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Figure 1. The proposed method segments scenes into layers (left in each pair) and estimates the flow (right) over several frames.

Abstract

Layered models provide a compelling approach for esti-
mating image motion and segmenting moving scenes. Pre-
vious methods, however, have failed to capture the structure
of complex scenes, provide precise object boundaries, effec-
tively estimate the number of layers in a scene, or robustly
determine the depth order of the layers. Furthermore, previ-
ous methods have focused on optical flow between pairs of
frames rather than longer sequences. We show that image
sequences with more frames are needed to resolve ambigu-
ities in depth ordering at occlusion boundaries; temporal
layer constancy makes this feasible. Our generative model
of image sequences is rich but difficult to optimize with tra-
ditional gradient descent methods. We propose a novel dis-
crete approximation of the continuous objective in terms of
a sequence of depth-ordered MRFs and extend graph-cut
optimization methods with new “moves” that make joint
layer segmentation and motion estimation feasible. Our op-
timizer, which mixes discrete and continuous optimization,
automatically determines the number of layers and reasons
about their depth ordering. We demonstrate the value of
layered models, our optimization strategy, and the use of
more than two frames on both the Middlebury optical flow
benchmark and the MIT layer segmentation benchmark.

1. Introduction

The segmentation of scenes into regions of coherent
structure and the estimation of image motion are fundamen-
tal problems in computer vision which are often treated sep-
arately. When available, motion provides an important cue

for identifying the surfaces in a scene and for differentiat-
ing image texture from physical structure. This paper ad-
dresses the principled combination of motion segmentation
and static scene segmentation. We do so by introducing
a new layered model of moving scenes in which the layer
segmentations enable the integration of motion over time.
This results in improved optical flow estimates, disambigua-
tion of local depth orderings, and correct interpretation of
occlusion boundaries. To solve the challenging inference
problem we introduce a new mixed continuous and discrete
optimization method that solves for the number of layers
and their depth ordering. The resulting method achieves
state-of-the-art results in both video segmentation and opti-
cal flow estimation (Figure 1).

Layered models offer an elegant approach to motion seg-
mentation and have many advantages. A typical scene con-
sists of very few moving objects and representing each mov-
ing object by a layer allows the motion of each layer to
be described more simply [31]. Such a representation can
explicitly model the occlusion relationships between layers
making the detection of occlusion boundaries possible. Un-
fortunately, current layered motion models have not shown
convincing layer segmentation results on challenging real-
world sequences.

One key issue is that the layer-structure inference prob-
lem is difficult to optimize. Most methods adopt an expecta-
tion maximization (EM) style algorithm that is susceptible
to local optima. For example, in [27] we propose a gen-
erative layered model that combines mixture models with
state-of-the-art static image segmentation models [25]. This
Layers++ method estimates image motion very accurately
as measured by the Middlebury optical flow benchmark [1].



Figure 2. A failure case for the Layers++ method [27]. Left to right: first image in a pair (arrows show motion direction and their length
indicates motion magnitude); initial flow estimate, color coded as in [1]; segmentation by Layers++; segmentation with our proposed
nLayers method, which automatically determines the number of layers, their depth ordering, and is able to make large changes to the
initial flow field to reach a good solution. On the far right is a color key for the ordering of depth layers (blue is close and red is far).

However, our gradient-based inference algorithm is suscep-
tible to local optima, resulting in errors in the estimated
scene structure and flow field, as illustrated in Figure 2.

Overcoming such limitations requires an optimization
method that can make large changes to the solution at a
single step, a task more suitable for discrete optimization.
Hence we propose a discrete layered model based on a se-
quence of ordered Markov random fields (MRFs). This
model, unlike standard Ising/Potts MRFs, cannot be directly
solved by “off-the-shelf” optimizers, such as graph cuts.
Therefore we develop a sequence of non-standard moves
that can simultaneously change the states of several binary
MRFs. We also embed continuous flow estimation into the
discrete framework to adapt the state space to estimate sub-
pixel motion. The resultant discrete-continuous scheme en-
ables us to infer the number of layers and their depth order-
ing automatically for a sequence.

We evaluate our layer segmentation using the MIT
human-assisted motion annotation dataset [18]. Our method
produces semantically more meaningful segmentations that
are also quantitatively more consistent with human labeled
ground truth than the continuous-only Layers++ method.
With a reliable layer segmentation and the relative depth
ordering obtained with the discrete method, we initialize
the more precise Layers++ continuous model of optical
flow. The discrete-continuous approach gives a concrete im-
provement over a purely continuous optimization that can
easily become trapped in local optima.

Like many approaches, our previous work [27] considers
optical flow between only two frames. Unfortunately, with
only two frames, depth ordering at occlusion boundaries is
fundamentally ambiguous [7]. Critically, our approach is
formulated to estimate optical flow over time. By estimating
layer segmentations over three or more frames we obtain a
reliable depth ordering of the layers and more accurate mo-
tion estimates. At the time of writing, the proposed method
is ranked first in AAE and fourth in EPE on the Middlebury
optical flow benchmark.

In summary, our contributions include a) formulating a
discrete layered model based on a sequence of ordered Ising
MRFs and devising a set of non-standard moves to optimize
it; b) formulating methods for automatically determining
the number of layers and their depth ordering for a given

sequence; c) concretely improving layer segmentation on
a set of real-world sequences; d) demonstrating the bene-
fits of using more frames for optical flow estimation on the
Middlebury optical flow benchmark.

2. Previous Work

Layered optical flow. Most layered approaches assume
a parametric motion for each layer [11, 13, 16, 31] which
is too restrictive to capture the motion of natural scenes.
Weiss [32] addresses this by allowing smooth motions in the
layers. In [27] we extend this to impose global coherence
via an affine motion field while modeling local non-smooth
deformation from affine with a robust MRF. Both methods
adopt continuous optimization methods that do not reason
about the number or ordering of layers.

Like us, Jepson et al. [12] decompose a scene into over-
lapping layers, reasoning about the number of layers, and
determining the depth order. While their method models
layer support with parametric regions we allow much more
varied layers. Weiss and Adelson [33] incorporate static
image cues into the layered segmentation and estimate the
number of layers under fairly weak assumptions. Torr et
al. [28] use a Bayesian decision making framework to deter-
mine the number of approximately planar layers but do not
infer the depth ordering. Our depth ordering formulation is
similar to flexible sprites [13] and their extensions [16], but
we use more flexible motion models.

Occlusion. Reasoning about occlusion in image se-
quences dates to the mid 1970’s and early 1980’s; a full re-
view is beyond our scope. Early authors (e.g. [21]) note that
occlusion boundaries move with the occluding surface but
the first explicit statement that this requires three frames to
compute seems to be by Darrell and Fleet [7]. We illustrate
this in Figure 3 because we can not find a clear description
in the literature.

This simple fact is a key reason why two-frame opti-
cal flow estimation is fundamentally limited. In a layered
model, inferring the wrong depth order results in significant
errors at motion boundaries. The idea of using three or more
frames has been embodied in recent methods for computing
motion boundaries and depth order [3, 8] but appears miss-
ing from recent dense flow estimation methods.

Estimating flow over time. Again, estimation of flow



Image Layer structure:
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Figure 3. Relative depth ordering can be ambiguous in 2 frames.
A third frame enables the motion of the occlusion boundary to be
computed. This motion is consistent with the occluding surface,
removing the ambiguity. Two cases are shown where image 1 and
2 are the same. In both, surface B moves to the left. With image
3 the ambiguity is resolved because the motion of the occluding
contour is known.

over time has a long history [2, 20] yet few methods have
demonstrated improved accuracy through temporal consis-
tency of flow. Volz et al. [29] recently propose a multi-
frame optical flow method that shows improvement using 5
frames over their 2-frame baseline. However their 5-frame
method is still less accurate than the top performing 2-frame
methods [27, 37]. We argue that, while flow fields are
not always temporally consistent, the scene structure rep-
resented by a layered segmentation is.

Segmentation and optimization. Ising/Potts MRFs are
popular for layer segmentation [35, 36] because of the
availability of efficient optimizers. Unfortunately they as-
sign low probability to typical segmentations of natural
scenes [19] and do not capture the relationship between lay-
ers, such as occlusion. Sudderth and Jordan [25] develop
a segmentation model based on thresholded Gaussian pro-
cesses (similar to level set methods) and obtain realistic seg-
mentations of static scenes. In [27] we exploit this model
for image sequences using continuous support functions.
Here we formulate a novel discrete version using a sequence
of ordered Ising MRFs and develop non-standard moves to
optimize it. The motion competition framework [5, 6] uses
level sets to model the scene segmentation in a variational
setting, but does not address occlusion reasoning.

It is common to alternate optimization between segmen-
tation and motion estimation [23, 27, 32]. However, previ-
ous methods change the flow and segmentation separately,
while we argue that they must be coupled. An object may
appear in the wrong layer but with the correct motion. Con-
sequently one must change the motion and layer segmenta-
tion simultaneously to avoid local optima.

Discrete optimization techniques, such as belief propa-
gation [15] and graph cuts [4, 14], have been used in single-
layer robust optical flow formulations [17, 24]. Particularly,
Lempitsky et al. [17] fuse a large set of candidate flow fields
to minimize a robust energy function. These methods can
reach good local optima but tend to produce large errors in

Figure 4. Left to right: support functions for the first (front) and
second layers, visibility mask for the second layer, and the layer
segmentation. Top: frame t; bottom: frame ¢ + 1. The “bird”
layer is in front of and occludes the second “apple” layer; Bottom
row: The binary support functions at time ¢ + 1 are temporally
consistent with those at time ¢ according to the flow field for each

layer, resulting in temporally consistent layer segmentation. The
two support functions jointly determine the layer segmentation.

occlusion regions. This can partly be remedied by explicit
occlusion detection and post processing [37]. In contrast,
we exploit the layered model to explicitly model the oc-
clusion process during continuous flow refinement. Graph
cuts have also been used for segmentation and tracking.
For example Kumar et al. [16] alternate the optimization
of motion and segmentation and use affine motion models
for each layer. Additionally, Wang et al. [30] require the
manual segmentation of objects in the first frame and use
parametric motion models.

The power of layered models is as much about segmen-
tation as motion estimation, and we thus compare to a con-
temporary graph-based [9] video segmentation method. A
complete review of video segmentation is beyond our scope.

3. Models and Inference

We first define a discrete generative layered model based
on an ordered sequence of binary, Ising MRFs. We then
introduce a family of “cooperative” discrete optimization
moves, as well as methods to determine the number of lay-
ers and their depth ordering.

3.1. A Discrete Layered Model for Optical Flow

Consider an image sequence presumed to have K depth-
ordered motion layers. In our previous work, we model the
spatial support of these layers by thresholding a sequence
of smooth, continuous layer support functions [27]. Un-
fortunately, our previous gradient-based inference scheme
is susceptible to local optima, especially in determining the
scene segmentation and depth ordering.

In contrast to gradient-based methods, discrete opti-
mization methods like graph cuts [4, 14] can substantially
change the configuration of the solution in a single move.
To exploit such methods we need a discrete (approximate)
formulation of the layered flow estimation problem. The
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overall energy function is given by Eq. (1) in which u, vy
are flow fields for each of the K layers at time ¢, and g
are binary support functions for the first K — 1 layers (in
contrast to the smooth support functions in [27]). We also
associate every layer with an affine motion field uy,, , vo,,
parameterized by 6; we motivate this choice shortly.

As shown in Figure 4, we can determine binary visibility
masks sy, for each layer from g, by sequentially multiply-
ing the support functions and their complements.
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where p = (i,j) denotes a pixel at frame ¢. The vis-
ibility masks provide a segmentation of the scene into
layers. Given the visibility mask, the occlusion rea-
soning (data likelihood term) is the same as in [27]

Egaa(ue, v, 81, 8e41) =

ZZ (Pd

k=1 p

t+1) Ad) S?ksgﬂ,kv 3)

where ¢ = (i + ul,,j + v},) denotes the corresponding
pixel at frame ¢ + 1, and p is a robust penalty function.
Temporal consistency of the support functions, as aligned
by the inferred flow field, is encouraged by an Ising MRF:
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For non-integer flow vectors, sub-pixel interpolation intro-
duces high-order temporal terms. We round these flow vec-
tors to obtain an approximation with only pairwise terms.
As shown in Figure 4, these temporally consistent support
functions ensure the layer structures persist over time.

We capture the spatial coherence of the binary support
functions by a conditional Ising MRF with weights deter-
mined by image color differences:
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Here the weight is defined as in the continuous formula-
tion [27]. These spatially coherent support functions ensure
the scene segmentation is spatially coherent and respects
the local image evidence. Note that the visibility term in
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Eq. (2) implies high-order interaction terms among several
layer-specific spatio-temporal Ising MRFs.
We model the motion of each layer by a pairwise MRF

with a unary term. The energy term is Eflg‘ze(utk, Or) =
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where the unary term encourages the flow field of each layer
to be close to its affine flow (with weight ), and the affine
motion is computed as in [27]. Note that this semiparamet-
ric model still allows deviation from the affine motion and
is more flexible than parametric models. In automatically
determining the number of layers, there is an important bal-
ance between Equations (5) and (6): the former penalizes
support discontinuities, while the latter favors additional
layers so that each layer’s flow is closer to affine.

3.2. “Cooperative” Discrete Optimization Moves

Optimization of Equation (1) is challenging. A common
strategy is to alternate the optimization of the support func-
tions and the flow fields for each individual layer. Unfor-
tunately, this approach is susceptible to local optima (see
Figure 2). We thus develop optimization moves that can
simultaneously change the flow fields and segmentation.

The standard moves of graph cuts are not directly appli-
cable to the discrete model, because of the high-order inter-
action terms in the data term. We therefore define a set of
“cooperative” moves that can a) change a group of pixels to
be visible at a particular layer while also selecting their flow
fields; b) change a group of pixels to be visible at a particu-
lar layer; c) select the flow fields of a particular layer from
a candidate set. Each move solves a binary problem via the
QPBO algorithm [10, 14], where the auxiliary binary vari-
able, b, encodes the states of several model variables. Next
we explain the most complicated simultaneous segmenta-
tion and flow move and provide the details of other moves
in the Supplemental Material.

Simultaneous segmentation and flow move. Sometimes
a region may be assigned to a wrong layer with the correct
motion. To escape this local optimum, we typically need to
simultaneously change the segmentation and flow fields.
Consider a pixel p in frame ¢, for which layer &’ is cur-
rently visible. We define a binary decision variable b’ such
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that the configuration is unchanged when bf = 0, and an
alternative layer k& becomes visible when b = 1. Revealing
this new layer may alter all the support functions for the first
k layers: when b} = 1, g7, (1) = 1 and g;, (1) = 0,k < k.
In this case, we also set the motion for layer k to that of the

formerly visible layer (uf k( ) = ub) k(,)ld) and the motion for

layer k' to its affine mean (up, (1) = ug ).

This segmentation and flow move involves many terms
from the overall model, which depend on the binary deci-
sion variables as summarized in Eq. (7). The choice of b}
influences the flow vector at pixel p, and thus determines
which of two candidate pixels it is linked to at the next
frame. When b7 = 0, the temporal neighbors are
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and the corresponding potential function will only “fire”
when b = 0, so that ¢, . (b7, b7, |) =
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which incorporates both the data and temporal terms for
the K — 1 support functions. We evaluate the warped
image Itqul at subpixel positions and the visibility mask
s{,, and the warped support function g/, , , at integer
positions. Similarly ¢, (b7, b7, ) is defined to only “fire”
when b} = 1 (see Supplemental Material).

For the spatial term, the set /\/'p7Space contains the four
nearest neighbors of pixel p. The binary selection variable
changes the states of several binary support functions and
flow fields. The effects sum together as
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The unary term can be obtained from Eq. (6) as
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Visibility move. Given the current flow estimate, we de-
cide whether to make a pixel p visible for the selected layer
k by modifying the previous layer support g°. When b7 =
0, all the support functions retain their previous value at p,

T
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ie. gh(0) = g%, When bi’ = 1, we need to adjust the
support functions of the first k layers so that layer k is visi-
ble at p, i.e. g5 (1) = 0if k < k, and ¢, (1) = 1if k = k.
When k is the last layer, all the support functions of the first
K — 1 layers are set to be 0 at p.

Flow selection move and continuous refinement. Given
the current layer assignment, the pixel of each layer can re-
tain its current motion or take the motion of the affine mean
flow field. This is a binary segmentation problem similar
to the FusionFlow [17] work. The main difference is that
our model uses the segmentation information to handle oc-
clusions. After this step, we refine the output flow field by
continuous optimization [26] to adaptively change the can-
didate flow fields for the discrete optimization.

3.3. Layer Number Determination and Depth Or-
der Reasoning

We initialize with an upper bound on the number of lay-
ers. During optimization, when a layer has no visible pixels
associated with it, we remove it from the solution. The new
solution can equally explain the image data, pays no penalty
for the removed layer, and so has lower energy. Inferring
the depth ordering of layers requires testing all the possi-
ble combinations and is computationally prohibitive. We
instead use heuristics to reduce the search space. We first
order the layers from fast to slow by their average motion.
We then perform the moves above to estimate the support
functions and the flow fields in both the fast-to-slow and the
slow-to-fast ordering. The ordering with the lower energy
is further refined as follows. For each pair of neighboring
layers, we propose to switch their ordering, and optimize
their visibility mask and support functions. If the new solu-
tion has a lower energy than its previous one, we accept this
new depth ordering and proceed to other pairs (see Supple-
mental Material for the detailed algorithm). In practice,
we find that this local greedy search scheme is fairly robust.

4. Experimental Results

We evaluate the proposed layered model on both motion
estimation and layer segmentation tasks. Throughout this
section, the proposed method is called nLayers, since it can
automatically determine the number of layers. Layers++
refers to the continuous method developed in [27] which
uses a fixed number of 3 layers. For layer segmentation, we
also compare our method to a state-of-the-art, hierarchical
graph-based video segmentation algorithm [9], referred to



Table 1. Average end-point error (EPE) on the Middlebury fraining set. Using four frames and the new optimization improves accuracy.

Avg. Venus  Dimetrodon Hydrangea  RubberWhale  Grove2  Grove3  Urban2  Urban3
Classic+NL (2 frames)  0.221 0.238 0.131 0.152 0.073 0.103 0.468 0.220 0.384
Layers++ (2 frames) 0.195 | 0.211 0.150 0.161 0.067 0.086 0.331 0.210 0.345
Layers++ (4 frames) 0.190 | 0.211 0.151 0.157 0.067 0.084 0.330 0.207 0.311
nLayers (4 frames) 0.183 | 0.191 0.126 0.175 0.062 0.080 0.336 0.175 0.316

Table 2. Average end-point error (EPE) and angular error (AAE) on the Middlebury optical flow benchmark fest set. The discrete-
continuous optimization (nLayers) obtains similar EPE and better AAE than the continuous-only inference method (Layers++).

Rank Avg. | Army Mequon Schefflera Wooden Grove Urban  Yosemite  Teddy
EPE Layers++ 8.0 0.27 0.08 0.19 0.20 0.13 0.48 0.47 0.15 0.46
nLayers 8.5 0.28 0.07 0.22 0.25 0.15 0.53 0.44 0.13 0.47
AAE Layers++ 9.2 2.56 3.11 2.43 2.43 2.13 2.35 3.81 2.74 1.45
nLayers 5.7 2.38 2.80 2.71 2.61 2.30 2.30 2.62 2.29 1.38
all the robust functions to be the generalized Charbonnier
penalty function p(z) = (22 + €2)® with ¢ = 0.001 and
a = 0.45 [26].
Results on the Middlebury training set are shown in Ta-
(a) frame 1 (b) frame 2 (¢) frame 3 (@) frame 4 ble 1. Changing from 2 to 4 frames improves results for
l the Layers++ model supporting our hypothesis that longer
: sequences are important. More improvement comes from
l using a discrete model to obtain a good segmentation of the
©flow 2103) (Dseg. 2) (o) flow 2103) (h)seg. (2) scene and then use the inferred structure for flow estimation

Figure 5. Occlusion reasoning using frames 2 and 3 (e-f) is hard
(detail from Urban3); enforcing temporal coherence of the support
functions using 4 frames significantly reduces the errors in both
the flow field and the segmentation (g-h). The flow field is from
frame 2 to frame 3 and the segmentation is for frame 2.

as HGVS in the comparison below. HGVS uses the output
from a recent optical flow estimation method [34].
Implementation details and parameter settings. We
start with the single-layered output from “Classic+NL” [26]
and cluster the flow field into 10 layers. We then run
the discrete method to estimate the scene structure and the
flow fields to initialize the more precise continuous layered
model. It takes nLayers about 10 hours in total to compute
three forward and three backward flow fields from the four-
frame 640 x 480 “Urban” sequence in MATLAB with a
C++ mexed QPBO solver. It takes Layers++ about 5 hours
to compute one forward and one backward flow field from
two frames. HGVS uses ten frames, or all the frames if a
sequence has fewer than ten frames. HGVS has three differ-
ent outputs for the same video. We show the segmentation
results produced at 90 percent of highest hierarchy level,
because it gives the best visual and numeric results.

4.1. Motion Estimation

We use the Middlebury optical flow benchmark to eval-
uate the motion estimation results. We manually set Ay =
0.3,\p = 80, and A, = 10 for the discrete model, use
the provided values for the other parameters from [27], and
fix them for all the motion estimation experiments. We set

(nLayers, 4 frames). Figure 5 shows a case where using 4
frames resolves ambiguity in the layer assignment and re-
duces errors in the estimated motion.

On the test set, nLayers obtains EPE similar to Lay-
ers++ but better AAE, as shown in Table 2. At the time of
writing (April 2012), nLayers is ranked first in AAE and
fourth in EPE (see Supplemental Material for the screen
shot). AAE measures the angle between the estimated mo-
tion vector and the ground truth and EPE is the Euclidean
difference between the two. The results suggest that nLay-
ers estimates motion directions more accurately.

Figure 6 shows the estimated segmentation and flow
fields on some test sequences. Nearly all the major struc-
tures of “Urban” are correctly recovered, resulting in the
best boundary EPE and AAE performance. The higher
overall error results from the bottom left building. A ma-
jor part of the building moves out of the image boundary
and has no data term to estimate the motion. nLayers
uses the affine model to interpolate the motion of the out-
of-boundary pixels, but the building’s motion violates the
affine assumption.

4.2. Layer Segmentation

The Middlebury dataset does not have motion segmenta-
tion ground truth and so we use the MIT human annotated
dataset [18] to evaluate segmentation performance. Seg-
mentation accuracy is computed using the RandIndex mea-
sure [22] (larger is better). Because the MIT dataset is dif-
ferent in nature from the Middlebury dataset and has more
rigidly moving, distant objects, we use a larger weight on
the affine unary term as Ay = 1, and A\, = 3 for the dis-



Figure 6. Estimated flow fields and scene structure on some Mid-
dlebury test sequences. Top: the proposed nLayers method sep-
arates the claw of the frog from the background and recovers the
fine flow structure. Middle: nLayers separates the foreground fig-
ures of “Mequon” from the background and produces sharp mo-
tion boundaries; However, the non-rigid motion of the cloth vio-
lates the layered assumption and causes errors in estimated flow
fields. Bottom: by correctly recovering the scene structure, nLay-
ers achieves the lowest motion boundary errors on the “Urban”
sequence; a part of the building in the bottom left corner moves
out of the image boundary and its motion is predicted by the affine
model. However the building’s motion violates the affine assump-
tion, resulting in errors in the estimated motion.

crete model while keeping the other parameters unchanged.

Table 3 summarizes the RandIndex measure on all the 9
sequences. On several sequences, nLayers (default: 10 lay-
ers and 4 frames) outperforms Layers++ by a large margin.
A bootstrap significance test is used between the nLayers
and other methods. Small p values suggest that the improve-
ment by nLayers is significant. nLayers with the maxi-
mum number of layers being 8 or 12 produces results sim-
ilar to the baseline 10-layer model suggesting the method
is not highly sensitive to the maximum number of layers.
nLayers with only 2 frames is more accurate than the 2-
frame Layers++ method, demonstrating the benefits of dis-
crete optimization. The improvement with 4 frames over
2 frames shows the benefits of using more frames to re-
cover scene structure. Also note that the performance of
Layers++ drops with the number of layers used because its
local inference scheme has to deal with more local optima
as the number of layers increases.

Figure 7 shows some segmentation results. On “table”,
the layer segmentation by nLayers roughly matches the
structure of the scene and is close to the human labeled
ground truth. Although HGVS uses optical flow, it tends
to merge foreground objects and background when their ap-
pearance is similar. nLayers tends to fail when motion cues
are weak, such as the “phone” sequence.

5. Conclusions and Future Work

We have formulated a discrete layered model based on
a sequence of ordered Ising MRFs and developed non-
standard moves to optimize the model. In particular, our
moves can simultaneously change the layer assignment to-
gether with the flow field, which helps avoid local optima
common to schemes that alternate between optimizing flow
and segmentation. The discrete optimizer enables us to
adapt the number of layers to each sequence and decide
their depth ordering automatically. Our method produces
meaningful segmentations on the Middlebury and the MIT
datasets, and achieves better quantitative results w.r.t. the
human labeled ground truth than a corresponding continu-
ous model. Our flow estimation results show the benefits
of using more frames and discrete optimization to resolve
depth-ordering ambiguities. Our work advances the state of
the art in layered motion modeling and suggests that lay-
ered models can provide a rich and flexible representation
of complex scenes.
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