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Abstract

There is a fundamental discrepancy between the targeted and actual users of current analytics frame-
works. Most systems are designed for the challenges of the Googles and Facebooks of the world—
petabytes of data distributed across large cloud deployments consisting of thousands of cheap commodity
machines. Yet, the vast majority of users operate clusters ranging from a few to a few dozen nodes, ana-
lyze relatively small datasets of up to several terabytes in size, and perform primarily compute-intensive
operations. Targeting these users fundamentally changes the way we should build analytics systems.

This paper describes our vision for the design of Tupleware, a new system specifically aimed at per-
forming complex analytics (e.g., distributed machine learning) on small clusters. Tupleware’s architec-
ture brings together ideas from the database and compiler communities to create a powerful end-to-end
solution for data analysis. Our preliminary results show orders of magnitude performance improvement
over alternative systems.

1 Introduction

The growing prevalence of big data across all industries and sciences is causing a profound shift in the nature and
scope of analytics. Increasingly complex computations such as machine learning (ML) are quickly becoming
the norm. However, current analytics frameworks (e.g., Hadoop [1], Spark [36]) are designed to meet the needs
of giant Internet companies; that is, they are built to process petabytes of data in cloud deployments consisting
of thousands of cheap commodity machines. Yet non-tech companies like banks and retailers—or even the
typical data scientist—seldom operate clusters of that size, instead preferring smaller clusters with more reliable
hardware. In fact, recent industry surveys reported that the median Hadoop cluster was fewer than 10 nodes, and
over 65% of users operate clusters smaller than 50 nodes [20, 28].

Furthermore, the vast majority of users typically analyze relatively small datasets. For instance, the average
Cloudera customer rarely works with datasets larger than a few terabytes in size [15], and commonly analyzed
behavioral data peaks at around 1TB [11]. Even companies as large as Facebook, Microsoft, and Yahoo! fre-
quently perform ML tasks on datasets smaller than 100GB [32]. Rather, as users strive to extract more value
than ever from their data, computational complexity becomes the true problem.

Targeting more complex workloads on smaller clusters fundamentally changes the way we should design an-
alytics tools. Current frameworks disregard single-node performance and instead focus on the major challenges
of large cloud deployments, in which data I/O is the primary bottleneck and failures are common [17]. In fact, as
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Figure 1: An overview of Tupleware’s architecture, which depicts the three distinct yet interrelated components
of the system: (1) frontend, (2) program synthesis, and (3) deployment.

our experiments show, it is surprising to see how inefficiently these frameworks utilize the available computing
resources.

In this paper, we describe our vision for the design of Tupleware, a high-performance distributed system built
specifically for performing complex analytics on small clusters. The key idea behind Tupleware is to integrate
high-level DBMS optimizations with low-level compiler optimizations in order to best take advantage of the
underlying hardware. Tupleware compiles workflows comprised of user-defined functions (UDFs) directly into
a distributed program. More importantly, workflow compilation allows the system to apply optimizations on a
case-by-case basis that consider properties about the data, computations, and hardware together.

2 System Overview

Tupleware is a distributed, in-memory analytics platform that targets complex computations, such as distributed
ML. The system architecture is shown in Figure 1 and is comprised of three distinct parts.

Frontend: Tupleware allows users to define ML workflows directly inside a host language by supplying
UDFs to API operators such as map and reduce. Our new algebra, based on the strong foundation of functional
programming with monads, seeks a middle ground between flexibility and optimizability while also addressing
the unique needs of ML algorithms. Furthermore, by leveraging the LLVM [25] compiler framework, Tuple-
ware’s frontend is language-agnostic, and users can choose from a wide variety of programming languages
(visualized as the top boxes in Figure 1) with little associated overhead. We describe Tupleware’s algebra and
API in Section 3.

Program Synthesis: When the user submits a workflow to Tupleware, the Function Analyzer first examines
each UDF to gather statistics for predicting execution behavior. The Optimizer then converts the workflow into
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a self-contained distributed program and applies low-level optimizations that specifically target the underlying
hardware using the previously gathered UDF statistics. Finally, the Scheduler plans how best to deploy the
distributed program on the cluster given the available resources. The program synthesis process is explained in
Section 4.

Deployment: After compiling the workflow, the distributed program is automatically deployed on the clus-
ter, depicted in Figure 1 as ten nodes (shown as boxes) each with four hyperthreads (circles inside the boxes).
Tupleware utilizes a multitiered deployment setup, assigning specialized tasks to dedicated threads, and also
takes unique approaches to memory management, load balancing, and recovery. We discuss all of these deploy-
ment aspects further in Section 5.

3 Frontend

Ideally, developers want the ability to concisely express ML workflows in their language of choice without
having to consider low-level optimizations or the intricacies of distributed execution. In this section, we describe
how Tupleware addresses these points.

3.1 Motivation

Designing the right abstraction for ML tasks that balances usability and functionality is a tricky endeavor. We
believe that a good programming model for ML has three basic requirements.

Expressive & Optimizable: MapReduce [17] is a popular programming model for parallel data process-
ing that consists of two primary operators: a map that applies a function to every key-value pair, and a reduce
that aggregates values grouped by key. Yet, many have criticized MapReduce, in particular for rejecting the
advantages of high-level languages like SQL [4]. However, SQL is unwieldy for expressing ML workflows, re-
sulting in convoluted queries that are difficult to understand and maintain. Other recent frameworks (e.g., Spark,
Stratosphere [21], DryadLINQ [35]) have started to bridge the gap between expressiveness and optimizability
by allowing users to easily compose arbitrary workflows of UDFs.

Iterations: Many ML algorithms are most naturally expressed iteratively, but neither MapReduce nor SQL
effectively supports iteration [26, 16]. The most straightforward solution to this problem is to handle iterations
via an external driver program. Both Spark and DryadLINQ take this approach, but the downside is that a
completely independent job must be submitted for each iteration, making cross-iteration optimization difficult.
In contrast, a number of iterative extensions to MapReduce have been proposed (e.g., Stratosphere, HaLoop [10],
Twister [18]), but these approaches either lack low-level optimization potential or do not scale well.

Shared State: No existing framework incorporates an elegant and efficient solution for the key ingredient of
ML algorithms: shared state. Many attempts to support distributed shared state within a MapReduce-style frame-
work impose substantial restrictions on how and when programs can interact with global variables. For instance,
the Iterative Map-Reduce-Update [9] model supplies traditional map and reduce functions with read-only copies
of global state values that are recalculated during the update phase after each iteration. However, this paradigm
is designed for iterative refinement algorithms and could be difficult to adapt to tasks that cannot be modeled
as convex optimization problems (e.g., neural networks, maximum likelihood Gaussian mixtures). Furthermore,
Iterative Map-Reduce-Update precludes ML algorithms that explore different synchronization patterns (e.g.,
Hogwild! [31]). Spark is another framework that supports shared state via objects called accumulators, which
can be used only for simple count or sum aggregations on a single key, and their values cannot be read from
within the workflow. Spark also provides broadcast variables that allow machines to cache large read-only values
to avoid redistributing them for each task, but these values can never be updated. Therefore, broadcast variables
cannot be used to represent ML models, which change frequently.
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Figure 2: A visualization of a TupleSet’s logical
data model. Partitions P1, ..., Pn of the relation R
are spread across n nodes, whereas the Context is
logically shared across all nodes.

Type Operator λ-Function

Relational

selection(T )(λ) t → b
projection(T )(λ) t → t′

cartesian(T1, T2) -
θ-join(T1, T2)(λ) (t1, t2) → b

union(T1, T2) -
difference(T1, T2) -

Apply
map(T )(λ) (t, C) → t′

flatmap(T )(λ) (t, C) → {t′}
filter(T )(λ) (t, C) → b

Aggregate reduce(T )(λ)(κ?) (t, C) → (∆κ, C
′)

Control

load() -
evaluate(T ) -

save(T ) -
loop(T )(λ) C → b

update(T )(λ) C → C ′

Figure 3: A subset of TupleSet operators, showing
their types and λ-function contracts.

3.2 Programming Model

Based on these requirements, we envision a new programming model for distributed ML that: (1) strikes a middle
ground between the expressiveness of MapReduce and optimizability of SQL; (2) natively handles iterative
workflows in order to optimize transparently across iterations; and (3) provides flexible shared state primitives
with configurable synchronization patterns that can be directly accessed from within the workflow. Tupleware
introduces an algebra based on the foundation of functional programming with monads to address all three of
these points. We define this algebra on a data structure called a TupleSet comprised of a data relation and its
associated Context, which is a dictionary of key-value pairs that stores the shared state. Operators define the
different ways in which users can transform a TupleSet, returning a new TupleSet as output.

Tupleware’s programming model allows for automatic and efficient parallel data processing. As shown in
Figure 2, each node in the cluster processes a disjoint subset of the data. However, unlike other paradigms,
Tupleware’s API incorporates the notion of global state that is logically shared across all nodes.

3.3 Operator Types

We divide operators into four distinct types. Figure 3 shows the most common Tupleware operators, most of
which take as input one or more TupleSets T , as well as the signatures of their associated λ-functions. The
λ-functions are supplied by the user and specify the workflow’s computation.

Relational: Relational operators include all of the traditional SQL transformations. For example, the user
can perform a selection by passing a predicate UDF to the corresponding operator. As given in Figure 3, the
expected UDF signature has the form: t → b where t ∈ R and b is a Boolean value; that is, the user composes
a (potentially compound) predicate using the set of operations {=, ̸=, >,≥, <,≤} that returns true if a given
tuple t of the incoming relation R should be selected for the output relation R′ and false otherwise. Note that
relational operators interact only with the relation R of the TupleSet and cannot modify shared state variables
maintained by the Context C. Relational operators therefore introduce no dependencies, so we can perform the
standard query optimization techniques (e.g., predicate pushdown, join reordering). Note, though, that opera-
tors such as θ-join and union merge Context variables but do not change their values, performing SQL-style
disambiguation of conflicting keys.
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Apply: Apply operators invoke the supplied UDF on every tuple in the relation. Tupleware’s API provides
three apply operators: map, flatmap, and filter. The map operator requires a UDF that specifically produces a
1-to-1 mapping (i.e., the UDF takes one input tuple and must return exactly one output tuple). The flatmap opera-
tor takes a UDF that produces a 1-to-N mapping but is more difficult to optimize. The filter operator takes a UDF
that produces a 1-to-(0:1) mapping and is less restrictive than the relational selection operator, permitting arbi-
trary predicate logic. By distinguishing among these different types of apply operators, our programming model
provides the system with additional information about the workflow, thereby allowing for greater optimization.

Aggregate: Aggregate operators perform an aggregation UDF on the relation. Similar to Spark, Tupleware’s
reduce operator expects a commutative and associative λ-function. These semantics allow for the efficient par-
allelization of computations like sum and count, which return an output relation R′ consisting of one or more
aggregated values. Users can optionally specify a key function κ that defines the group-by semantics for the
aggregation. If no key function is provided, then the computation is a single-key reduce (i.e., all tuples have the
same key). Additionally, reduce λ-functions can modify Context variables in different ways, which we describe
further in Section 3.4.

Control: As their names suggest, the load, evaluate, and save operators actually load data into memory,
execute a declared workflow, and persist the results to the specified location, respectively, returning a handle to
the result as a new TupleSet that can then be used in a subsequent workflow. Notice, though, that this program-
ming model can efficiently cache and reuse results across several computations. In order to support iterative
workflows, which are common to ML algorithms, Tupleware also incorporates a loop operator. The loop op-
erator models a tail recursive execution of the workflow while the supplied loop invariant holds, and the UDF
has access to the Context for maintaining information such as iteration counters or convergence criteria. Finally,
Tupleware’s algebra provides an update operator that executes logically in a single thread and allows for direct
modification of Context variables.

3.4 Context

Shared state is an essential component of distributed ML algorithms, which frequently involve iterative refine-
ment of a global model. Tupleware expresses shared state using monads, which are an elegant way to handle
side effects in a functional language. Monads impose a happened-before relation between operators; that is, an
operator O that modifies Context variables referenced by another operator O′ must be fully evaluated prior to
evaluating O′.

Each type of operator has different rules that govern interaction with the Context. As previously mentioned,
relational operators cannot access Context variables. Apply operators have read-only access to Context variables,
allowing them to be fully parallelized. On the other hand, the update operator can directly modify Context
variables because it executes logically in a single thread.

For aggregate operators, we define three different Context variable update patterns that can express a broad
range of algorithms.

Parallel: Parallel updates must be commutative and associative. Conceptually, these updates are not directly
applied, but rather added to an update set. After the operation completes, the deltas stored in the update sets are
aggregated first locally and then globally, possibly using an aggregation tree to improve performance.

Synchronous: Synchronous updates require that each concurrent worker obtain an exclusive lock before
modifying a Context variable. This pattern ensures that each worker always sees a consistent view of the shared
state and that no updates are lost.

Asynchronous: Asynchronous updates allow workers to read from and write to a Context variable without
first acquiring a lock. This pattern makes no guarantees about when changes to a Context variable will become
visible to other concurrent workers and updates may be lost. Many algorithms can benefit from relaxing synchro-
nization guarantees. For example, Hogwild! shows that asynchronous model updates can dramatically improve
the performance of stochastic gradient descent. While asynchronous updates will occur nondeterministically
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ATTR = 2 #2 attributes (x,y)
CENT = 3 #3 centroids
ITER = 20 #20 iterations

def kmeans(c):
ts = TupleSet(’data.csv’, c) #load file ’data.csv’
ts = ts.map(distance) #get distance to each centroid

.map(minimum) #find nearest centroid

.reduce(reassign) #reassign to nearest centroid

.update(recompute) #recompute new centroids

.loop(iterate) #perform 20 iterations

.evaluate() #trigger computation
return ts.context()[’k’] #return new centroids

def distance(t1, t2, c):
t2.copy(t1, ATTR) #copy t1 attributes to t2
for i in range(CENT): #for each centroid:
t2[ATTR+i] = sqrt(sum(map(lambda # compute and store distance

m,n:(n-m)**2,c[’k’][i],t1))

def minimum(t1, t2):
t2.copy(t1, ATTR) #copy t1 attributes to t2
m,n = min(m,n for n,m #find index of min distance
in enumerate(t[:CENT]))

t2[ATTR] = n #assign to nearest centroid

def reassign(t1, c):
assign = t1[ATTR] #get centroid assignment
for i in range(ATTR): #for each attribute:
c[’sum’][assign][i] += t1[i] # compute sum for assign
c[’ct’][assign] += 1 #increment count for assign

def recompute(c):
for i in range(CENT): #for each centroid:
for j in range(ATTR): # for each attribute:
c[’k’][i][j] = # calculate average

c[’sum’][i][j]/c[’ct’][i]

def iterate(c):
c[’iter’] += 1 #increment iteration count
return c[’iter’] < ITER #check iteration count

Figure 4: A Tupleware implementation of k-means in
Python.

during the execution of an individual operator, the final result of that operator should always be deterministic
given valid inputs.

3.5 Language Integration

As mentioned previously, Tupleware allows users to compose workflows and accompanying UDFs in any lan-
guage with an LLVM compiler. Presently, C/C++, Python, Julia, R, and many other languages have LLVM
backends.

The system exposes functionality in a given host language via a TupleSet wrapper that implements the
Tupleware operator API (see Figure 3). As long as the user adheres to the UDF contracts specified by the API,
Tupleware guarantees correct parallel execution. A TupleSet’s Context also has a wrapper that provides special
accessor and mutator primitives (e.g., get, set). With the increasing popularity of LLVM, adding new languages
is as simple as writing a wrapper to implement Tupleware’s API.

3.6 Example

Figure 4 shows a Python implementation of the k-means clustering algorithm using Tupleware’s API. K-means
is an iterative ML algorithm that classifies each input data item into one of k clusters. In the example, the driver
function kmeans defines the workflow using the five specified UDFs, where t1 is an input tuple, t2 is an output
tuple, and c is the Context. Note that unlike other approaches, Tupleware can store the cluster centroids as
Context variables.
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Function Type Vectorizable Compute Time Load Time
Predicted Actual

distance map yes 30 28 3.75
minimum map yes 36 38 7.5
reassign reduce no 16 24 5.62
recompute update no 30 26 0

Table 2: Function statistics for the k-means algorithm gathered by the Function Analyzer.

4 Program Synthesis

Once a user has submitted a workflow, the system (1) examines and records statistics about each UDF, (2) gen-
erates an abstract execution plan, and (3) translates the abstract plan into a distributed program. We refer to this
entire process as program synthesis. In this section, we outline the different components that allow Tupleware to
synthesize highly efficient distributed programs.

4.1 Function Analyzer

Systems that treat UDFs as black boxes have difficulty making informed decisions about how best to execute a
given workflow. By leveraging the LLVM framework, Tupleware can look inside UDFs to gather statistics use-
ful for optimizing workflows during the code generation process. The Function Analyzer examines the LLVM
intermediate representation of each UDF to determine vectorizability, computation cycle estimates, and mem-
ory bandwidth predictions. As an example, Table 2 shows the UDF statistics for the k-means algorithm from
Section 3.6.

Vectorizability: Vectorizable UDFs can use single instruction multiple data (SIMD) registers to achieve data
level parallelism. For instance, a 256-bit SIMD register on an Intel E5 processor can hold 8×32-bit floating-point
values, offering a potential 8× speedup. In the k-means example, only the distance and minimum UDFs are
vectorizable, as shown in Table 2.

Compute Time: One metric for UDF complexity is the number of CPU cycles spent on computation. CPI
measurements [3] provide cycles per instruction estimates for the given hardware. Adding together these esti-
mates yields a rough projection for total UDF compute time, but runtime factors (e.g., instruction pipelining,
out-of-order execution) can make these values difficult to predict accurately. However, Table 2 shows that these
predictions typically differ from the actual measured compute times by only a few cycles.

Load Time: Load time refers to the number of cycles necessary to fetch UDF operands from memory. If the
memory controller can fetch operands for a particular UDF faster than the CPU can process them, then the UDF
is referred to as compute-bound; conversely, if the memory controller cannot provide operands fast enough, then
the CPU becomes starved and the UDF is referred to as memory-bound. Load time is given by:

Load T ime =
Clock Speed×Operand Size

Bandwidth per Core
(7)

For example, the load time for the distance UDF as shown in Table 2 computed on 32-bit floating-point
(x, y) pairs using an Intel E5 processor with a 2.8GHz clock speed and 5.97GB/s memory bandwidth per core
is calculated as follows: 3.75 cycles = 2.8GHz×(2×4B)

5.97GB/s .

4.2 Optimizer

Tupleware’s optimizer can apply a broad range of optimizations that occur on both a logical and physical level.
We divide these optimizations into three categories.

High-Level: Tupleware utilizes well-known query optimization techniques, including predicate pushdown
and join reordering. Additionally, our purely functional programming model allows for the integration of other
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traditional optimizations from the programming language community. All high-level optimizations rely on meta-
data and algebra semantics, information that is unavailable to compilers, but are not particularly unique to Tu-
pleware.

Low-Level: Code generation is the process by which compilers translate a high-level language (e.g., Tu-
pleware’s algebra) into an optimized low-level form (e.g., LLVM). As other work has shown [24], SQL query
compilation techniques can harness the full potential of the underlying hardware, and Tupleware extends these
techniques by applying them to the domain of complex analytics. As part of the translation process, Tuple-
ware generates all of the data structure, control flow, synchronization, and communication code necessary to
form a complete distributed program. Unlike other systems that use interpreted execution models, Volcano-
style iterators, or remote procedure calls, Tupleware eliminates much associated overhead by compiling in these
mechanisms. Tupleware also gains many compiler optimizations (e.g., SIMD vectorization, function inlining)
“for free” by compiling workflows, but these optimizations occur at a much lower level than DBMSs typically
consider.

Hybrid: Some systems incorporate DBMS and compiler optimizations separately, first performing alge-
braic transformations and then independently generating code based upon a fixed strategy. On the other hand,
Tupleware combines an optimizable high-level algebra and statistics gathered by the Function Analyzer with
the ability to dynamically generate code, enabling optimizations that would be impossible for either a DBMS
or compiler alone. In particular, we consider (1) high-level algebra semantics, (2) metadata, and (3) low-level
UDF statistics together to synthesize optimal code on a case-by-case basis. For instance, we are investigat-
ing techniques to generate different code for selections based upon the estimated selectivity and computational
complexity of predicates.

4.3 Scheduler

The Scheduler determines how best to deploy a job given the available computing resources and physical data
layout in the cluster. Most importantly, the Scheduler takes into account the optimum amount of parallelization
for a given operation in a workflow. Operations on smaller datasets, for instance, may not benefit from massive
parallelization due to the associated deployment overhead. Additionally, the Scheduler considers data locality to
minimize data transfer between nodes.

5 Deployment

After program synthesis, the system now has a self-contained distributed program. Each distributed program
contains all necessary communication and synchronization code, avoiding the overhead associated with external
function calls. Tupleware takes a multitiered approach to distributed deployment, as shown in Figure 1. The
system dedicates a single hyperthread on a single node in the cluster as the Global Manager (GM), which is
responsible for global decisions such as the coarse-grained partitioning of the data across nodes and supervising
the current stage of the workflow execution. In addition, we dedicate one thread per node as a Local Manager
(LM). The LM is responsible for the fine-grained management of the local shared memory, as well as for trans-
ferring data between machines. The LM is also responsible for actually deploying compiled programs and does
so by spawning new executor threads (E), which actually execute the workflow. During execution, these threads
request data from the LM in an asynchronous fashion, and the LM responds with the data and an allocated result
buffer.

Memory Management: Similar to DBMSs, Tupleware manages its own memory pool and tries to avoid
memory allocations when possible. Therefore, the LM is responsible for keeping track of all active TupleSets
and performing garbage collection when necessary. UDFs that allocate their own memory, though, are not man-
aged by Tupleware’s garbage collector. In addition, we avoid unnecessary object creations or data copying. For
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instance, Tupleware often performs updates in-place if the data is not required in subsequent computations. Ad-
ditionally, while the LM is idle, it can reorganize and compact the data, as well as free blocks of data that have
already been processed.

Load Balancing: Tupleware’s data request model is multitiered and pull-based, allowing for automatic load
balancing with minimal overhead. Each of the executor threads requests data in small cache-sized blocks from
the LM, and each LM in turn requests larger blocks of data from the GM. All remote data requests occur
asynchronously, and blocks are requested in advance to mask transfer latency.

Fault Tolerance: As our experiments demonstrate, Tupleware can process gigabytes of data with subsecond
response times, suggesting that checkpointing would do more harm than good. Extremely long-running jobs on
the order of hours or days, though, might benefit from intermediate result recoverability. In these cases, Tuple-
ware performs simple k-safe checkpoint replication. However, unlike other systems, Tupleware has a unique
advantage: since we fully synthesize distributed programs, we can optionally add these recovery mechanisms
on a case-by-case basis. If our previously described workflow analysis techniques determine that a particular
job will have a long runtime, we combine that estimation with the probability of a failure (given our intimate
knowledge of the underlying hardware) to decide whether to include checkpointing code.

6 Evaluation

We compared an early Tupleware prototype against Hadoop 2.4.0 and Spark 1.0.1 using a small cluster with
high-end hardware. This cluster consisted of 10×c3.8xlarge instances with Intel E5-2680v2 processors
(10 cores, 25MB Cache), 60GB RAM, 2× 320GB SSDs, and 10 Gigabit*4 Ethernet.

6.1 Workloads and Data

The benchmarks included five common ML tasks. We implemented a consistent version of each algorithm across
all systems with a fixed number of iterations and used synthetic datasets in order to test across a range of data
characteristics (e.g., size, dimensionality, skew). All tasks operated on datasets of 1, 10, and 100GB in size. We
recorded the total runtime of each algorithm after the input data was loaded into memory and parsed except in
the case of Hadoop, which had to read from and write to HDFS on every iteration. For all iterative algorithms,
we report the total time taken to complete 20 iterations. We now describe each ML task.

K-means: As described in Section 3.6, k-means is an iterative clustering algorithm that partitions a dataset
into k clusters. Our test datasets were generated from four distinct centroids with a small amount of random
noise.

Linear Regression: Linear regression produces a model by fitting a linear equation to a set of observed data
points. We build the model using a parallelized batch gradient descent algorithm that computes updates locally
on each worker from a disjoint subset of the dataset. These local updates are then averaged and applied to the
model globally before the next iteration. The generated data had 1024 features.

Logistic Regression: Logistic regression attempts to find a hyperplane w that best separates two classes of
data by iteratively computing the gradient and updating the parameters of w. We implemented logistic regression
also with batch gradient descent on generated data with 1024 features.

PageRank: PageRank is an iterative link analysis algorithm that assigns a weighted rank to each page in a
web graph to measure its relative significance. Based on the observation that important pages are likely to have
more inbound links, search engines such as Google use the algorithm to order web search results.

Naive Bayes: A naive Bayes classifier is a conditional model that uses feature independence assumptions
to assign class labels. Naive Bayes classifiers are used for a wide variety of tasks, such as spam filtering, text
classification, and sentiment analysis. We trained a naive Bayes classifier on a generated dataset with 1024
features and 10 possible labels.
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K-means 1621.36 5023.64 36818.58 13.243 61.528 614.355 0.214 0.910 6.594
Linear Regression 1479.7 2622.68 18149.8 5.433 8.013 36.101 0.327 0.657 4.046

Logistic Regression 1497.66 2665.7 18200.54 5.507 8.030 36.630 0.329 0.734 4.107
PageRank 1438.44 1666.8 7019.52 62.348 119.854 1076.834 17.797 19.027 45.543

Naive Bayes 5.18 5.228 6.025 3.162 4.622 18.703 0.037 0.050 1.371

Figure 5: Distributed benchmark results and runtimes (in seconds).

6.2 Discussion

As shown in Figure 5, Tupleware outperforms Hadoop by up to three orders of magnitude and Spark by up to
two orders of magnitude for the tested ML tasks on a small cluster of high-end hardware.

Tupleware is able to significantly outperform Hadoop because of the substantial I/O overhead required for
materializing intermediate results to HDFS between iterations. On the other hand, Tupleware is able to cache
intermediate results in memory and performs hardware-level optimizations to improve CPU efficiency. For this
reason, we measure the greatest speedups over Hadoop on k-means, linear and logistic regression, and PageRank,
whereas the performance difference for Naive Bayes is not as pronounced. Furthermore, Hadoop’s simple API
is not intended for complex analytics and the system is not designed to optimize workflows for single-node
performance.

Spark performs better than Hadoop for the iterative algorithms because it allows users to cache the work-
ing set in memory, eliminating the need to materialize intermediate results to disk. Additionally, Spark offers a
richer API that allows the runtime to pipeline operators, further improving data locality and overall performance.
For CPU-intensive ML tasks such as k-means, though, Tupleware is able to significantly outperform Spark by
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synthesizing distributed programs and employing low-level code generation optimizations. Furthermore, Tu-
pleware’s unique frontend and Context variables described in Section 3 provide efficient, globally-distributed
shared state for storing and updating a model. The benefit of storing the model as a Context variable is most
noticeable in our naive Bayes experiment due to the fact that each machine can directly update a local copy of
the model instead of performing an expensive shuffle operation.

7 Related Work

Tupleware’s unique design allows the system to highly optimize complex analytics tasks. While other systems
have looked at individual components, Tupleware collectively addresses how to (1) easily and concisely express
complex analytics workflows, (2) synthesize self-contained distributed programs optimized at the hardware level,
and (3) deploy tasks efficiently on a cluster.

7.1 Programming Model

Numerous extensions have been proposed to support iteration and shared state within MapReduce [10, 18, 7],
and some projects (e.g., SystemML [19]) go a step further by providing a high-level language that is trans-
lated into MapReduce tasks. Conversely, Tupleware natively integrates iterations and shared state to support this
functionality without sacrificing low-level optimization potential. Other programming models, such as Flume-
Java [13], Ciel [27], and Piccolo [29] lack the low-level optimization potential that Tupleware’s algebra provides.

DryadLINQ [35] is similar in spirit to Tupleware’s frontend and allows users to perform relational trans-
formations directly in any .NET host language. Compared to Tupleware, though, DryadLINQ cannot easily
express updates to shared state and requires an external driver program for iterative queries, which precludes
any cross-iteration optimizations.

Scope [12] provides a declarative scripting language that is translated into distributed programs for deploy-
ment in a cluster. However, Scope primarily focuses on SQL-like queries against massive datasets rather than
supporting complex analytics workflows.

Tupleware also has commonalities with the programming models proposed by Spark [36] and Stratosphere [21].
These systems have taken steps in the right direction by providing richer APIs that can supply an optimizer with
additional information about the workflow, thus permitting standard high-level optimizations. In addition to these
more traditional optimizations, Tupleware’s algebra is designed specifically to enable low-level optimizations
that target the underlying hardware, as well as to efficiently support distributed shared state.

7.2 Code Generation

Code generation for query evaluation was proposed as early as System R [8], but this technique has recently
gained popularity as a means to improve query performance for in-memory DBMSs [30, 24]. Both HyPer [22]
and VectorWise [37] propose different optimization strategies for query compilation, but these systems focus
on SQL and do not optimize for UDFs. LegoBase [23] includes a query engine written in Scala that generates
specialized C code and allows for continuous optimization, but LegoBase also concentrates on SQL and does
not consider ML or UDFs.

DryadLINQ compiles user-defined workflows into executables using the .NET framework but applies only
traditional high-level optimizations. Similarly, Tenzing [14] and Impala [2] are SQL compilation engines that
also focus on simple queries over large datasets.

OptiML [33] offers a Scala-embedded, domain-specific language used to generate execution code that tar-
gets specialized hardware (e.g., GPUs) on a single machine. Tupleware on the other hand provides a general,
language-agnostic frontend used to synthesize LLVM-based distributed executables for deployment in a cluster.
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7.3 Single-Node Frameworks

BID Data Suite [11] and Phoenix [34] are high performance single-node frameworks targeting general analytics,
but these systems cannot scale to multiple machines or beyond small datasets. Scientific computing languages
like R [6] and Matlab [5] have these same limitations. More specialized systems (e.g., Hogwild! [31]) provide
highly optimized implementations for specific algorithms on a single machine, whereas Tupleware is intended
for general computations in a distributed environment.

8 Conclusion

Advanced analytics workloads, in particular distributed ML, have become commonplace for a wide range of
users. However, instead of targeting the hardware to which most of these users have access, existing frame-
works are designed primarily for large cloud deployments with thousands of commodity machines. This paper
described our vision for Tupleware, a new analytics system geared towards compute-intensive, in-memory an-
alytics on small clusters. Tupleware combines ideas from the database and compiler communities to create a
user-friendly yet highly efficient end-to-end data analysis solution. Our preliminary experiments demonstrated
that our approach can achieve speedups of up to several orders of magnitude for common ML tasks.
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