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ABSTRACT

Transform coding using the Discrete Cosine Transform (DCT)
has been widely used in image and video coding standards,
but at low bit rates, the coded images suffer from severe vi-
sual distortions which prevent further bit reduction. Postpro-
cessing can reduce these distortions and alleviate the conflict
between bit rate reduction and quality preservation. View-
ing postprocessing as an inverse problem, we solve it via a
Bayesian approach. The distortion caused by coding is mod-
eled as additive, spatially correlated Gaussian noise, while
the original image is modeled as a high order Markov ran-
dom field (MRF) based on the recently proposed Fields of
Experts (FoE) framework. Experimental results show that the
proposed method, in most cases, achieves higher PSNR gain
than other methods and the processed images possess good
visual quality.

Index Terms— Postprocessing, Discrete Cosine Trans-
form (DCT), quantization noise, Markov random field (MRF),
Fields of Experts (FoE)

1. INTRODUCTION

Image compression aims at reducing the number of bits needed
to represent a digital image while preserving image quality.
When the compression ratio is very high, the coded images
suffer from severe loss in visual quality, as well as decrease
in fidelity. Hence there is conflict between bit rate reduction
and quality preservation. Postprocessing is a promising so-
lution to this problem because it can improve image quality
without the need of changing the encoder structure. Different
coding methods require different postprocessing techniques
to tackle the different artifacts.

Transform coding using the Discrete Cosine Transform
(DCT) has been widely used in image and video coding stan-
dards, such as JPEG, MPEG, H.264 etc. The coded images
suffer from blocking artifacts and losses around edges. Post-
processing of low bit rate block DCT coded images has at-
tracted a lot of research attention since early 1980s [1, 2, 3, 4].
Yet we have the following observations for most methods in
the literature. First, the distortion caused by coding is not ac-
curately modeled until the recent work [5] [6]. Second, the

prior model for the original image is usually designed heuris-
tically and captures only coarsely the rich structural informa-
tion in natural images.

In this paper, postprocessing is formulated as an inverse
problem and solved via a Bayesian approach. We use a spa-
tially correlated Gaussian noise model [5] [6] to describe the
coding error. The original image is modeled as a high order
Markov random field (MRF) based on the Fields of Experts
(FoE) framework [7]. The image prior model is more expres-
sive than previously hand crafted models. As a result, we ob-
tain an effective method which, in most cases, achieves higher
PSNR gain than other methods and the processed images pos-
sess good visual quality.

In Section 2, we first introduce transform coding using
the DCT and formulate postprocessing as an inverse problem.
Then we explain how to solve it by a Bayesian approach and
discuss the noise model and image model in Section 3. Exper-
imental results and comparison with other methods are given
in Section 4. Finally we draw conclusions in Section 5.

2. PROBLEM FORMULATION

Transform coding using the DCT first divides an image into
non-overlapping blocks, which are 8 × 8 in case of JPEG.
Each block is transformed into the DCT coefficients which
are then quantized according to a quantization table and coded
losslessly. Quantization is performed on each block indepen-
dently and the levels and characteristics of the quantization
errors may differ from one block to another. As a result, the
blocking artifacts arise as abrupt changes across block bound-
aries and are especially obvious in smooth regions. In ad-
dition, edges become blurred and may even contain ringing
effects due to the truncation of high frequency DCT coeffi-
cients.

The problem of postprocessing can be formulated as this:
given the coded image Iq and the quantization tableQ, we are
to estimate an image Î , using the prior information about both
the original image I and the coding process. Î is expected to
be closer to I and of better visual quality than Iq .
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3. PROPOSED METHOD

Given a coded image Iq , we hope to obtain a restored image Î
that is most likely the original image I , which corresponds to
the use of maximum a posteriori (MAP) criterion to estimate
the original image

Î = arg max
I

pI|Iq
(I|Iq) = argmax

I
pIq|I(Iq|I)pI(I). (1)

In this expression, pIq|I(Iq|I) provides a mechanism to in-
corporate the coded image into the estimation procedure, as
it statistically describes the process to obtain Iq from I . Sim-
ilarly, pI(I) allows for the integration of prior information
about the original image. We shall discuss these two terms
in Section 3.1 and then introduce the optimization method in
Section 3.2.

3.1. Models

3.1.1. Quantization noise model

The distortion caused by coding can be modeled as adding
quantization noise Nq to the original image I

Iq = I +Nq. (2)

Strictly speaking, once the quantization table Q is given, the
coded image Iq is uniquely determined by the original image
I and Nq is a deterministic function of I . However, when
only Iq is present, explicit information about Nq is lost and
common practice is to treat Nq as a random quantity [8].

We use a correlated Gaussian noise model [5] [6] to de-
scribe the quantization noise, which makes the following as-
sumptions. First, the quantization noise is assumed to be in-
dependent with the original image. Second, the quantization
noises for different blocks are assumed to be independent be-
cause quantization is performed on each block independently.
Third, the quantization noise is assumed to be independent
in the DCT domain since quantization is performed indepen-
dently on the DCT coefficients which are supposed to be un-
correlated [9]. The quantization noise nq for an 8×8 block is
arranged lexicographically into a column vector of length 64
and assumed to be zero mean, jointly Gaussian distributed in
the spatial domain

nq ∼ N (0,Σq), (3)

where Σq is the noise autocovariance matrix in the spatial do-
main. It is a 64 × 64 invertible matrix but not a diagonal
matrix due to the correlation of the noise. To calculate Σq,
we first compute the noise autocovariance matrix in the DCT
domain, which is denoted by Σqc. Σqc is a diagonal matrix
because of the third assumption. In our work, we experimen-
tally set its diagonal elements to be one twelfth of the square
of the corresponding quantization intervals as in [5] and [6].
Σq is related to Σqc by the linear DCT transform and can be
calculated accordingly.

Now the conditional p.d.f. pIq|I(Iq|I) is

pIq|I(Iq|I) =
∏
m

1
(2π)32|Σq| 12

exp
{
−1

2
nt

q(m)Σ−1
q nq(m)

}
,

(4)
where nq(m) is the mth block of the noise Nq = Iq − I and
is arranged into a column vector of length 64.

3.1.2. Image prior model

An image I can be considered as a 2D function defined on a
rectangular grid whose sites are pixels of the image. Let k be
an arbitrary pixel in the image andNk be a set which contains
all the neighboring pixels of k. Markov random field (MRF)
assumes the value of a pixel is conditionally dependent only
on the values of its neighboring pixels, i.e.

pIk|IS−k
(Ik|IS−k) = pIk|INk

(Ik|INk
), (5)

where the set S contains all the pixels of the image I , the set
S − k contains all the pixels except k, IS−k denotes values of
the pixels in S − k, and INk

denotes values of the pixels in
Nk.

Whilst MRF models local interactions in an image, it is
hard to write the joint p.d.f. of an image from the local con-
ditional p.d.f.. The Hammersley-Clifford theorem [10] es-
tablishes that an MRF is equivalent to a Gibbs random field
(GRF) and the joint p.d.f. can be written as a Gibbs distribu-
tion

pI(I) =
1
Z

exp

{
−

∑
c∈C

Vc(I)

}
, (6)

where c, called a clique, is a set whose elements are neighbors
to each other, C is a set which contains all the possible cliques
in the image, Vc(I) is a clique potential function defined on
the values of all the pixels in c, and Z is a normalization pa-
rameter.

Though widely used in image processing applications, MRF
exhibits serious limitations because the clique potential func-
tion is usually hand crafted and the neighborhood sizes are
small. Thus it characterizes natural images only coarsely.
Sparse coding, on the other hand, models the complex struc-
tural information in natural images in terms of a set of linear
filter responses [11]. However, it only focuses on small image
patches rather than the whole image. Combining the ideas
from sparse coding with MRF model, the Fields of Experts
(FoE) [7] defines the local potential function of an MRF with
learnt filters. This learnt prior model is very expressive and
has obtained success in applications such as image denoising
and inpainting.

The FoE uses the following form for the distribution

pI(I) =
1
Z

exp

{∑
k∈S

N∑
i=1

logφi(J T
i Ick

;αi)

}

=
1
Z

∏
k∈S

N∏
i=1

φi(J T
i Ick

;αi), (7)
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in which

φi(J T
i Ick

;αi) = [1 +
1
2
(J T

i Ick
)2]−αi , (8)

whereJi is a filter of size n×n, the clique ck adopted by FoE
includes the n×n pixels with k as their center,J T

i Ick
denotes

the inner product between the filter and the local image patch,
αi is a parameter associated with Ji, and N is the number of
filters used. In our work, we used the twenty four 5× 5 filters
which have been learnt in [7].

3.2. The optimization problem

Maximizing the a posteriori p.d.f. in (1) is equivalent to min-
imizing its negative log function which will be called the en-
ergy function, and the estimated image is

Î = argmax
I

exp{−E(I)} = arg min
I
E(I). (9)

From (1), (4), and (7), the energy function is

E(I) = Ei(I) + λEn(I)

= −
∑
k∈S

N∑
i=1

logφi(J T
i Ick

;αi)

+λ
∑
m

1
2
nt

q(m)Σ−1
q nq(m)), (10)

where λ ≥ 0 is a regularization parameter. We adopt the con-
jugate gradient descent method to minimize the energy func-
tion. At each iteration, the step size is selected to correspond
to the minimum along the search direction. The gradient of
the energy function E(I) in (10) is

∇E(I) = −
N∑

i=1

J−1
i ∗ ψi(Ji ∗ I) + λ∇En(I), (11)

where ∗ denotes the convolution operation, J−1
i is obtained

by mirroring Ji around its center pixel,

ψi(y) =
∂

∂y
logφi(y;αi), (12)

and ∇En(I)’s mth block, arranged lexicographically into a
column vector of length 64, is

−Σ−1
q nq(m). (13)

To increase fidelity, the quantization constraint and the
range constraint are respectively imposed for the DCT co-
efficients and the pixel values during the iteration. It is our
prior knowledge that the DCT coefficients must lie within the
quantization intervals and the pixel values between the range
[0-255]. If either of them is violated, the intermediate re-
sult is set to the nearest value satisfying the corresponding
constraint. When the iteration stops, the narrow quantization
constraint set (NQCS) [12] is used for further PSNR gain and
the scaling factor was set to be 0.3 in our experiments.

4. EXPERIMENTAL RESULTS

4.1. Parameter setting

We investigated by experiments how the value of λ affects the
PSNR performance. In general, λ ∈ (2, 12) produces good
results for most images. In our experiments, λ = 6 was used
for it is near optimal for the image set and quantization tables
used. Smaller λ results in a smoother image, because it gives
less fidelity to the the coded image and the estimated image
can be adjusted more freely.

4.2. Results and comparison with other methods

First, we compare the improvement using PSNR. Table 1 sum-
marizes the PSNR results of different methods for the four
natural images and the three quantization tables Q1, Q2, and
Q3 in [16]. In most cases, the proposed method has the high-
est PSNR gain except “Barbara” for which Paek et al’s method
[14] is slightly better. For comparison of visual quality, we
show in Fig.1 the coded “Lena” and the processed images
generated by the three methods with the highest PSNR gain
in Table 1. We found that Liew and Yan’s method [16] and
the proposed method provide the best visual quality improve-
ment. However, the proposed method is iterative and we are
seeking efficient implementation similar to [17].

5. CONCLUSIONS

We have proposed a postprocessing method via a Bayesian
approach. The prior models are carefully selected to model
accurately both the original image and the distortion caused
by coding. Experimental results on standard images and com-
parison with state-of-the-art methods have demonstrated the
effectiveness of the proposed method. In most cases, it achieves
higher PSNR gain than other methods and generates recov-
ered images of good visual quality.
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