to rewrite
the query from Step B of Figure 1 to be conditioned on
sex = ‘Female′, where we can estimate the joint probabil-
ity by computing θ̂MLE

salary|Female and reusing the previously

computed θ̂Female . Note that we can equivalently rewrite
the joint probability as θ̂x ,y = θ̂y|x θ̂x , and the Query En-
gine is free to choose whichever alternative produces the
lowest error result in the shortest time (discussed further
in Section 3.3). Again, since we multiply the conditional
probability by the selected subpopulation (e.g., ‘Female’),
our estimates are no longer independent; that is, the sum
of the estimates for values within a subpopulation must be
strictly smaller than the estimate of the subpopulation itself,
thereby addressing the visual inconsistency issue.

3.1.2 Very Rare Subpopulations
As previously mentioned, queries over rare subpopula-

tions occur frequently in interactive data exploration set-
tings, since they often produce the most interesting and
valuable insights. Although the rewritten MLE that uses
the conditional probability will provide a good approxima-
tion for the mass of the distribution, it is limited by the
number of relevant tuples that are observed, yielding results
with high error in the tails of the distribution.

To solve this problem, we can reuse the prior informa-
tion available in the Result Cache in order to get a better
estimate faster than scanning the Sample Store and filter-
ing only for the rare subpopulation. Since the MLE can-
not incorporate these priors, we can extend our formulation
from Equation 1 to be able to include any available prior
information. A maximum a posteriori (MAP) estimator in-
corporates an α term to represent prior information, where
the estimate represents the mode of the posterior Dirichlet
distribution:

θ̂MAP
x ,y =

nx,y + αx,y − 1

n+ α− 2
(7)

If no prior information is used (i.e., all possible parame-
ters are equally likely), or if n approaches infinity (i.e., the
impact of the prior goes to zero), then the MAP estimate
is equivalent to using the MLE. Each of these scenarios oc-
cur, respectively, when we have no prior information about
a distribution (e.g., as in Step A of the example before the
user has issued any queries), or when a selection occurs over
the mass of the distribution, thereby guaranteeing a large
n in a short amount of time. Therefore, the MAP estimate
can handle cases with very rare subpopulations by incorpo-
rating a prior while also providing the same performance as
an MLE over the mass of the distribution.

For example, in the previous query (Step B), we are try-

ing to compute θ̂salary|Female . Since the Result Cache already
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contains an estimate for the different salary subpopulations
(i.e., θ̂High and θ̂Low ), we can leverage these already com-
puted estimates by providing them as a prior to their re-
spective conditional estimates.

Unfortunately, when trying to incorporate a prior, the
weighting is the hardest part [30], since overweighting will ig-
nore new data while underweighting might produce a skewed
estimate based on too few samples. Therefore, we pick a
small α proportional to the expected frequency of the es-
timate, such that the significance of the prior will quickly
diminish as more data is scanned unless the subpopulation
is very rare, in which case the prior will help to smooth an
estimate based on a tiny sample. As in Equation 3, we can
use the finite population correction factor to reduce the im-
pact of the prior as more data is scanned (e.g., a prior should
have no impact after scanning all tuples). Again, we leave
this optimization for future work.

3.2 Query Rewrite Rules
The previous section showed how to apply the Chain Rule

in order to rewrite a query represented as a joint probabil-
ity into a form that can provide a better estimate by reusing
previously computed results. Thus, a natural follow up ques-
tion is: can we leverage other rules from probability theory
to rewrite different types of queries in order to maximize
reuse potential?

Similar to a DBMS query optimizer that uses relational
algebra rules to rewrite queries, our AQP formulation un-
locks a whole new set of rewrite rules based on probabil-
ity theory. By using these rewrite rules, the Query Engine
can often leverage past results to answer some queries much
faster than having to scan the Sample Store in order to com-
pute a result from scratch. In fact, as our experiments show
(Section 6), rewrite rules can even return results for certain
queries almost instantaneously.

In the following, we describe example queries along with
corresponding opportunities to apply rewrite rules during
the query optimization process. Note that these rewrite
rules are only possible due to our AQP formulation, and
techniques that treat queries as “one-shot” (e.g., online ag-
gregation) would need to resort to scanning the Sample Store
in order to compute the result for each new query.

3.2.1 Bayes’ Theorem
In many cases, users often wish to view the distribution of

an attribute X filtered by some other attribute Y . Then, in
order to get a more complete picture, they will reverse the
query to view the distribution of Y for different subpopula-
tions of X. Based on this exploration path (i.e., X filtered
on Y switched to Y filtered on X), the Query Engine can
use Bayes’ Theorem to compute an estimate without hav-
ing to scan any tuples. Formally, Bayes’ Theorem relates the
probability of an event based on prior knowledge of related
conditions:

θ̂y|x =
θ̂x |y θ̂y

θ̂x
(8)

For example, suppose that the user reverses the direction
of the link in Step B (i.e., sex is now filtered by salary) and
selects the ‘High’ bar, yielding the following SQL query:

SELECT sex, COUNT(*)
FROM census
WHERE salary = 'High'
GROUP BY sex

In this example, the Result Cache has (partially) complete
estimates for all attribute values for the salary attribute
conditioned on the attribute values for sex (i.e., θ̂Low|Female ,

θ̂High|Female , θ̂Low|Male , θ̂High|Male) from the query in Step B.
Using Bayes’ Theorem therefore allows us to leverage the
previous results for (1) θ̂sex , (2) θ̂salary , and (3) θ̂salary|sex
to instantly compute θ̂sex |salary without needing to scan any
tuples from the Sample Store.

3.2.2 Law of Total Probability
Another common exploration pattern is to view the dis-

tribution of an attribute X for different subpopulations of
Y , switching between filtering conditions to observe how
the distribution of the downstream attribute changes. Re-
call that categorical random variables have the constraint
that all outcomes are mutually exclusive (i.e., the proba-
bilities sum to one). We can therefore leverage the Law of
Total Probability to rewrite queries involving different se-
lections over mutually exclusive subpopulations in order to
reuse past results. The Law of Total Probability defines the
probability of an event x as the sum of its marginal proba-
bilities:

θ̂x =
∑

y∈ΩY

θ̂x ,y (9)

In Step C of Figure 1, for example, the user has negated
the selection condition of the sex attribute, which translates
to the following query:

SELECT salary, COUNT(*)
FROM census
WHERE sex <> 'Female'
GROUP BY salary

In this example, the Result Cache already has frequency
estimators (1) θ̂salary and (2) θ̂salary|Female . We can use the
Law of Total Probability to marginalize across the sex at-
tribute in order to compute θ̂salary| Female , again without ac-
tually having to scan any data.

3.2.3 Inclusion-Exclusion Principle
Unlike filter chains, where downstream visualizations rep-

resent strict subpopulations of upstream visualizations, users
can also specify predicates that represent the intersection
of selected subpopulations. For example, the top right bar
chart in Step D of Figure 1 shows the intersection of the
‘Female’ and ‘PhD’ subpopulations, and the bottom right
bar chart shows the intersection between non-‘Female’ and
‘PhD’ subpopulations, which translates to the following SQL
query:

SELECT salary, COUNT(*)
FROM census
WHERE sex <> 'Female' AND education = 'PhD'
GROUP BY salary

In the example, we must compute θ̂salary,PhD,¬Female . By
using the Inclusion-Exclusion Principle (IEP) from proba-
bility theory, we can rewrite the query to entirely reuse past
results stored in the Result Cache without having to scan
any tuples in the Sample Store. In order to understand this
rewrite rule, consider the rewritten query and the accompa-
nying Venn diagram:
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θ̂High,PhD,¬Female = θ̂High + θ̂PhD

− θ̂High,¬PhD

− θ̂¬High,PhD

− θ̂High,PhD,Female
              High       PhD

Female

Each of the terms in the above equation maps to a region
of the Venn diagram. For example, the red circle represents
θ̂High , and the region of the red circle not overlapping with

the blue circle represents θ̂High,¬PhD . Visually, we can see
that θHigh,PhD,¬Female can be rewritten in many ways, and
the above equation is one way to rewrite the query that
uses only previously computed estimates from the running
example available in the Result Cache.

The IEP is a very powerful rewrite rule and can be ap-
plied to a broad range of additional queries by considering
the relationship between predicate attributes. For exam-
ple, if the user switches a Boolean operator (e.g., changing
the predicate to sex<>'Female' OR education='PhD'),
we can calculate the frequency of the union of two subpop-
ulations simply by reusing our estimate for the intersection.

We can also use the IEP to take advantage of the mutual
exclusivity of certain predicates. In particular, if the user
applies a predicate representing the intersection of mutually
exclusive subpopulations, we can apply the IEP to deter-
mine that no tuples can possibly exist in the result, therefore
immediately returning a frequency estimate of zero (e.g., a
query with predicate sex='Male' AND sex='Female' has
a frequency of zero). Similarly, if the user applies a predi-
cate representing the union of mutually exclusive subpopu-
lations, we can again apply the IEP to immediately return
a frequency equal to the sum of the subpopulations (e.g., a
query with predicate sex='Male' OR sex='Female' has
a frequency equal to θ̂Male + θ̂Female).

3.3 Result Error Propagation
As previously mentioned, users need to know how much

faith to place in an approximate query result. Section 2.3
shows that computing the error for a simple query with no
selections is relatively straightforward, but, when reusing
past results, we need to carefully consider how the (poten-
tially different) errors from each of the individual approx-
imations contributes to the overall error of the new query
result. Therefore, we apply well-known propagation of un-
certainty principles in order to formally reason about how
error propagates across overlapping queries.

For example, consider again the query representing Step B
of Figure 1. In this case, we approximate the result of the
query as θ̂salary|Female multiplied by θ̂Female , so we need to
consider the error associated with both terms. Note that
each of these terms has a different error; that is, the er-
ror for the estimate θ̂Female is lower because it was started
earlier (in Step A). After computing the sum of the normal-
ized standard error (Equation 3) across all attribute values

(Section 2.3), we combine the error terms for θ̂salary|Female

and θ̂Female using the propagation of uncertainty formula
for multiplication, yielding the estimated error for the final
result.

education
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Figure 3: A Tail Index built on education.

These error estimates are also useful during the query op-
timization process. Since queries can often be rewritten into
many alternative forms, the Query Engine can pick the series
of rewrites that produces an approximate query result with
the lowest expected error through a dynamic programming
optimization process that recursively enumerates rewritten
alternatives. In some cases, it is even possible that leverag-
ing past results might produce an approximate result with
higher error than simply computing an estimate by scan-
ning the Sample Store, so the Query Engine must decide if
a rewrite is beneficial at all.

4. TAIL INDEXES
Since the data exploration process is user-driven and in-

herently conversational, the AQP engine is often idle while
the user is interpreting a result and thinking about what
query to issue next. This “think time” not only allows
the system to continue to improve the accuracy of previous
query results but also to prepare for future queries. Some
existing approaches (e.g., ForeCache [4], DICE [19]) lever-
age these interaction delays to model user behavior in order
to predict future queries, but these techniques typically re-
quire a restricted set of operations (e.g., pre-fetching tiles for
maps, faceted cube exploration) or a large corpus of train-
ing data to create user profiles [28]. Instead, as described
in Section 2, our approach leverages a user’s “think time”
to construct Tail Indexes in the background during query
execution to supplement our AQP formulation.

This section first describes how to build a Tail Index on-
the-fly based on the most recently issued query in prepara-
tion for a potential subsequent query on a related subpop-
ulation. Then, we explain the intricacies of how to safely
use these Tail Indexes to support future queries by preserv-
ing the randomness properties necessary for our AQP tech-
niques. Finally, we discuss how to extend Tail Indexes to
support continuous attributes.

4.1 Building a Tail Index
Many of the query rewrite rules described in Section 3

rely on observing tuples belonging to specific subpopulations
(e.g., ‘Male’), which will appear frequently in a scan of the
Sample Store. However, when considering rare subpopula-
tions (e.g., ‘PhD’), tuples belonging to these subpopulations
will not be common enough in a scan of the Sample Store
to provide low-error approximations within the interactivity
threshold. As such, we need to supplement our formulation

1147



with indexing techniques in order to provide enough relevant
tuples for low-error approximations.

Many existing indexing techniques (e.g., B-trees, sorting,
database cracking [14]) organize all tuples without regard for
their frequency in the dataset, resulting in unnecessary over-
head since our AQP techniques can already provide good
approximations over common subpopulations. Furthermore,
these indexing techniques destroy the randomness property
that our AQP formulation requires, and trying to correct for
the newly imposed order would be prohibitively expensive.
Therefore, we propose a low-overhead partial index struc-
ture [32], called the Tail Index, that is built online during
a user’s exploration session. Tail Indexes dynamically keep
track of rare subpopulations to support query rewrites and
save space by not indexing tuples with common values, all
while also preserving the randomness requirements neces-
sary for our AQP techniques.

Figure 3 shows a sample Tail Index built on the education
attribute from Step D of Figure 1. The Tail Index is a hash-
based data structure that points to either (1) the Sample
Store when an attribute value is common or (2) a linked
list of pointers to tuples when the attribute value is rare.
In the figure, notice that the attribute values in the mass
of the distribution (e.g., ‘HS’) point to the Sample Store,
whereas the values in the tails of the distribution (e.g., ‘Pre-
K’, ‘PhD’) point to lists of indexed tuples.

In order to build this index, though, we need to deter-
mine whether a given tuple belongs to a rare subpopulation.
Specifically, we decide which attribute values should be in-
dexed by determining if the specified confidence level for a
possible future visualization will not be achievable within
the interactivity threshold. That is, if the frequency of an
attribute value is high enough to provide sufficient tuples
from a given subpopulation in order to meet the specified
confidence level from a scan of the Sample Store, then the
index entry should instead point to the Sample Store. Oth-
erwise, the Tail Index retains the linked list and continues
appending new tuples until either the resources need to be
reallocated or a maximum index size has been reached.

For longer chains of visualizations with multiple filter con-
ditions, we build an index for each attribute in the chain.
For example, if the user has the sex visualization linked to
salary, as in Step B of the example, our techniques would
build a multidimensional index on sex,salary (i.e., both the
‘Male’ and the ‘Female’ buckets point to an index of salary,
each of which contains only males or females, respectively).
However, since longer chains with selections result in in-
creasingly rare subpopulations, the frequency θ̂x of the at-
tribute must be adjusted for the value in the entire pop-
ulation. Therefore, if no upstream visualizations are in-
dexed, θ̂x is the joint probability (i.e., θ̂x ,y). When an at-
tribute value is indexed, subsequent downstream visualiza-
tions should instead use the conditional probability (e.g.,

θ̂x |y) since logically the index defines a new population.
Typically, users cannot keep track of more than a few

attributes at a time [7], ensuring that the indexes will not
become larger than a few dimensions. Furthermore, the fact
that Tail Indexes keep track of only rare subpopulations
further reduces their size.

4.2 Using a Tail Index
Recall that the rewrite rules from Section 3 often re-

quire tuples that belong to specific subpopulations (e.g.,

θ̂salary|Female requires only tuples with a value of ‘Female’).
For selection operations over a single attribute value (e.g.,
‘Female’), scanning the indexed tuples avoids the wasted
work associated with examining all tuples and ignoring those
in which the user has no interest. The rarer a selected sub-
population, the more wasted work the Tail Index will save.

Interestingly, using a Tail Index to answer a query that
involves multiple selected values (e.g., selecting both ‘Pre-K’
and ‘PhD’ in Step D of Figure 1) is not as straightforward
as in a traditional index because of the randomness prop-
erty that our AQP formulation requires. For example, if a
user has selected a subset ΩY ′ of values from ΩY , sequen-
tially scanning each list of tuples in full would destroy the
randomness, potentially resulting in biased estimates. For
example, suppose the user had selected both ‘Pre-K’ and
‘PhD’ to filter salary in Step D of Figure 1. By scanning
each of the subpopulations sequentially (i.e., first scanning
all of the ‘Pre-K’ tuples and then all of the ‘PhD’ tuples)
in order to compute the approximation, the randomness re-
quirement for our AQP formulation is destroyed.

For this reason, we scan each of the buckets in the index
proportionally to its frequency to ensure randomness. To
determine the list from which to draw the next tuple, we
first compute the weight of each attribute value y′ in the set
of selected values ΩY ′ as:

weight(y′) = θ̂y′
∑

y′∈ΩY ′

1

θ̂y′
(10)

By normalizing the weights of all selected values, each
value has a likelihood proportional to its selectivity. Then,
the Query Engine can draw from each list based on these
weights, ensuring that the samples used to compute the ap-
proximation are unbiased.

Finally, for queries over both common and rare subpop-
uations (e.g., selecting both ‘HS’ and ‘PhD’ in Step D of
Figure 1), one bucket in the index will point to the base
data while the other bucket will point to the list of rare tu-
ples. In this case, we can simply scan the base data and
ignore the Tail Index, since the error of the approximation
will be dominated by the common value, and the rare value
will be observed in the base data at the same rate (relative
to the common value) that it would be sampled from the
index.

4.3 Indexing Continuous Attributes
As previously mentioned, we can use binning to treat con-

tinuous attributes like nominal attributes. However, the
user may often be interested in zooming in on the distri-
bution within a specific subrange of a continuous attribute,
which is a special case of selection where the bounds of a
continuous attribute predicate are incrementally narrowed.
For example, consider a visualization of the age attribute
with bins on the decade scale (e.g., 20, 30, 40) where the
user has filtered the range between 20 and 40 years old.

Building a complete index (e.g., a B-tree) is both im-
practical and unnecessary, since users visualize a high-level,
aggregated view of the data and do not examine individ-
ual tuples. Thus, the simplest way to index a continuous
attribute is to treat it as a nominal attribute, where each
bin (i.e., predefined subrange) is equivalent to an attribute
value. Depending on rarity, bins in the index store either a
pointer to the Sample Store or to indexed tuples from that
bin’s range, similar to a Tail Index for a nominal attribute.
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Then, for selections over a set of bins, we can use the tech-
niques described in the previous section for using an index.

However, unlike nominal attributes, zooming presents a
new challenge for building Tail Indexes: suppose a common
bin contains one or more rare sub-bins at the next zoom
level. Then, if the user zooms into one of these sub-bins, we
may be unprepared to provide a low-error approximation
within the interactivity threshold because the parent bin is
not rare and therefore will not be indexed. To try to mitigate
this problem, we can transparently divide each bin into sub-
bins (e.g., partition age into bins of one year instead of ten
years), such that if the user performs a zoom action on a rare
sub-bin, the system can draw tuples from the index. Since
we are always one step ahead of the user, we can use the
time between user interactions to continue to compute more
fine-grained zoom levels in the event that the user continues
zooming on a particular subrange.

5. MORE COMPLEX QUERIES
So far, we have described how our AQP formulation ap-

plies in the context of count queries with selection predi-
cates. We now expand our discussion to queries with (1) mul-
tiple group-by attributes, (2) aggregate functions other than
count, and (3) joins.

5.1 Multiple Group-by Attributes
Rather than changing the selection predicate for a filtered

bar chart to understand the relationship between two at-
tributes, users sometimes find it easier to view them in a
two-dimensional heatmap, where the gradient of each cell
represents the count. For example, a heatmap showing the
sex attribute plotted against salary translates to the follow-
ing query:

SELECT sex, salary, COUNT(*)
FROM census
GROUP BY sex, salary

To build a heatmap over two attributes X and Y , we must
estimate the joint probability for each cell (i.e., θ̂x ,y for ev-
ery combination of x and y). We can again use the Chain

Rule (Section 3.1) to rewrite θ̂x ,y as either (1) θ̂x |y θ̂y or (2)

θ̂y|x θ̂x , and then we calculate the error using the previously
described error propagation techniques (Section 3.3). As ex-
plained, since the Query Engine has a choice between how to
rewrite the query, we can automatically pick the rewrite that
minimizes error in order to return a better approximation.

Since heatmaps can also act as filters for any linked down-
stream visualization, we similarly index rare attribute values
in order to efficiently answer future queries over selected sub-
populations, which in this case are comprised of some combi-
nation of (x, y) pairs (i.e., a two-part conjunctive predicate).
We can then use the previously described index weighting
techniques (Equation 10) to proportionally scan indexes in
order to preserve randomness.

5.2 Other Aggregate Functions
Unlike nominal attributes, users can apply other aggre-

gate functions (e.g., average, sum) in addition to counts. In
order to compute the estimates and the error for a query
involving other aggregate functions, we need to modify our
previously described techniques and incorporate properties
about these aggregates into our formulation. Furthermore,

unlike for a simple count, the error of other aggregate func-
tions for a particular bin is not entirely influenced by the
frequency of that bin. Intuitively, observing a tuple with
any attribute value will lower the total error for a count
visualization by increasing the size of the sample n in the
denominator (Equation 1). On the other hand, for an ag-
gregate like average, observing a tuple with a value in a par-
ticular bin will only impact the error for the observed bin.
For this reason, we need to take special care to compute the
error for visualizations that depict average and sum aggre-
gates, including normalizing their errors to the same range
as count visualizations.

5.2.1 Average
To compute the error of an estimated average for a single

bin x of a continuous attribute, we use the sample standard
deviation of tuples that belong in that bin. First, we com-
pute the average squared distance of each value in the bin
to the bins’s mean. Then, we divide the average squared
distance by n and take the square root to yield the sample
standard deviation.

5.2.2 Sum
The error associated with a sum estimate for an attribute

value x requires estimates for both the count and average of
the attribute value. For this reason, by default, we always
estimate average and count for all continuous attributes, as
well as the corresponding error estimates. Then, to estimate
the error associated with the average, we use the previously
described error propagation techniques (Section 3.3) to com-
bine the errors of the average and count estimates.

5.3 Joins
So far, we have focused on the scenario where a user ex-

plores a single table or denormalized dataset (e.g., materi-
alized join results, star schema data warehouses). However,
extending our AQP formulation to work on joins is useful in
order to apply our techniques to more scenarios.

Joins pose several interesting questions, since our AQP
techniques require a random sample. Unfortunately, DBMSs
usually sort or hash data to compute the result of a join,
which breaks our randomness requirement. However, exist-
ing techniques (e.g., ripple join [11], SMS join [17], wander
join [21]) can be used to provide random samples from the
result of a join. Therefore, we can apply our previously
described AQP techniques over the result of a join between
multiple tables to provide fast and accurate approximations.
However, we leave extensions to our AQP formulation that
optimize join processing as future work.

6. EVALUATION
We evaluated our techniques using real-world datasets and

workloads that were derived from a past user study [7] in
order to show that they can significantly improve interac-
tivity and return higher quality answers faster than alter-
native approaches. First, we compare our prototype IDEA
implementation to standard online aggregation, as well as
a state-of-the-art column store DBMS that represents the
most optimal blocking solution. Then, we show how our
techniques perform when scaling different parameters from
the benchmark. All experiments were conducted on a single
server with an Intel E5-2660 CPU (2.2GHz, 10 cores, 25MB
cache) and 256GB RAM.
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#1 sex
#2 education
#3 education WHERE sex='Female'
#4 education WHERE sex='Male'
#5 sex, education
#6 sex WHERE education='PhD'
#7 salary
#8 salary WHERE education='PhD'
#9 sex, salary
#10 salary WHERE sex='Female'
#11 salary
#12 salary WHERE sex='Female'
#13 salary WHERE sex<>'Female'

#14
salary WHERE sex='Female' AND education='PhD',
salary WHERE sex<>'Female' AND education='PhD'

#15 age

#16
salary WHERE 20<=age<40 AND sex='Female' AND education='PhD',
salary WHERE 20<=age<40 AND sex<>'Female' AND education='PhD'

(a) Census

#1 age
#2 weight
#3 weight WHERE age>=16
#4 age
#5 weight
#6 weight WHERE age<8
#7 sex
#8 sex WHERE age>=16
#9 sex
#10 sex WHERE age<8
#11 weight, sex
#12 age WHERE weight>=2
#13 age WHERE weight>=2 AND sex='I'
#14 age WHERE weight>=2 AND sex<>'I'
#15 age WHERE weight<0.4
#16 age WHERE weight<0.4 AND sex='I'

(b) Abalone

#1 score
#2 abv
#3 abv WHERE score>=8
#4 score
#5 abv
#6 abv WHERE score<8
#7 so2
#8 so2 WHERE score>=8
#9 so2
#10 so2 WHERE score<8
#11 so2, abv
#12 score
#13 score WHERE abv>=13
#14 score WHERE 100<=so2<200 AND abv>=13
#15 score WHERE abv>=13
#16 score WHERE 100<=so2<200

(c) Wine

Figure 4: Exploration Session Definitions

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16
MonetDB 0.34 0.39 5.40 8.70 0.48 1.20 1.20 0.91 0.53 4.80 0.42 4.70 1.10 5.60 1.60 7.10
Online	Agg 0.05 0.24 0.78 0.59 0.24 0.46 0.04 0.48 0.07 0.11 0.04 0.11 0.08 7.53 0.29 24.3
IDEA 0.09 0.29 0.42 0.00 0.00 0.00 0.09 0.12 0.00 0.17 0.00 0.00 0.00 0.48 0.37 2.87

MonetDB 0.69 1.30 0.79 0.71 1.30 1.10 0.38 0.42 0.35 0.56 1.30 0.79 4.60 0.90 1.40 7.90
Online	Agg 0.42 0.64 3.17 0.43 0.66 0.71 0.07 0.33 0.07 0.11 0.95 3.93 4.19 4.02 0.79 0.98
IDEA 0.48 0.71 0.82 0.00 0.00 0.33 0.13 0.09 0.00 0.05 0.00 0.37 0.42 0.00 0.34 0.39

MonetDB 0.75 0.90 0.90 0.75 0.89 1.60 1.30 0.87 1.30 2.10 1.30 0.69 0.85 1.40 0.84 1.20
Online	Agg 0.14 0.16 1.36 0.13 0.16 0.28 0.11 0.40 0.10 0.13 0.19 0.13 1.07 1.56 1.06 0.22
IDEA	 0.25 0.24 0.39 0.00 0.00 0.00 0.18 0.16 0.00 0.00 0.00 0.00 0.26 0.20 0.00 0.27
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Figure 5: Benchmark Runtimes (s)

6.1 Setup
We compare our prototype IDEA system against a base-

line of standard online aggregation (also implemented in our
prototype), as well as a column store DBMS (MonetDB 5)
using three data exploration sessions that were derived from
traces taken from a past user study [7]. Although MonetDB
does not compute approximate answers, we wanted to show
how the presented AQP techniques compare to a state-of-
the-art system based on the traditional blocking query exe-
cution paradigm.

To construct each exploration session, we identified the
most common sequences that users performed and then syn-
thesized them into 16 distinct queries for each of the three
datasets [22] (Census, Abalone, Wine). These exploration
sessions model how a user would analyze a new dataset in
order to uncover new insights, typically starting out with
broader queries that are iteratively refined until arriving at
a more specific conclusion. For example, the goal of the Cen-
sus session is to determine which factors (e.g., sex, educa-
tion) influence whether an individual falls into the ‘High’ or
‘Low’ annual salary bracket. The Abalone session explores
data about a type of sea snail to identify which character-
istics (e.g., weight) are predictive of age, which is generally
difficult to determine. Finally, the Wine session examines
the relationship between chemical properties (e.g., so2 ) and
a wine’s quality score.

To standardize all of the exploration sessions, we scaled
each of the datasets to 500M tuples while preserving the
original distributions of the attribute values. We addition-
ally parse and load all datasets into memory for all systems
before executing the benchmarks.

Since both online aggregation and our IDEA prototype
can provide approximate results, we set the confidence level
for query results to 3.5σ (i.e., the expected deviation of our
approximation from the true result is less than 0.05%) before
moving on to the query for producing the next visualization
in the exploration session. Based on the interaction logs
from our user study, we wait one second after achieving a
sufficiently low result error before issuing the next query
in order to model the time taken by the user to interpret
the displayed results and decide the next action to perform
(i.e., “think time”). Finally, we use 50 threads per query
operation, which maximizes the runtime performance on the
given hardware.

In Section 6.3, we vary each of these parameters (i.e., data
size, error threshold, “think time”, and amount of paral-
lelism) to show how our techniques scale compared to online
aggregation.

6.2 Overall Performance
Figure 5 shows the time (in seconds) required to return

an answer at or above the specified confidence interval in
(1) MonetDB, (2) Online Aggregation, and (3) our IDEA
prototype for every step in each of the simulated exploration
sessions. Again, as a system with a blocking query execution
model, MonetDB must wait until computing the exact query
result (i.e., returning an answer with 100% confidence).

Each step number in the session corresponds to an action
that the user performs in the visual interface, and Figure 4
shows the corresponding queries executed to produce each
visualization. Since all queries compute the count grouped
by an attribute, we show only the group-by attribute fol-
lowed by any selection predicates. For example, in the Cen-
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Figure 6: Scalability Microbenchmarks

sus exploration session, the simulated user first visualizes
both sex (#1) and education (#2), then views the distribu-
tion of education for only the ‘Female’ subpopulation (#3).
Sometimes, an action in the frontend (e.g., removing a link)
will issue multiple concurrent queries, in which case we de-
limit individual queries with a comma (e.g., #5 and #16 in
Census). In these cases, we report the runtime after the re-
sults for both queries reach the acceptable confidence level,
since the simulated user cannot proceed without low-error
approximations for all visualizations on a given step. Since
the main goal of our work is to provide a high-quality result
within the interactivity threshold (i.e., 500ms), each cell in
Figure 5 is color-coded to indicate how close the runtime is
to the threshold, ranging from green (i.e., significantly below
the threshold) to red (i.e., above the threshold).

As shown in Figure 5, our IDEA prototype can return
high-quality approximations within the interactivity thresh-
old in many cases where both MonetDB and online aggrega-
tion cannot. In some cases, however, MonetDB can return
an exact result faster than online aggregation can return an
approximate answer with an acceptable error, due to a num-
ber of optimizations (e.g., sorting, compression) performed
at data load time. Unfortunately, in interactive data ex-
ploration settings, the extensive preprocessing necessary to
perform these types of optimizations often represents a pro-
hibitive burden for the user.

Although our techniques cannot always guarantee a result
with acceptable error in less than 500ms (e.g., #16 in Cen-
sus, #2 and #3 in Abalone), our IDEA prototype returns
high-quality approximate results as interactively as possible.
Our approach is slightly slower than online aggregation for
some queries that do not benefit from any of our proposed
techniques because of the minor additional overhead asso-
ciated with result caching and index construction. Note,
however, that this overhead is small enough that it never
causes our techniques to exceed the interactivity threshold
where online aggregation does not already.

We now discuss the performance of our IDEA prototype
to the online aggregation baseline in more detail for each of
the previously described exploration sessions.

6.2.1 Census
After viewing the distribution of education for only the

‘Female’ subpopulation (#3), the simulated user changes
the selection to examine education for the ‘Male’ subpopu-
lation instead (#4). In this case, our prototype rewrites the
query using the Law of Total Probability to reuse previously
computed results and return a result without having to scan
any data from the Sample Store. Similarly, when the simu-
lated user reverses the direction of the link between sex and
education to view the distribution of sex for only individu-
als with a ‘PhD’ (#6), our prototype uses Bayes’ theorem to
rewrite the query to return an answer almost immediately.
When the simulated user issues two queries to compare the
salary for male and female doctorates (#14), we can first
execute the much easier (i.e., less selective) query over the
non-‘Female’ subpopulation and use the Inclusion-Exclusion
Principal to rewrite the query in order to compute an ap-
proximation of salary for only the female doctorates. To
execute this easier query, we use the multidimensional Tail
Index created over the education and sex attributes. Finally,
when the user drills down into especially rare subpopulations
(#14 and #16), our Tail Indexes allow our IDEA prototype
to compute a low-error approximation significantly faster
than online aggregation.

6.2.2 Abalone
The simulated user first views the distribution of age (#1)

and weight (#2) individually, then compares the distribu-
tions of weight for older (#3) and younger (#6) abalones.
Since both of these selected subpopulations are relatively
rare, our Tail Indexes help us to achieve a low-error result
significantly faster than online aggregation. Our Tail In-
dexes provide similar speedups in steps #13 and #15, yet
again achieving interactivity where online aggregation can-
not. Finally, when the simulated user compares age for in-
fant abalones versus adults (#14), we can leverage the Law
of Total Probability to reuse previously computed answers
from the Result Cache in order to return an approximation
instantly.
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6.2.3 Wine
As part of this exploration path, the simulated user com-

pares the alcohol content abv of high quality wines (#3)
to that of lesser quality wines (#6). Although online ag-
gregation cannot provide a sufficiently low-error approxi-
mation for the query over only the high quality wines (a
rare subpopulation), our Tail Indexes allow us to compute a
high-quality approximation within the interactivity thresh-
old. For the query over the lesser quality wines, we can use
the Law of Total probability to reuse the results from #2
and #3 to provide a low-error approximation instantly. Fi-
nally, by caching the results of previously executed queries,
we can immediately return the results for the queries that
the simulated user has already issued in the past (#4, #5,
#9, #11, #12, #15).

6.3 Scalability
To better understand the limits of our techniques, we con-

ducted scalability experiments in which we varied (1) data
size, (2) confidence level, (3) simulated “think time”, and
(4) amount of parallelism. For all scalability experiments,
we show the results for steps #3 and #16 from the Census
workload, which represent an early and late stage in the ex-
ploration session, respectively. As such, step #3 has much
less potential for result reuse and indexing than #16, which
has access to cached results from past queries and indexes
that have already been created.

6.3.1 Data Size
Figures 6a and 6e show the runtimes for step #3 and #16,

respectively, for various data sizes with a fixed confidence
level of 3.5σ, “think time” of one second, and parallelism
of 50 threads. As shown, for both #3 and #16, the size of
the data has little noticeable impact on performance, since
both online aggregation and our IDEA prototype scan only
a fraction of the tuples (independent of data size) in order
to provide a low-error approximation. The slight constant
increase in the runtime for both approaches as data size
increases is primarily attributable to the overhead associ-
ated with managing larger datasets in memory (e.g., object
allocation, garbage collection, CPU caching effects), which
increase with the amount of data.

6.3.2 Error
To show how both online aggregation and our proposed

AQP techniques perform for different amounts of acceptable
error, we show the runtime for both online aggregation and
our IDEA prototype to achieve varying confidence levels for
step #3 and #16 in the Census exploration session using
500M tuples, one second of “think time,” and 50 threads
per query operation. As shown in Figures 6b and 6f, our
approach is able to provide an approximate answer with the
same amount of error as online aggregation in less time. In
some cases, such as with a confidence of 3.5σ, our approach
outperforms online aggregation by an order of magnitude
due to our previously described Tail Indexes.

6.3.3 Think Time
Since the amount of time between user interactions influ-

ences the number of tuples that can be indexed, Figures 6c
and 6g show the time necessary for both online aggregation
and our IDEA prototype to compute an approximate result
with a confidence level of 3.5σ using 500M tuples and 50

threads for each query operation. As shown, the perfor-
mance of online aggregation is only very slightly affected by
“think time”. On the other hand, as shown, the more “think
time” that our IDEA prototype has to begin preparing for
a follow up query, the faster it can compute a low-error vi-
sualization.

6.3.4 Parallelism
As previously described, each query operation (e.g., index

creation, aggregate approximation) uses multiple threads
in order to best take advantage of modern multi-core sys-
tems. To show how the amount of parallelism affects system
performance, Figures 6d and 6h show the runtime to com-
pute an approximate result with a confidence level of 3.5σ
for both online aggregation and our IDEA prototype using
500M tuples, and one second of “think time” for a varying
number of threads. As shown, as the number of threads in-
creases, the system can take better advantage of the under-
lying hardware, resulting in lower query latencies. However,
for more than 50 threads, performance begins to degrade
due to thrashing and increased contention on shared data
structures.

7. RELATED WORK
The techniques presented in this work have overlap in

three main areas: (1) approximate query processing, (2) re-
sult reuse, and (3) indexing.

7.1 Approximate Query Processing
In general, AQP techniques fall into two main categories:

(1) biased sampling [1] and (2) online aggregation [13]. Sys-
tems that use biased sampling (e.g., AQUA [2], BlinkDB [3],
DICE [19]) typically require extensive preprocessing or fore-
knowledge about the expected workload, which goes against
the ad hoc nature of interactive data exploration. Simi-
larly, systems that perform online aggregation (e.g., CON-
TROL [12], DBO [18], HOP [5], FluoDB [35]) are unable
to give good approximations in the tails of the distribution,
which typically contain the most valuable insights. Our ap-
proach, on the other hand, leverages unique properties of
interactive data exploration in order to provide low-error
approximate results without any preprocessing or a priori
knowledge of the workload.

Similar to our approach, Verdict [29] uses the results of
past queries to improve approximations for future queries
in a process called “Database Learning.” However, Verdict
requires upfront offline parameter learning, as well as a suf-
ficient number of training queries in order to begin seeing
large benefits.

7.2 Result Reuse
In order to better support user sessions in DBMSs, vari-

ous techniques have been developed to reuse results [33, 16,
26, 9]. These techniques, however, do not consider reuse
in the context of (partial) query results with associated er-
ror. Specifically, our proposed AQP formulation allows us
to formally reason about error propagation to quantify re-
sult uncertainty for the user, as well as for making query
optimization decisions.

7.3 Indexing
Database cracking [14] is a self-organizing technique that

physically reorders tuples in order to more efficiently support
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selection queries without needing to store secondary indexes.
However, database cracking would destroy the randomness
of the underlying data, a property that our AQP techniques
rely upon in order to ensure the correctness of approximate
results.

Partial indexes [32] are built online for only the subset of
data of interest to the user. Our Tail Index takes these ideas
a step further and attempts to keep track of only rare sub-
populations in order to minimize overhead while still meet-
ing interactivity requirements. Moreover, our techniques ne-
cessitate careful consideration of how to draw tuples from
Tail Indexes in order to preserve randomness.

8. CONCLUSION
In this paper, we presented a novel AQP formulation that

treats query results as random variables in order to provide
low-error approximate results at interactive speeds, even for
queries over rare subpopulations. Our formulation leverages
the unique properties of interactive data exploration, specif-
ically opportunities for result reuse across queries and user
“think time.” We proposed several optimization techniques
that are based on probability theory, including new query
rewrite rules and index structures. We implemented these
techniques in a prototype system and showed that they can
achieve interactive latency in many cases where alternative
approaches cannot.
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