
Transaction Processing over
High-speed Networks

Proposal by:

Erfan Zamanian

erfanz@cs.brown.edu

Research Committee:

Tim Kraska

Maurice Herlihy

Stan Zdonik

{tim_kraska, mph, sbz}@cs.brown.edu

Brown University
April 2015

Abstract

By avoiding high cost of disk I/O, memory-resident OLTP databases reduce the runtime of typical single-
sited transactions to a fraction of a millisecond. With disk gone from the picture, network has become
the next bottleneck. In fact, the traditional wisdom is that network is the new disk, and distributed
transactions must be avoided as much as possible, through techniques such as partitioning. However,
recent technological trends toward low-latency, high-bandwidth networks which are capable of minimizing
communication overhead through Remote Direct Memory Access (RDMA) are changing our view on
the fundamental assumption that network is significantly the bottleneck. For example, the latency in
InfiniBand FDR/EDR is less than 1µs, two orders of magnitude faster than the traditional 1Gb Ethernet,
and is only one order of magnitude slower than local memory access (0.1µs).

In this project, we aim to explore the design of a memory-resident OLTP with optimistic concurrency
control, in particular snapshot isolation, which leverages RDMA and low latency of fast networks as
much as possible. We argue that the new RDMA-enabled architecture is neither shared-memory nor
shared-nothing. This new architecture requires us to fundamentally rethink the design of databases. In
particular, we plan to address the question that in an RDMA-capable distributed system, what changes
have to be made to concurrency control and related components of these databases. We speculate that
benefits of using RDMA in OLTP systems are three-fold; first, it decreases the latency of transactions.
Second, in this new hybrid architecture, the burden of transaction processing can be potentially shared
between servers and clients, resulting in a more balanced design. Finally, separating transaction processing
from data management, which are both traditionally handled by the server, could facilitate the scale-out
process. Our initial experiments show that exploiting RDMA could result in at least an order of magnitude
higher performance compared to the existing design.

I. Introduction

The notion of transaction is one the most
fundamental concepts in database man-
agement systems. Online Transaction

Processing (OLTP) databases rely on concur-
rency control and other mechanisms to create

the illusion for each transaction that it is alone
in the system, while actually there might be
concurrent transactions being run simultane-
ously. Besides, transactions are guaranteed to
be deterministic, meaning that their effects per-
sist over time, and they are executed in their
entirety, transforming the database from one

1

mailto:erfanz@cs.brown.edu


consistent state to another. In a distributed
database, transactions may span multiple ma-
chines. In order to allow concurrent execution,
coordination between the involving nodes over
the network is required. For example, in a
money transfer between user A and B, whose
records are hosted at different machines, what-
ever amount is deducted from A’s account at
site S1 must be transferred to B’s account at site
S2. S1 and S2 must both agree on the verdict
of this transaction. Such agreement involves
coordination between the two nodes over the
network.

Modern distributed main-memory DBMSs
are built on the assumption that network com-
munication is slow and network bandwidth is
severely limited. Table 1 shows a comparison
between different components of a computer
system. By getting rid of disk as the main
storage, memory-resident OLTP systems have
reduced the run-time of transactions, which
are typically short-running and do not need
complex computation, to less than 100µs [4, 5],
if no network is involved. Distributed transac-
tions, on the other hand, often require multiple
network round-trips. For example, the stan-
dard version of two phase commit requires 4
end-to-end communications between the ini-
tiator and participants, which can take up to
400µs, 4 times the actual work of a local trans-
action. This added overhead not only increases
the transaction latencies, but also increases the
chance of contention over locks. As the con-
tention rate rises, it becomes more likely for
transactions to abort.

Therefore, it is easy to see why in-memory
OLTP systems avoid distributed transactions as
much as possible. They achieve this by using
complex partitioning schemes to co-locate data
to make sure that transactions can access all the
data they need in a single site, such that no co-
ordination between sites is needed. While this
is a solution, it imposes a new set of challenges
for the developer. Besides, some workloads,
such as social-graph data, are inherently not
perfectly partitionable.

The assumption that network is by far the
slowest component of distributed systems and

must be avoided at all cost, has started to be-
come false. High-performance Remote Direct
Memory Access (RDMA) capable networks,
such as InfiniBand FDR/EDR, which were pre-
viously only used in High Performance Com-
puting (HPC) environments due to their high
cost, have started to gain economic viability
and find their ways to datacenters. Table 1
shows the latency and bandwidth of two gener-
ations of InfiniBand networks. As can be seen,
their latency is only one order of magnitude
higher than local main memory random ac-
cess, as opposed to three orders of magnitude
in traditional TCP/IP Ethernet-based message
passing. In addition to its low latency, RDMA
completely bypasses the traditional network
stack and the kernel of sender and receiver, al-
lowing a machine to transfer data to and from
another machine’s memory with little or no
involvement of the CPU on the remote side.

Incorporating RDMA, however, requires a
re-design in many components of OLTP sys-
tems. This can be best explained by con-
trasting the existing distributed OLTP architec-
tures, particularly the prevalent design, namely
shared-nothing, with the new architecture. Fig-
ure 1 depicts a simple representation of these
architectures.

In a shared-nothing architecture, server’s
CPU is the single point of coordination in han-
dling client’s requests. It has exclusive access
to its own data residing in the main memory.
It receives the request, processes it, and returns
the result to the client.

An RDMA-enabled architecture, on the
other hand, is neither a pure shared-nothing de-
sign, where message-passing is the only means
of communication, nor a pure shared-memory
architecture due to three main reasons. First,
the memory access patterns are quite different
in RDMA and NUMA architecture. Second,
the latency between machines is significantly
higher to access a random byte than with to-
day’s NUMA systems. Third, in a NUMA ar-
chitecture, hardware-embedded coherence pro-
tocols ensure data consistency, which is not
supported with RDMA, since data is always
copied.

2



End-to-end Latency (µs) Throughput (GB/s)
Disk (SSD) 10,000 0.3
Main Memory (DDR3) 0.1 12.8
1 Gb Ethernet 100 0.125
InfiniBand 4xFDR 0.7 6.8
InfiniBand 4xEDR 0.5 12.1

Table 1: Comparison of data transfer in different computer components

Figure 1: Different Architectures of databases

This hybrid architecture, where communi-
cation is possible through both message pass-
ing and direct memory access, requires a com-
plete re-design of OLTP systems.

II. Background

Among the various RDMA-enabled intercon-
nects, InfiniBand has gained significant accep-
tance in the HPC community due to its ul-
tra low latency and high bandwidth. While it
used to be very expensive in the past, it has re-
cently become cost-competitive with Ethernet,
and therefore could be seen as a viable alter-
native as interconnect in datacenters. Infini-
Band implements many layers of the network
stack, from transport to physical layer, directly
in NICs. In this section, we will give a brief
overview of the RDMA technology.

I. RDMA

The application sends or receives request di-
rectly to and from its RDMA NIC (RNIC) using

the RDMA API, which is based on verbs. Invok-
ing this process does not involve any system
call and context switch from the user space
to the kernel space. As most operating sys-
tems impose high overheads for interrupt pro-
cessing, network protocol stacks, and context
switching, avoiding them significantly helps
decrease the latency.

There are two communication models: one-
sided communication and two-sided commu-
nication.

One-sided, or memory semantic verbs, are
those verbs which are performed without any
knowledge of the remote side. RDMA READ,
WRITE, and atomic operations, such as Com-
pare and Swap (CS), and Fetch and Add (FA)
are one-sided operations. The active side sub-
mits the verb, while the passive side is com-
pletely unaware of the process. Both active
and passive sides must register the memory
region to be able to access it via RDMA. The
passive side’s RNIC directly writes/fetches the
desired data using an DMA operation from
local memory.

3



Two-sided, or channel semantic verbs,
such as SEND and RECEIVE, require both sites
to involve in the communication process. The
payload of the SEND is written to the memory
region specified by a corresponding RECEIVE
which must be posted by the receiver before
the sender actually sends its request. Therefore,
the sender’s RNIC does not have to register the
remote memory region before performing the
operation.

While two-sided verbs are workflow-wise
similar to socket programming semantics,
namely read() and write(), leveraging the one-
sided verbs, such as READ and WRITE, re-
quires a dramatic change in the programming
model.

RDMA uses the concept of queue pairs for
connections. Application posts verbs to the
send queue, which has a corresponding receive
queue on the receive side, so the name queue
pair. Once RNIC performs the requested mem-
ory access at the remote side, it pushes a com-
pletion event on a corresponding completion
queue, which can notify the sender about the
completion of the task. All queues are main-
tained inside RNIC.

III. Proposal

We argue that there is a need to fundamentally
rethink the entire OLTP databases, including
data access patterns, replication, log manage-
ment, etc. to take full advantage of the next
generation of network technology.

In this work, we will explore the design of
an RDMA-aware OLTP database for the new
network, where the transaction logic is pushed
as much as possible to clients. Our focus will
be primarily on optimistic concurrency control,
in particular snapshot isolation. In the most
extreme case, where all requests are handled
directly by clients, and servers are not involved
in transaction processing. As such, servers are
only responsible for managing their own data
and keeping it “clean”, such as garbage collec-
tion.

In particular, throughout the course of this
project, we would like to address the following

questions:

• Given that some workloads are inher-
ently hard or impossible to partition, is it
still the case that distributed transaction
must be avoided at all cost.

• In what aspects does the design of a pure
RDMA OLTP system with snapshot iso-
lation differ from a traditional requesting
client/responding server architecture?

• Now that clients can access server’s data
directly in the new design, how does the
server’s memory should be organized for
efficient access.

• Clients must know the exact location of
records and their (possibly) multiple ver-
sions in order to access it via RDMA.
How should the catalog management be
done in this environment? In particular,
making the clients aware of new data ar-
rival (e.g. SQL UPDATE and INSERT)
and deletion (e.g. SQL DELETE) is of
especial interest.

• RDMA operations lack richness. Any-
thing which is more complicated than
a simple memory lookup or memory
write has to pay for multiple network
roundtrips, and could easily offset all
the advantages of using RDMA. The re-
search question here is how to use RDMA
efficiently to minimize the number of
netwrok roundtrips.

• Without any single coordinator for mem-
ory accesses, write-write and read-write
races can occur. How to avoid them?

• The search space within RDMA itself
is rather large. For instance, there are
a handful of verb semantics (including
channel semantics and memory seman-
tics), transport types (including reliable,
unreliable and unconnected) and other
important parameters (e.g. signalling, re-
quest and response sizes, etc.) that make
the design of an RDMA-aware system
non-trivial. For OLTP systems, we are

4



interested to explore the optimal combi-
nation of these factors that results in high
performance.

The main focus of this project is to explore
the design of a pure RDMA-enabled OLTP
system. However, we believe that the high-
est performance is achieved neither in a pure
messaging system nor in a pure RDMA one.
The optimal design relies somewhere between
these two ends of the spectrum, where clients
and servers divide the transaction processing
logic between themselves. Finding such a de-
sign is left as the stretch goal.

IV. Preliminary Results

V. Project Schedule

In the remaining 10 months of the project, we
will first complete our literature review, both
on related transaction processing papers and
RDMA related papers. We plan to divide the
remaining time between system design, and
system implementation.

In the first half, we are first going to design
and run some micro benchmarks on RDMA
verbs in InfiniBand. The goal here is to fully
understand how various RDMA choices com-
pare to each other, recognize their characteris-
tics, and find out what communication scheme
is more suitable for different parts of our sys-
tem. We will then continue with the actual
system design. Here, we aim to address all the
questions mentioned in Section III. The second
half will be devoted to implementation of our
proposed system. Table 2 shows the time table
for the project schedule.

VI. Related Work

This work combines the ideas of the well-
studied topic of distributed transaction process-
ing with the emerging technology of RDMA-
capable fast networks.

I. Distributed Transaction Processing

[4] performed a detailed study of performance
overhead of different components in a dis-
tributed OLTP database. After breaking down
the time that the server’s CPU spends on vari-
ous components of transaction processing, they
concluded that buffer management, logging
and locking significantly increase the overhead
and should be reduced/removed as much as
possible. In a related work, [13] argues how
the need for exploiting recent technological
advances in hardware (main memory in their
case) could require a fundamental re-design of
the entire system.

II. RDMA-based Data Management
Systems

Although RDMA has attracted a lot of atten-
tion in the Systems community (e.g. for build-
ing distributed lock managers [1, 10], repli-
cated state machines [11], RDMA-based of ex-
isting systems such as Hadoop [8]), it is a rela-
tively unexplored topic in the area of databases.
FaRM [2] is a general-purpose main memory
distributed computing platform which exploits
RDMA to improve latency. Similar to our work,
it provides ACID guarantees for local and dis-
tributed operations. However, it is not an OLTP
database and its API is quite limited. FaRM
achieves high throughput by using one-sided
RDMA WRITE to implement a fast message
passing primitive, and RDMA READ for read-
only operations. Since access local memory is
still much faster than RDMA, FaRM performs
locality-aware optimizations.

There has been a number of works that
leverage RDMA to build key-value stores
[9, 6, 7]. In Pilaf [9], while get() are handled by
having clients directly access the server’s mem-
ory using RDMA READ, put() requests are
sent to and serviced by the server via RDMA
WRITE. Since clients are not involved in put(),
the synchronization process between concur-
rent memory accesses is much more simpli-
fied. In this design, put() is performed in one
roundtrip (one RDMA WRITE for sending the
request and one for the response), while get()

5



Task Time Required (month) Target Completion Date
Literature study 1 6-1-2015
RDMA micro benchmarks 1 7-1-2015
System design 3 10-1-2015
Implementation 3 1-1-2016
Experiments 1 2-1-2016
Finishing up report 1 3-1-2016

Table 2: Project schedule

requires at least two RDMA READ (one for
looking up a key in the hash table array to find
the memory address of the key-value pair on
the server, and one to fetch the actual value
associated with the key). As a critique on the
aforementioned design, [6] argues that a sys-
tem which requires multiple roundtrip of one-
sided RDMA operations (as in the case of Pilaf,
RDMA READ) could be outperformed by a
design where RDMA verbs are used merely as
a message-passing mechanism, and not mem-
ory access. Therefore, in their system, HERD,
the client writes its get() or put() request into
the server’s memory, and the server computes
the reply. They showed that the maximum
throughput can be achieved by bypassing net-
work stack and CPU interrupts, and not by-
passing the CPU entirely.

Due to its high bandwidth, fast networks
have gained attention for data analytics. Tradi-
tionally, there used to be a large gap between
the bandwidth of network and intra-processors,
which led to designs of CPU-intensive algo-
rithms for query processing, which would
avoid the network traffic as much as possible.
The authors in [12] argue that fast networks
have started to change this assumption, and
proposed a distributed query engine which op-
timizes the exchange operator for bulk transfer
using RDMA. [3] showed how RDMA could
be leveraged to boost the performance of join.

References

[1] A. Devulapalli and P. Wyckoff. Dis-
tributed queue-based locking using ad-
vanced network features. In Parallel Pro-

cessing, 2005. ICPP 2005. International Con-
ference on, pages 408–415. IEEE, 2005.

[2] A. Dragojevic, D. Narayanan, M. Castro,
and O. Hodson. Farm: Fast remote mem-
ory. In Proceedings of the 11th USENIX
Symposium on Networked Systems Design
and Implementation, NSDI 2014, Seattle, WA,
USA, April 2-4, 2014, pages 401–414, 2014.

[3] P. W. Frey, R. Goncalves, M. Kersten, and
J. Teubner. A spinning join that does not
get dizzy. In Distributed Computing Sys-
tems (ICDCS), 2010 IEEE 30th International
Conference on, pages 283–292. IEEE, 2010.

[4] S. Harizopoulos, D. J. Abadi, S. Madden,
and M. Stonebraker. OLTP through the
looking glass, and what we found there.
In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data,
SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 981–992, 2008.

[5] E. P. Jones, D. J. Abadi, and S. Madden.
Low overhead concurrency control for par-
titioned main memory databases. In Pro-
ceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of Data,
SIGMOD ’10, pages 603–614, New York,
NY, USA, 2010.

[6] A. Kalia, M. Kaminsky, and D. G. Ander-
sen. Using rdma efficiently for key-value
services. SIGCOMM Comput. Commun.
Rev., 44(4):295–306, Aug. 2014.

[7] H. Lim, D. Han, D. G. Andersen, and
M. Kaminsky. Mica: A holistic approach
to fast in-memory key-value storage. man-
agement, 15(32):36, 2014.

6



[8] X. Lu, N. S. Islam, M. Wasi-ur Rahman,
J. Jose, H. Subramoni, H. Wang, and
D. K. Panda. High-performance design
of hadoop rpc with rdma over infiniband.
In Parallel Processing (ICPP), 2013 42nd In-
ternational Conference on, pages 641–650.
IEEE, 2013.

[9] C. Mitchell, Y. Geng, and J. Li. Using
one-sided rdma reads to build a fast, cpu-
efficient key-value store. In USENIX An-
nual Technical Conference, pages 103–114,
2013.

[10] S. Narravula, A. Mamidala, A. Vishnu,
K. Vaidyanathan, and D. K. Panda. High
performance distributed lock manage-
ment services using network-based re-
mote atomic operations. In Cluster Com-
puting and the Grid, 2007. CCGRID 2007.

Seventh IEEE International Symposium on,
pages 583–590. IEEE, 2007.

[11] M. Poke and T. Hoefler. DARE: High-
Performance State Machine Replication
on RDMA Networks. ACM, Jun. 2015.
Accepted at ACM HPDC’15.

[12] W. Rödiger, T. Mühlbauer, A. Kemper,
and T. Neumann. High-speed query pro-
cessing over high-speed networks. arXiv
preprint arXiv:1502.07169, 2015.

[13] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Hel-
land. The end of an architectural era (it’s
time for a complete rewrite). In Proceed-
ings of the 33rd International Conference on
Very Large Data Bases, University of Vienna,
Austria, September 23-27, 2007, pages 1150–
1160, 2007.

7


	Introduction
	Background
	RDMA

	Proposal
	Preliminary Results
	Project Schedule
	Related Work
	Distributed Transaction Processing
	RDMA-based Data Management Systems


