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Abstract

In this work, we study a new multivariate quadratic (MQ) assumption that can be used to
construct public-key encryptions. In particular, we research in the following two directions:

• We establish a precise asymptotic formulation of a family of hard MQ problems, and
provide empirical evidence to confirm the hardness.

• We construct public-key encryption schemes, and prove their security under the hardness
assumption of this family. Also, we provide a new perspective to look at MQ systems that
plays a key role to our design and proof of security.

As a consequence, we construct the first public-key encryption scheme that is provably secure
under the MQ assumption. Moreover, our public-key encryption scheme is efficient in the sense
that it only needs a ciphertext length L + poly(k) to encrypt a message M ∈ {0, 1}L for any
un-prespecified polynomial L, where k is the security parameter. This is essentially optimal
since an additive overhead is the best we can hope for.

1 Introduction

Exploring different types of assumptions has been an important direction in the agenda of cryptog-
raphy research. For robustness, this reduces the risk of a new mathematical/algorithmic/hardware
breakthrough that breaks a particular assumption and renders all its following constructions in-
secure; for versatility, different assumptions usually have advantages for different applications.
However, over the past 30 years, only a few candidates of computational problems are built
as foundations on which more exciting cryptographic applications can build; for example, some
well-structured algebraic, coding, or geometric problems (and their variants): DDH [DH76], Par-
ing (some are instantiated by elliptic curves) [BF01], RSA [RSA78], McEliece [McE78], LWE
[AD97, Reg09, Pei09], and some recent works for combinatorial problems [ABW10].

This work is in a step of this agenda. We study a new type of assumption inspired from the
field of solving multivariate quadratic (MQ) equations. In particular, we give the first asymptotic
formulation of a family of MQ problems that enjoy some good mathematical structures and hard-
ness. Thus one can use this formulation as a base to construct more interesting crypto primitives,
such as public-key encryption schemes. Our assumption considers a family of problems that can
be viewed as solving MQ equations described as the followings (informally) :
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Definition 1 (The Hard Task (Informal)) Let Fq be a finite field, and H be some subset of
Fq. Let S be a multivariate quadratic system with n variables and m polynomials whose coefficients
are sampled from some distribution χ.

Then a solver A, given (S, ~y = S(~x)) where ~x is sampled uniformly from Hn, is asked to output
some ~x′ such that S(~x′) = ~y.

Actually, solving systems of non-linear equations is not a new topic, for it has been studied
in commutative algebra and algebraic geometry, at least since Francis Sowerby Macaulay [Mac02]
(1902). Around the turn of the millennium, these techniques [CKPS00] were also found that they
can be used as a cryptanalytic step. Claims (e.g. XSL [CP02]) concerning such techniques, today
called “algebraic cryptanalysis”, were often over-optimistic, but equation-solvers over different finite
fields such as XL [CKPS00], F4, F5 [Fau02, FJ03] are now significant topics for crypto.

The fundamental reason that algebraic cryptanalysis is not all-powerful is that solving systems of
non-linear equations does not scale well with the parameters even with Moore’s Law. Theoretically,
solving multivariate non-linear systems, or even just multivariate quadratic (MQ) equations has
been proven to be NP-hard [FY80, PG97] in the worst case, and practically, all the proposed solvers
fail to solve the systems efficiently (i.e. in polynomial-time) for most non-trivial distributions
[BGP06, LLY08].

The above approach hints at inherent hardness in solving MQ equations, and consequently MQ
could be a good choice as a base for designing crypto systems. Although this direction in fact has
been considered for the last 20 years, however, it has had a rocky history. Many schemes were
proposed, broken, sometimes patched, and sometimes broken again (see [MI88, Pat95, PGC98,
DFS07, DFSS07, DDY+08], and [Pat96, BPS08, CCD+08, BFP11]). One objection frequently
voiced is that the security of these systems is often ad-hoc, and thus hard to evaluate. Funda-
mentally, these approaches mostly were designed with a practical goal in mind. As a result, they
considered concrete and fixed-parameter constructions, with a design security of, e.g., 280, with
specialization to signatures with 160-bit hashes and optimizing for speed. Since MQ was examined
not as a hardness basis but only as the most obvious attack or even some sanity check, the design-
ers’ mindsets were not focusing on how to construct a reduction for their security proof, nor about
extending their schemes in an asymptotic way. Thus, it seems that using the hardness to construct
crypto construction remains an interesting open direction.

Berbain, Gilbert, and Patarin [BGP06] explored this and constructed efficient pseudorandom
generators (PRGs) based on the hardness of solving MQ equations. Berbain et al. considered fixed
and concrete-parameter constructions, yet an asymptotic formulation of hard problems is implicit
in their work. Consequently, many primitives such as pseudorandom functions (PRFs), symmetric
encryptions, etc., in the Minicrypt world (i.e., one way functions exist) [Imp95] can be constructed
based on this formulation of hard problems. For the more sophisticated Cryptomania world (i.e.,
public-key crypto systems exist) [Imp95], the possibilities have not yet been explored in the MQ
literature. This line of research will be our main focus in the rest of this paper.

Our Main Results. In this work, we study a new MQ assumption that can be used to construct
more sophisticated primitives such as public-key encryptions in the Cryptomania world [Imp95].
In particular, we research in the following two directions:

• On the one hand, we establish a precise asymptotic formulation of a family of hard problems,
and provide empirical evidence to confirm the hardness. Since there are many practical solvers
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studied and implemented during the studies of algebraic attacks, we use these to examine the
hardness of the problems.

• On the other hand, we construct public-key encryption schemes, and prove their security
under the hardness assumption of the said family. Also, we provide a new perspective to look
at MQ systems that plays a key role to our design and proof of security.

As a consequence, we construct the first public-key encryption scheme that is provably secure
under the MQ assumption. Moreover, our public-key encryption scheme is efficient in the sense
that it only needs a ciphertext length L + poly(k) to encrypt a message M ∈ {0, 1}L for any un-
prespecified polynomial L.1 This is essentially optimal since an additive overhead is the best we
can hope for.

The MQ assumption has some interesting properties for its potential. In the following, we
will discuss that the MQ problems share some structures with the learning with error (LWE)
problems[Reg09, GPV08, PVW08]. Thus the MQ assumption may also enjoys the versatility as
LWE. On the other hand, there are many experiences or fast implementations under a variety of
hardwares [BGP06, BERW08, CCC+09] in the MQ literature, and thus this can be a good basis
for practical applications.

Note: we are unaware of any reductions between our MQ assumption or indeed any MQ-type
assumptions and lattice-related ones such as LWE. Furthermore, lattice problems have been studied
for a much shorter period of time than equation-solving, and new methods such as BKZ 2.0 [CN11]
are still proposed. So it is difficult to compare PKC constructions based on lattice-related hard
problems and MQ problems. The comparison is a very interesting research direction but outside
the scope of this paper. This paper will simply focus on the MQ assumption and its consequent
constructions.

A Closer Look at Our Assumption. In the following, we take a closer look at our assumption
and techniques, and still maintain a high-level perspective for intuitions. First, we give some
notation for convenience of exposition. Let Fq be a field which we use in the following discussion, and
let S describe a multivariate quadratic system with n variables and m polynomials. For example,
the following system is one with 3 variables and 2 polynomials, and for a concrete explanation we
set q = 13.

S

 x1

x2

x3

 def
=

{
x1x3 + x2

2 + 3x1 + 2
x1x2 + 2x1 + 2x2 + 7

(1)

In addition to viewing S as a set of polynomials, we can view the above system S as a function
mapping from F3

q to F2
q . For example, S([1, 2, 3]T ) = [12, 2]T , where T denotes transposes of vectors.

In the rest of the paper, we use S[·] to denote a system of polynomials, and S(·) to denote the
corresponding function. Now we are ready to describe the hard problem of our assumption with
more details (still informally). Note that here the system S includes quadratic terms, linear terms
and constant terms. Throughout the paper, we will use S to denote a system with all quadratic,
linear and constant terms.

1k is the security parameter.
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Definition 2 (The Hard Task (Informal)) Let q be a large enough prime, and H be some small
subset of Fq. Let S be a multivariate quadratic system with n variables and m = Θ(n) polynomi-
als sampled from a distribution where the coefficients of linear and constant terms are uniformly
random, and the quadratic terms come from independent Gaussian distributions with means 0 and
moderately large standard deviations.

Then a solver A, given (S, ~y = S(~x)) where ~x is sampled uniformly from Hn, is asked to output
some ~x′ such that S(~x′) = ~y.

To make the seemingly intimidating parameters more reader-friendly, we give an intuitive-level
discussion as follows. First, we observe that depending on the parameters, solving MQ equations
can be easy or hard. As discussed in [BGP06], when m is significantly larger or smaller than n,
solving the problem is easy. The interesting hard instances fall on the cases when m is close to
n, as stated in the above definition that m = Θ(n). Moreover, the problem is believed to be not
only hard in the worst case, but hard on average over random instance of S, and random input ~x.
Under a series of empirical studies and theoretical studies [AFI+04, Die04, YC04, YCBC07] for the
best known solvers, the best known algorithms still remain exponential-time.

Previously, [LLY08] observed (from experiments) that even if the instance S is drawn from
a biased distribution (whose quadratic coefficients are not uniform but instead sparse), solving
the problem is still hard. This result hints at an intuition that MQ problems are hard for most
(non-trivial) distributions from which S is drawn. In this work, we further test this intuition by
investigating the case that the instance S is drawn from a distribution whose quadratic coefficients
come from Gaussian distributions with moderately large standard deviation, and the input ~x is
drawn from a smaller subset Hn. Our experiment results in Section 6 confirm our intuition that
the problem does not become significantly easier. In the following paragraphs, we explain how and
why this type of assumption and hardness help our design.

We remark that here we only give a structural description of the problem, and leave the precise
quantitative statement in Section 3. Before going to the detailed calculation of numbers, we first
focus on the structural properties of the hard problem and maintain a high-level perspective.

Overview of Our Construction. Inspired by the recent constructions of public-key crypto
systems by learning with error (LWE) problems [Reg09], we observe that the problem in Definition
2 also shares the same structure with LWE. We can take advantage of this similarity for our
construction of public-key encryption schemes. This is a new perspective of how we can view MQ
equations.

First, let us take a look at the LWE problem, which can be stated as the following: let A ∈ Fm×nq

be a matrix, and ~b be a vector ~b = A · ~s+ ~e, where ~s ∈ Fnq is some secret, and ~e comes from some
error distribution. The task of the LWE problem is to find out ~s given a random A, and an induced
~b.

We highlight the similarity by way of the following observation: recall that the task of the
problem in Definition 2 is to invert ~y = S(~x) given S, ~y. We can rewrite ~y into S(~x) = L·~x+~d+R(~x),
where L is the matrix of the terms of linear coefficients, ~d is the coefficient vector of constant terms,
and R(~x) are the mapping by the quadratic terms. Take Equation 1 for example, we can rewrite
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the expression of S(~x) as:

S(~x) =

{
x1x3 + x2

2

x1x2
+

3x1

2x1 + 2x2
+

2
7

= R(~x) +

(
3 0 0
2 2 0

)
·

 x1

x2

x3

+

(
2
7

)

In this expression, S(~x) is a combination of an affine transformation (L · ~x + ~d) plus some
quadratic mapping R(~x). We remark that without loss of generality, we can assume ~d = 0, since
solving a multivariate system with all 0s for the constant coefficients is equivalent to solving that
with random constant coefficients.2 Then if we view the quadratic terms as noise (analogous to
the vector ~e), the shared structure becomes apparent. Thus, the ideas that com from using LWE
may be translated into candidates of constructions by MQ problems.

However, to bridge the two problems, we need to deal with some subtleties. In the LWE
problems, the noise (error vector ~e) comes from a Gaussian distribution that has “moderately”
large standard deviation. Intuitively, if the standard deviation is too small, then the problems
become easier; on the other hand, if it is too large, then the ciphertexts (constructed from LWE)
become undecryptable. Thus, in this series or works [Reg09, GPV08, PVW08], certain ranges
of parameters for stds have been identified such that both the hardness of the problems and the
correctness of the decryption hold simultaneously.

When MQ problems are viewed in this way, we also need to argue that the noise R(~x) is also
“moderate.” To achieve this, we use the structure of the assumption that the coefficients of each
quadratic term come from Gaussian distributions with moderately large standard deviations, and
the input ~x comes from a small subset Hn ⊆ Fnq . That property allows us to bound the size of
the noise R(~x). On the other hand, we need to examine the hardness of the problem for these
parameters. To do so, we conduct experiments under what to our knowledge the best quadratic
equation solver. Our experiment results confirm our intuitions that MQ problems do not become
significantly easier under any (non-trivial) particular distribution of the inputs S and ~x. This
particularly gives us evidence of the hardness of the problem in Definition 2, which we can use to
construct public-key encryptions.

Our First Construction of Encryption for Bits. In our first attempt, we construct a public-
key encryption scheme for bits. This construction is similar in spirit to those LWE-based construc-
tions [Reg09, GPV08, PVW08]. Because of the similarity, here we omit discussions of intuitions
and refer the curious readers to [Reg09, GPV08, PVW08]. For confirmations of the correctness
and security, we present a formal description of the scheme and a formal security proof in Section
3 and 3.3. Here we give an informal outline of the construction:

• In key generation, the algorithm samples an MQ system S with n variables and m = c · n
polynomials, and ~x ∈ Hn. Then it sets the public key to be (S, ~y = S(~x)), and the secret key
to be ~x.

• To encrypt a bit b, the encryption algorithm samples ~r ∈ Hm, and computes (c1, c2) =
(~rT · L, ~rT · (~y − ~d) + b · [q/2]). Recall that L is an m × n matrix, and m > n. Thus, given
~rT · L, ~r is still hidden information theoretically.

2There is a simple reduction showing that solving (S, ~y = S(~x)) for S contains random constant coefficients is
equivalent to solving (S′, ~y′ = S′(~x)), where S′ has the same distribution as S, except for the 0 constant coefficients.
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• To decrypt, the algorithm computes t = c2− cT1 ·~x. It outputs 1 if and only if |t− q/2| ≤ q/4.

Security Proof. The key to the security proof of the bit-encryption scheme is based on a proof
that relates the hardness of the assumption to some pseudorandom distribution. Namely, suppose
the problem in Definition 2 is hard, then (S, S(~x)) is indistinguishable from (S,Um) where Um is
uniform over Fmq . Moreover, we prove a more general theorem that suppose there exist a distribution
over the quadratic terms of S, and a subset H ⊆ Fq such that the problem is hard, then (S, S(~x))
is indistinguishable from (S,Um). The crux of our proof is a new application of the new version of
Goldreich-Levin Theorem by Dodis et. el [DGK+10].

We remark that this general theorem also, as a consequence, implies Theorem 2 plus 3 in
[BGP06], and Proposition 5 plus 6 in [LLY08] as its special cases.3

Improving Efficiency Using KEM. Feasibility results for bit-encryptions are nice but not quite
satisfactory. One general technique to improve efficiency is to use Key Encapsulation Mechanism
(KEM). We know that to use KEM, it is sufficient to have an efficient symmetric encryption
scheme or a pseudorandom generator (PRG). (Note that a pseudorandom generator implies an
efficient symmetric encryption scheme.) Although there are many implementations of PRGs and
thus symmetric encryptions as well[BM84, BBS86, Kal86, FSS07, HILL99, Hol06, HRV10], the
constructions are either not practically efficient, or require some additional assumption(s).

Here we further observe that the MQ assumption (Definition 2) already gives us an efficient
construction of a certain form of PRG4 that is sufficient to implement the KEM technique. As a
consequence, in the resulting scheme, we are able to achieve a public-key encryption scheme that
only needs a ciphertext length L+poly(k) to encrypt a message M ∈ {0, 1}L for any un-prespecified
polynomial L, where k is the security parameter. This is essentially asymptotically optimal since
we know the ciphertext length must be at least as large as the message (otherwise there will be
decryption errors), and an additive overhead in the security parameter is the the best we can hope
for.

2 Preliminary

2.1 Notation

All vectors are assumed to be column vectors. Unless stated otherwise, all scalar and vector
operations are performed modulo q. We use arrow notation to represent a vector, and subscripts
to represent the corresponding element, i.e. ~r ∈ Fnq means ~r is a vector of n elements in Fq and ~ri
means the i-th element of the vector. We denote the transpose of a vector ~r as ~rT .

For simplicity we will assume that q is an odd prime. We represent elements in Fq by integers

within the range [−(q− 1)/2, (q− 1)/2]. We denote the inner product of ~a and ~b as 〈~a,~b〉, or ~aT ·~b.

Definition 3 (Computational Indistinguishability and Pseudorandom Distributions) Let
k be the security parameter and {Xk}, {Yk} be ensembles, where Xk’ s and Yk’s are probability dis-
tributions over Ω`(k) for some polynomial-lengthed finite set Ω for some polynomials `. We say that

3We present our theorem and assumption in asymptotic forms, and both [BGP06, LLY08] presented their theorems
in concrete parameters.

4The PRG constructed by the MQ assumption is somewhat non-standard but is sufficient for KEM. See Section
5 for further discussions.
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{Xk}, {Yk} are computationally indistinguishable if for all PPT (or non-uniform polynomial size
circuit) distinguisher A, there exists some negligible function ngl(·) such that

|Pr[A(Xk) = 1]− Pr[A(Yk) = 1]| < ngl(k).

We use {Xk} ≈c {Yk} to denote computational indistinguishability for simplicity.
If Yk’s are the uniform distributions over Ω`(k), and {Xk} ≈c {Yk}, then we say Xk’s are

pseudorandom distributions.

2.2 Multivariate Quadratic Problems

Definition 4 (Multivariate Quadratic Polynomials) Let q ∈ N be a prime and Fq be the finite
field with order q. Let n ∈ N be parameters. A quadratic multivariate polynomial with n variables
can be denoted as the following form:

Q[~x] =
∑

1≤j≤k≤n
αj,kxjxk +

∑
1≤j≤n

βjxj + γ,

where ~x = (x1, x2, . . . , xn) is a vector of the n variables, and αj,k, βj , γ ∈ Fq are the coefficients to
the corresponding monomials.

Definition 5 (Multivariate Quadratic Systems) A multivariate quadratic system is a set of
multivariate quadratic polynomials. More precisely, let q ∈ N be a prime, n,m ∈ N be parameters,
and let ~x be a vector of the n variables. A quadratic multivariate system with n variables and m
polynomials can be written as S = (Q1, Q2, . . . , Qm) where each Qi[~x] is a multivariate quadratic
polynomial of the above form.

For compactness of the notation, we write the coefficients in a matrix form as the following.
Let R ∈ Fm×n×nq be m n× n matrices, L ∈ Fm×nq be a m× n matrix, and ~d ∈ Fnq be a vector. For

each polynomial Qi, let Ri,j,k be the coefficient of the monomial xjxk
5, Li,j be that of xj, and ~di be

the coefficient for constant terms.
Using this notation, we can write each polynomial as:

Qi[~x] = ~xT ·Ri · ~x+ Li · x+ ~di,

where Ri is the i-th n× n matrix, and Li be the i-th row of L. Then we denote the system by:

S[~x] = R[~x] + L[~x] + ~d,

where R[~x] is a collection of the quadratic part for the polynomials.
To specify a system with n variables and m polynomials, we denote S = (R,L, ~d) by the matrix

representation as above.

Definition 6 (Multivariate Quadratic Systems Evaluated at Points as Functions) Let q ∈
N be a prime, and S = (R,L, ~d) be a quadratic system with n variables and m polynomials as above,
denoted as S[~x]. Let ~z ∈ Fnq be a vector. We write ~y := S(~z), a vector in Fmq where we evaluate ~y
by plugging each xi with the value zi. In this case, S(·) is viewed as a function S : Fnq → Fmq .

5For symmetry, we define Ri,j,k to be 0 for k < j.
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We use [·] to denote polynomials, and (·) to denote functions, respectively. In particular, we use
S[·], R[·], L[·] to denote the systems of polynomials , and S(·), R(·), L(·) to denote the corresponding
functions.

Definition 7 (Multivariate Quadratic Problems) Let n,m, q ∈ N be parameters such that q
is a prime, let χ be a distribution between Fm×n×nq , and let H ⊆ Fq. The goal for a solver A to the
(average-case) multivariate quadratic problem MQ(n,m, q, χ,H) is that A on a random instance
(S, S(~x)) tries to output some ~x′ ∈ Fnq such that S(~x′) = S(~x), where S = (R,L, ~d) with R ← χ,

L← Fm×nq , ~d← Fmq , and ~x← Hn. If A does so, we say it successfully solves the instance.

Definition 8 (Hardness of a MQ Family) Let k be the security parameter, n,m, q : N→ N be
efficiently computable and polynomially bounded such that q is an odd prime. Let χ be a distribution
over Fm×n×nq and H ⊆ Fq. We say that the family MQ(n,m, q, χ,H) is hard to solve if for every
PPT solver A, there exists some negligible function ngl(·) such that the following holds for all
sufficiently large k:

Pr
S ←MQ(n,m, q, χ,H)

~x← Hn

[
~x′ ← A(S, S(~x)) : S(~x′) = S(~x)

]
< ngl(k).

3 Public-Key Encryption Schemes For Bits

In this section, we show a construction of public-key encryption schemes (for bits) under the
hardness of some specialized MQ problem. We present our results in the following order: (1) the
hardness assumption, (2) the construction of the scheme, and (3) the analysis.

3.1 The Assumption

Definition 9 (MQ Hardness Assumption) Let k be the security parameter. For every constant
c > 1 ∈ N, every efficiently computable and polynomially bounded n,m, q : N → N, α : N →
[−q/2, q/2] and every 0 < β ≤ [q/2] such that (1) m = cn, (2) q is prime, (3) α = O(1), let Φα be
the distribution of m× n× n identical independent discrete Gaussian distribution Dα’s with mean
0, standard deviation α, namely, each Dα samples z ← N(0, α2) (normal distribution with mean 0,
and standard deviation α), and then outputs bze (mod q), and let Hβ = {−β,−β + 1 . . . , β − 1, β}.

Then the problem MQ(n,m, q,Φα, Hβ) is hard to solve.

As discussed in the introduction, we need to choose the parameters α such that |R(~x)| is
“moderate” for two aspects. First, α cannot be too large, otherwise there will be decryption errors.
On the other hand, if α is too small, then with high probability, most coefficients are 0, so the
system becomes sparse. There are known attacks for sparse systems where there are only o(1) non-
zero coefficients, so in our assumption, the α cannot fall into this region. In our setting, α = O(1)
implies that each quadratic terms has at least a constant probability not being zero, and thus there
will be O(n2) quadratic terms in expectation. In section 6, we will discuss more details about the
parameters and how they influence the hardness of the problem.

Remark 10 As we discussed in the introduction, the MQ assumption has a similar structure to
the LWE assumption. Here we do a brief comparison of the two assumptions for different range of
parameters.
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For q being superpolynomial, we can show that an MQ instance (S, S(~x)) can be transformed
to (L, b) that is statistically close to an LWE instance. The transformation just sets L as the linear
part of S, and sets b = S(~x) +~e′, where each coordinate of ~e′ comes from some i.i.d. Gaussian with
a small std. For q = superpoly(k), one can show that b is statistically close to L · ~x+~e′′ where each
coordinate of ~e′′ comes from i.i.d. Gaussian with a slightly bigger std. Thus, (L, b) is statistically
close to an LWE instance, and consequently, there is a simple reduction from MQ to LWE.

In this paper, we need q = poly(k) for our construction. For this range of parameters, the above
argument does not work. In fact, an MQ instance and an LWE instance can be statistically far.
Thus, a straitforward reduction from MQ to LWE does not work. We are not aware of any other
reduction from any one to the other, and leave this issue as an interesting open question.

Under the above assumption, we are able to obtain the following lemma, which is a key to the
security proof of our construction of public-key encryption scheme. In the following section, we are
going to prove a more general result as Theorem 22, which directly implies this lemma. Thus, we
only put the statement of the lemma.

Lemma 11 Let k be the security parameter, and assuming MQ(n,m, q,Φα, Hβ) be the hard prob-
lem as stated in Definition 9. Then (S, S(~x)) is computationally indistinguishable from (S,Um),
where S ←MQ(n,m, q,Φα, Hβ), ~x← Hn

β , Um is the uniform distribution over Fmq .

Here we remark that the MQ hardness assumption in Definition 9 can be generalized in the
following sense.

Remark 12 Actually all we need for our construction is to bound the quantity R(~x) (see Section
3.4 for further discussions). Thus any distribution of S, and ~x that has the following properties
(1) the problem of equation solving is hard, and (2) we are able to bound R(~x), are sufficient for
us to construct public-key encryptions. Here for concreteness, we present study Φα and Hn

β as a
candidate for the hard problem.

3.2 Construction of A Public-Key Encryption Scheme for Bits

In this section we present our construction of a public-key bit-encryption scheme.

Construction of the Scheme E = (KeyGen(·),Enc(·),Dec(·)):

• KeyGen(1k): choose public parameters n,m, q, α, β, and λ ∈ N satisfying the following con-
straints:

1. k · α · n(2+λ) ·m · β2 ≤ q/4.

2. m · log(2nλ + 1) ≥ (n+ 1) · log q + 2k.

3. n,m, q, α, β satisfy the condition in the MQ assumption such that MQ(n,m, q,Φα, Hβ)
is hard to solve.

Then it samples a random instance (S, S(~x))←MQ(n,m, q,Φα, Hβ), and deontes ~y = S(~x).
Then it sets pk = (S, ~y) = ((R,L, d), ~y), sk = ~x.

• Enc(b) for b ∈ {0, 1}: sample ~r ∈ Hm
nλ

, and outputs (c1, c2) = (~rT · L, ~rT · (~y − ~d) + b · [q/2]).
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• Dec(c1, c2): compute t = c2 − cT1 · ~x. If |t− q/2| ≤ q/4 then output 1, otherwise 0.

The constraints in the KeyGen capture the two conditions that we need for the encryption
scheme. The first condition guarantees the error (from the quadratic terms) won’t be too big,
and the second condition guarantees the security of the encryption. For a ciphertext (c1, c2) =
(~rT · L,~rT · (~y − ~d) + b · [q/2])), c1 contains a vector of n field elements, which reveal n · log q bits
of information about ~r. The second condition says ~r has m · log(2nλ + 1) bits of entropy, so given
c1, ~r still has enough entropy. Then we can apply the leftover hash lemma to argue that c2 is
pseudorandom. We remark that the conditions are not hard to satisfy, and in section 5.4 we give
concrete parameters that satisfy those constraints, and then analyze the resulting constructions.

Theorem 13 Assume the MQ assumption holds for the above parameters. Then the scheme E is
a semantically secure encryption scheme.

To prove the theorem, we argue its security and correctness in the following two sections.

3.3 Proof of Security

To show the scheme is semantically secure, we show that it has the property of message indistin-
guishability. That is, for the two different messages 0, 1, we have Enc(0) computationally indis-
tinguishable from Enc(1). The proof uses the property (S, S(~x)) ≈c (S,Um) by Lemma 11 in an
essential way. In particular, we establish the following lemma.

Lemma 14 Let k, n,m, q,Φα, Hβ, λ be parameters that satisfy the constraints above in the KeyGen.

Then D1 = (S, ~y, ~rT ·L,~rT · (~y− ~d)) is indistinguishable from D2 = (S, ~y, ~rT ·L,~rT · (~y− ~d) + [q/2]).

Proof. To show this lemma, we use the following two intermediate distributions to bridge D1 and
D2; namely, D′1 = (S, ~u,~rT · L,~rT · (~u− ~d)), and D′2 = (S, ~u,~rT · L,~rT · (~u− ~d) + [q/2]), where ~u is
uniform over Fmq . In particular, we show that D1 ≈c D′1, and D2 ≈c D′2, and D′1 ≈s D′2. Thus, we
know D1 ≈c D2. (Note: ≈c denotes computational indistinguishability, and ≈s denotes statistical
closeness.)

We establish the following claims:

Claim 15 The distribution D1 is computationally indistinguishable from D′1.

Proof of claim: We prove the claim by contradiction. From Lemma 11, we know
(S, ~y) ≈c (S, ~u). Suppose there exists an PPT adversary A that distinguishes D1 and
D′1 with noticeable advantage ε = 1/poly(k). Then we want to define an adversary B
that distinguishes (S, ~y) and (S, ~u), which leads to a contradiction.

Define B does the following: on input (S, ~z) where ~z comes from either ~y or ~u, B
samples ~r ∈ Hm

nλ
and outputs A(S, ~z, ~rT ·L,~rT ·(~z− ~d)). For the case when ~z comes from

~y, A’s input distribution is exactly D1, and for the other case D′1. Thus the advantage
of A carries directly to B. Clearly the running time of B is also in poly(k), and this
completes the proof. 2

Claim 16 The distribution D2 is computationally indistinguishable from D′2.

Proof of claim: This follows from exactly the same argument as above. 2
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Claim 17 The distribution ∆(D′1, D
′
2) ≤ 2−k, where ∆() denotes statistical differences.

Proof of claim: To show this claim, we are going to apply the Leftorver Hash Lemma
[Vad11] of the following form:

Lemma 18 (Leftover Hash Lemma[Vad11]) Let m,n, k, q be parameters such that
m · log(2nλ + 1) ≥ (n + 1) · log q + 2k, then (~u,~rT · L,~rT · ~u) is statistically close to
(~u,~rT · L, z) by a distance at most 2−k, where z is a random element in Fq.

By applying this lemma, we know that D′1 = (S, ~u,~rT · L,~rT · ~u) ≈s (S, ~u,~rT · L, z),
and D′2 = (S, ~u,~rT · L,~rT · ~u+ [q/4]) ≈s (S, ~u,~rT · L, z). This proves the claim. 2

3.4 Proof of Correctness

To show correctness of the encryption scheme, we show that with overwhelming probability over
the randomness in the key generation, decrypting a ciphertext recovers the original message.

To achieve this task, first we recall that the ciphertext of b ∈ {0, 1} is (c1, c2) = (~rT · L, ~rT ·
(~y − ~d) + b · [q/2]). Then we observe that the decryption procedure can be written as:

t
def
= c2 − cT1 · ~x
= ~rT · (S(~x)− ~d)− ~rT · L · x
= ~rT · (R(~x) + L · ~x) + b · [q/2]− ~rT · L · x
= ~rT ·R(~x) + b · [q/2].

The decryption algorithm outputs 1 if |t− q/2| ≤ q/4, and otherwise 0. Thus if |~rT · R(~x)| < q/4,
the decryption algorithm will correctly recover the bit b originally encrypted. In the following, we
bound the probability of |~rT ·R(~x)| ≥ q/4.

Before going to the proof, we first look at the high-level discussion as follows: recall that in the
setting of the parameters, all the coefficients of R come from Dα, i.e., discrete Gaussian distributions
with mean 0 and std α. Since ~x ∈ Hn

β , we know each quadratic monomial ~xi · ~xj , as a function,

can contribute at most β2. There are n2 quadratic monomials and each coefficient comes from the
Gaussian distributions. Thus the probability that a single polynomial is greater than k · [n2 ·β2 ·α]
is exponentially small in k by the property that (1) the sum of n2 Gaussians with std β2 · α is still
a Gaussian with std n2 ·β2 ·α, and (2) Pr[N(0, γ) > kγ] decreases exponentially with k for any std
γ.

On the other hand, we know that ~r ∈ Hm
nλ

and ~rT ·R(~x) can be viewed as
∑

i∈[m] ~ri ·Ri(~x). This

term can be bounded by
∑

i∈[m] n
λ ·Ri(~x), and in the above paragraph, we have already bounded

the probability that each Ri(~x) is too large. Thus, putting these together with the relations of
α, β, q in the premise, we know the probability |~rT ·R(~x)| ≥ q/4 is negligibly small. We present the
following lemma that formalizes the above discussions.

Lemma 19 Let n,m, q,Φα, Hβ be the parameters as in the scheme. Then for any ~x ∈ Hn
β , ~r ∈ Hm

nλ

Pr
S:=(Q,L,~d)←MQ(n,m,q,Φα,Hβ)

[
|~rT ·R(~x)| ≥ q/4

]
< ngl(k).
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Proof. [Liu’s Note: Maybe add more intuitions about the proof, english description
and what the parameters mean.] To prove the lemma, first we observe that in our setting of
parameters in the KeyGen algorithm, we have k ·α ·n6 ·m ·β2 ≤ q/4. Thus we have Pr[|~rT ·Ri(~x)| >
q/4] ≤ Pr[|~rT ·Ri(~x)| > k ·n2 ·αβ2 ·m ·n4] by simply reordering the terms. In the following we are
going to bound the probability of such term by the two claims.

Claim 20 Let ~x ∈ Hn
β be any arbitrary, and R ← Φα ∈ Fm×n×nq . Then for each quadratic

polynomial Ri,

Pr[|Ri(~x)| > k · n2β2 · α] < ngl(k)

Proof of claim: Let ~z = (β, β, . . . , β) ∈ Fnq . Since ~x ∈ Hβ, we know that |Ri(~x)| ≤
|Ri(~z)|, so in order to bound the probability as stated above, we only need to bound
the probability that |Ri(~z)| > k · n2β2 · α . By the definition of Φα, Ri(~z) is the sum
of n2 independent Gaussian distributions with mean 0 and standard deviation α. Thus
|Ri(~z)| = n2 · β2 · |N(0, α2)| = |N(0, (n2β2)2 · α2)|. Denote n2β2 · α as γ

Then by Chernoff bound of the tail probability, we have

Pr[|Ri(~x)| > k · γ] ≤ Pr[|Ri(~z)| > k · γ] = Pr[|N(0, γ2)| > k · γ] < 2−Ω(k2) = ngl(k).

2

Claim 21 Let ~r ∈ Hm
nλ
, ~x ∈ Hn

β be any two arbitrary vectors, and R← Φα ∈ Fm×n×nq . Then

Pr[|~r ·R(~x)| > k ·m · n2+λβ2 · α] < ngl(k).

Proof of claim: Let ~z = (nλ, nλ, . . . , nλ) ∈ Fmq . We observe that |~r ·R(~x)| ≤ |~z ·R(~x)|.
Thus to bound the desired probability, we only need to bound the probability that
|~z ·R(~x)| > k ·m · n2+λβ2 · α = k ·m · nλ · n2β2 · α.

Let γ
def
= n2β2 · α. By the above claim , we know that for each i ∈ [m], Pr[|Ri(~x)| >

kγ] = ngl(k). Then by a union bound, we have Pr[∃i ∈ [m] s.t. |Ri(~x)| > kγ] ≤
m · ngl(k) = ngl(k). Thus, we have

Pr
[
|~r ·R(~x)| > k ·m · nλ · γ

]
< Pr

[
|~z ·R(~x)| > k ·m · nλ · γ

]
= Pr

∑
i∈[m]

nλ · |Ri(~x)| > k ·m · nλ · γ


The event

∑
i∈[m] n

λ · |Ri(~x)| > k ·m · nλ · γ implies ∃i ∈ [m] s.t. |Ri(~x)| > k · γ by
an average argument. Thus we have

Pr

∑
i∈[m]

nλ|Ri(~x)| > k ·m · nλ · γ

 ≤ Pr[∃i ∈ [m] s.t. |Ri(~x)| > kγ] = ngl(k).

This completes the proof of the claim.
2
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4 Hardness of MQ Problems Implies Pseudorandom Distributions

Recall that in the previous section, we claimed that the hardness of some family of MQ problems
implies a pseudorandom distribution (Lemma 11). In this section, we are going to show that the
hardness of more general families of MQ problems also implies a pseudorandom distribution. In
particular, we obtain the following theorem.

Theorem 22 Let k be the security parameter, n,m, q be efficiently computable and polynomially
bounded such that q is an odd prime, χ is a distribution over Fm×n×nq , and H ⊆ Fq.

Suppose for these parameters the problem MQ(n,m, q, χ,H) is hard to solve, then the following
two distributions are computationally indistinguishable. D1 = (S, S(~x)), D2 = (S,Um), where
S ←MQ(n,m, q, χ,H), ~x← Hn, and Um is a uniform distribution over Fmq .

If we set H to be Hβ, and χ to be Φα,q as the setting in Definition 9, then this version of the
theorem directly becomes Lemma 11.

We prove the theorem by contradiction. For intuition, first we state our high level ideas and
then delve into details. Suppose there exists a distinguisher A that distinguishes D1 and D2, from
here we want to construct an inverter B that solves the MQ problem (S, S(~x)), which leads to a
contradiction. We achieve this goal using the following strategy:

• First we show that from A, we can construct another algorithm A′ that distinguishes D′1 =
(S, S(~x), ~r, 〈~r, ~x〉) and D′2 = (S, S(~x), ~r, U) where ~r ∈ Fnq is a random vector, and U is uniform
over Fq. For any ~r ∈ Fnq , we can view 〈~r, ~x〉 as the ~r’s location of the (Hadamard) encoding of
~x. The ability to distinguish D′1 and D′2 gives us a somewhat corrupted codeword of ~x, i.e.,
the codeword is correct in at least a noticeable fraction of places over all ~r’s.

• Then from A′, we construct an inverter B that applies the list-decoding algorithm by the
Goldreich-Levin Theorem to recover ~x. We remind the reader that the Goldreich-Levin The-
orem is essentially a decoding algorithm for the Hadamard code, which says (informally) that
if given f(~x), for random ~r’s one can distinguish 〈~r, ~x〉 from a uniform element with noticeable
probability, then one can invert f with noticeable probability (for any function f).

However, when applying the Goldreich-Levin Theorem here, we encountered some subtleties.
First the classical theorem [GL89] deals with the boolean field only (i.e. q = 2); thus it is not
applicable in general cases. A generalized version of [GRS95] handles the case for large q’s, but it
works only for the case where the input ~x ∈ Fnq . It remains unclear for the case where ~x comes
from a subset Hn

β ⊆ Fnq . Recently, Dodis et al. [DGK+10] proved a new version of the theorem
that is essentially what we need in our setting. With it, we are able to implement the list-decoding
algorithm in the second bullet above, and this completes the proof. We state the new version of
Goldreich-Levin Theorem in the following, and then give a formal proof of Theorem 22.

Theorem 23 (Goldreich-Levin [DGK+10]) Let q be a prime, and let H be an arbitrary subset
of Fq. Let f : Hn → {0, 1}∗ be any (possibly randomized) function. If there exists a distinguisher
D that runs in time t such that

|Pr [D(y, ~r, 〈~r,~s〉) = 1]− Pr [D(y, ~r, u) = 1]| = ε,

where ~s← Hn, y ← f(~s), ~r ← Fnq , u← Fq,
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then there is an inverter A that runs in time t′ = t · poly(n, |H|, 1/ε) (roughly t′ = t · 128 · n2 ·
|H|2/ε2) such that

Pr[~s← Hn, y ← f(~s) : A(y) = ~s] ≥ ε

4q
,

if q > 128|H|n/ε2. Otherwise, the success probability of A is greater equal to ε3

512·n·q2 .

Proof. (Theorem 22) We prove the theorem by contradiction. Suppose there exists a PPT
adversary A such that the following holds:∣∣∣∣ Pr

D1=(S,S(~x))
[A(S, S(~x)) = 1]− Pr

D2=(S,Um)
[A(S,Um) = 1]

∣∣∣∣ > ε,

where S ←MQ(n,m, q, χ,H), ~x← Hn, Um is uniform over Fmq and ε = 1/poly(k) is some notice-
able quantity. From this we want to construct an inverter that solves the MQ problem (S, S(~x))
with some noticeable probability, and this leads to a contradiction. Here without of generality,
we assume that the probability that A outputs 1 on D1 is higher, i.e. PrD1=(S,S(~x))[A(S, S(~x)) =
1]− PrD2=(S,Um)[A(S,Um) = 1] > ε.

As mentioned in the intuition as above, we prove the theorem in two steps. In the first step we
construct another distinguisher that on inputs S, S(~x) and a random ~r, can tell 〈~r, ~x〉 from random.
More precisely we establish the following lemma:

Lemma 24 Let A be a distinguisher to the distributions D1 = (S, S(~x)) and D2 = (S,Um), with
advantage ε ∈ [0, 1] and running in time t ∈ N, where (S, S(~x)) ← MQ(n,m, q, χ,H), and Um
is uniform over Fq. Then there exists a distinguisher to A′ running in time poly(t, n,m, q) that
distinguishes D′1 = (S, S(~x), ~r, 〈~r, ~x〉) and D′2 = (S, S(~x), ~r, U) within advantage poly(ε, 1/q), where
(S, S(~x))←MQ(n,m, q, χ,H), ~r ∈ Fnq and U is uniform over Fq .

Proof. (Lemma 24) Let (S, S(~x), ~r, z) be the input to A′ where z comes from either 〈~r, ~x〉 or U .
Let S = (R,L,~b) be the coefficients of quadratic, linear and constant terms respectively. Then we
define A′ as the following:

1. Sample a1, a2, . . . am ∈ Fq uniformly, denote [a1, a2, . . . , am]T as ~a (a column vector). Let

L′ =


− a1 · ~rT −
− a2 · ~rT −

...
− am · ~rT −

 be an m× n matrix. Recall that ~rT is a row vector of n elements,

and ai · ~rT means every component of ~rT is multiplied by ai.

2. Set S′ = (R,L+ L′,~b), and set ~w ∈ Fmq where ~wi = ai · z. Then A′ outputs A(S′, S(~x) + ~w).

To analyze the algorithm A′, we establish the following two claims:

Claim 25 PrD′1 [A′(S, S(~x), ~r, z) = 1] = PrD1 [A(S, S(~x)) = 1].

Proof of claim: For the case of the distribution D′1, we observe that ~w = z · ~a =
〈~r, ~x〉 · ~a. Thus S(~x) + ~w = S(~x) + 〈~r, ~x〉 · ~a = S(~x) + L′ · ~x = S′(~x). On the other
hand, S′ is identically distributed with S for the following observations. (1) for any
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fixed L′, a uniform L is identically distributed with L + L′. (2) For S = (R,L,~b) and
S′ = (R,L+ L′,~b), the only distinction comes from the coefficients of linear terms, but
the two are identically distributed.

Thus we have,

Pr
D′1

[A′(S, S(~x), ~r, z) = 1] = Pr
D′1

[A(S′, S′(~x)) = 1] = Pr
D1

[A(S, S(~x)) = 1].

2

Claim 26 PrD′2 [A′(S, S(~x), ~r, z) = 1|z = 〈~r, ~x〉] = PrD′1 [A(S, S(~x), ~r, z) = 1].

Proof of claim: This follows since the conditional distribution ofD′2|z=〈~r,~x〉 is identical
to D′1. 2

Claim 27 PrD′2 [A′(S, S(~x), ~r, z) = 1|z 6= 〈~r, ~x〉] = PrD2 [A(S,Um) = 1].

Proof of claim: Let t
def
= 〈~r, ~x〉. For the case of the distribution D′2 conditioned on

z 6= t, we observe that ~w = z · ~a = t · ~a + (z − t) · ~a, where z − t 6= 0. Then we have
S(~x) + ~w = S(~x) + t ·~a+ (t− u) ·~a = S′(~x) + (t− u) ·~a. For any given S′(~x), it is easy
to see the distribution (t− u) · ~a is uniformly random over Fmq given t− u 6= 0 and ~a is
uniform over Fmq . Thus S(~x) + ~w is identically distributed to Um, and this completes
the proof of the claim. 2

Denote PD′1
def
= PrD′1 [A′(S, S(~x), ~r, z) = 1] and PD′2

def
= PrD′2 [A′(S, S(~x), ~r, z) = 1]. Then we have

PD′1 − PD′2
= PD′1 − (PD′2 |(z=t) · Pr[z = t] + PD′2 |(z 6=t) · Pr[z 6= t])

= PD′1 −
(
PD′2 |(z=t) ·

1

q
+ PD′2 |(z 6=t) ·

q − 1

q

)
=

q − 1

q
· PD′1 −

q − 1

q
· PD′2 |(z 6=t)

=
q − 1

q

(
Pr
D1

[A(S, S(~x)) = 1]− Pr
D2

[A(S,Um) = 1]

)
≥ q − 1

q
· ε.

Clearly, the running time of A′ is t+poly(n,m, q) and the advantage is greater equal to q−1
q ·ε =

poly(ε, 1/q).

The above proof of the lemma completes the first step. Then we proceed to the step 2. From
the distinguisher A′, we would like to apply the Goldreich-Levin Theorem to construct an inverter
to the instance (S, S(~x)). Now we need to set up the premises of Theorem 23. Let f : Hn → {0, 1}∗
be defined as the following: f on input ~x samples S ← MQ(n,m, q, χ,H), and then outputs
(S, S(~x)). By the above Lemma 24, we know A′ is a distinguisher that has advantage ε′ = q−1

q · ε
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distinguishingD′1 = (S, S(~x), ~r, 〈~r, ~x〉) = (f(~x), ~r, 〈~r, ~x〉) andD′2 = (S, S(~x), ~r, U) = (f(~x), ~r, U). By
Theorem 23, we know that there exists an inverter B that inverts f(~x) = (S, S(~x)) with probability
poly(ε′, 1/n, 1/q). In our setting of parameters n,m, q = poly(k), and ε = 1/poly(k), and thus the
inverter B’s success probability is poly(ε′, 1/n, 1/q) = 1/poly(k), and has a running time poly(k).
This contradicts to the hardness assumption of MQ problem.

Remark 28 We remark that Theorem 22 holds, under the premise that there exists some distri-
bution χ and H ⊆ Fq such that the corresponding MQ problem is hard. In particular, if we set
q = 2, χ to be uniform over Fm×n×nq and H = Fq, then this version of the assumption and Theorem
is essentially the same as Theorem 2 plus 3 in [BGP06]. On the other hand, if we set χ to be
some sparse distribution and H = Fq, then the version of this theorem is essentially the same as
Proposition 5 plus 6 in [LLY08]. Note that [BGP06, LLY08] present their theorems/propositions
in concrete parameters, and in this paper, we present in an asymptotic way.

5 Key Encapsulation Mechanism

In the previous section, we constructed a public-key encryption for bits. However, this approach
is not satisfactory when we want to encrypt a long message M ∈ {0, 1}L for some large L. As
discussed in the introduction, we can use a key encapsulation mechanism (KEM) to achieve better
efficiency.

First, we recall how we can achieve this by the KEM technique: let Enc be any public-key
encryption scheme for bits, and let G : {0, 1}k → {0, 1}k+t be a pseudorandom generator. To
encrypt a long message M ∈ {0, 1}L, we first sample a seed s ∈ {0, 1}k for the PRG, and then
stretch the generator G6 to get a pseudorandom string G′(s) ∈ {0, 1}L. Then we encrypt the seed
by the public-key scheme and use the pseudorandom string as a one-time pad to XOR M . The
resulting ciphertext becomes (Encpk(s), G

′(s)⊕M).
In this paper, we observe that the MQ assumption implies a certain form of PRG. Thus, we can

implement KEM under the same assumption as the one from which we construct the public-key
encryption scheme. However, this type of PRG is somewhat non-standard, so we avoid using this
term formally but discuss the issue in the following Remark.

In the next section, we are going to show how we can obtain the desired long pseudorandom
string G′(s), and then present the entire scheme in Section 5.2. Finally we sketch the proof of
security, which follows from the folklore.

Remark 29 (A discussion on the non-standard PRG) Recall that in the standard definition
of PRG, we say a function G : {0, 1}n → {0, 1}m is a PRG if (1) it is stretching i.e. m > n, (2) it
is a deterministic and efficiently computable function, and (3) G(~x) ≈c Um.

However, it is unclear how we can obtain a single deterministic function G from the implication
of the MQ assumption that (S, S(~x)) ≈c (S,Um). The issue here is that S is also a part in the
distribution, so we cannot simply define G = S(·). On the other hand, if we consider a family of
PRGs or a keyed-PRG where S is taken into account as a key, then we can define GS(~x) = S(~x).
It is not hard to see that GS has some similar properties to standard PRGs: (1) it is stretching,

6We refer the readers to [Gol01] for the details of how to stretch a PRG.
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(2) it is a deterministic and efficiently computable function given any key, and (3) even if the key
is given, (S,GS(~x)) is computationally indistinguishable from (S,Um).

In this viewpoint, obtaining a longer pseudorandom string can be obtained by stretching the
keyed PRG given by the MQ assumption. The way we stretch the keyed PRG is essentially the
same as that by which we stretch a standard PRG [BM84, Yao82]. The stream cipher QUAD
[BGP06] was also constructed with the same spirit.

Remark 30 We remark that KEM is a generic way to construct efficient public-key encryption
schemes. As discussed in the introduction and the above, we know that a PRG plus any bit-
encryption public encryption scheme is sufficient to achieve the task. In this paper, we observe that
the MQ assumption implies an efficient constructions of PRGs and a public-key bit-encryption
scheme, so we can obtain an efficient public-key encryption under one single assumption.

5.1 Longer Pseudorandom Strings

Recall that Lemma 11 states that (S, S(~x)) ≈c (S,Um). This means we can get a pseudorandom
string S(~x) ∈ Fmq by only sampling a shorter seed ~x ∈ Hn

β . Note: m > n, and H ⊆ Fq. To get a
longer pseudorandom string, we can use the following iterative method (analogous to how we can
stretch a PRG.)

Definition 31 Let S ←MQ(n,m, q,Φα, Hβ). For ~x ∈ Hn
β , and let (x0, y0) = S(~x) where ~x0 ∈ Fnq ,

~y0 ∈ Fm−nq be the prefix n elements and the suffix m− n elements of S(~x) respectively.
Let h : Fnq → Hn

β be a hash function, and for i ∈ N, we recursively define (~xi, ~yi) = S(h(~xi−1))

where ~xi ∈ Fnq , ~yi ∈ Fm−nq (representing the prefix and suffix of S(h(~xi−1)) respectively). Then we
define Sih(~x) = (~y0, ~y1, . . . , ~yi).

Initial input = ~x
S(~x)

−−−−−−−→ x0

S(h(~x0))

−−−−−−−→ x1

S(h(~x1))

−−−−−−−→ x2 · · ·y y y
output: y0 y1 y2 · · ·

Then we are going to argue that for any i ≤ poly(k), we have (S, Sih(~x)) ≈c (S,U(m−n)·(i+1)),
given (S, S(~x)) ≈c (S,Um). This means, we can get an arbitrarily long (polynomially bounded)
pseudorandom string Sih(~x) from an initial random seed ~x.

First we give an intuition why this works and why we need a hash function. Let us take i = 2
for simplicity of exposition. From (S, S(~x)) = (S, ~x0, ~y0) ≈c (S,Um) = (S,Un, Um−n), we know that
by applying h on one part of the distributions we still have (S, h(~x0), ~y0) ≈c (S, h(Un), Um−n) =
(S, ~x, Um−n) since h(Un) is distributed the same as ~x ∈ Hn

β . Then we have (S, S(h(~x0)), ~y0) ≈c
(S, S(~x), Um−n) ≈c (S,Um, Um−n). This completes the intuition.

We remark that for the known construction (of how to stretch PRGs to obtain more pseudo-
random bits)[BM84, Yao82], we do not need a hash function, or in other words we let h to be the
identity mapping from Fq → Fq. In our setting, we need h since the distribution (S, S(~x)) is only
guaranteed to be pseudorandom if ~x is random over Hn

β . Here we only need h to reinterpret each
~xi ∈ Fnq as an element in Hn

β . Thus the hash function is easy to implement as the following remark.
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Remark 32 The only property we need for h is h(Un) outputs a uniformly random element
in Hn

β . We can view elements in Fnq as strings in {0, 1}dn·log qe, and those in Hn
β as strings in

{0, 1}dn·log(2β+1)e. Then h on input ~z ∈ Fnq first interprets ~z as an dn · log qe-bit string, and then
outputs the first dn · log(2β + 1)e bits interpreted as an element in Hn

β . It is not hard to see this
construction meets our requirement.

Then we are able to achieve the following theorem.

Theorem 33 Let k be the security parameter. Assuming the MQ problem MQ(n,m, q,Φα, Hβ)
is hard, and let h : Fnq → Hn

β be a (randomized) hash function such that h(~z) maps a uniformly
random ~z ∈ Fnq to a uniformly random ~y ∈ Hn

β .

Then for any i = poly(k), (S, Sih(~x)) is computationally indistinguishable to (S,U(m−n)·(i+1)),

where S ←MQ(n,m, q,Φα, Hβ), ~x← Hn
β , and U(m−n)·(i+1) is uniform over F(m−n)·(i+1)

q .

Proof. We prove the theorem by contradiction. Suppose there exists i = poly(k) such that one
can distinguish (S, Sih(~x)) and (S,U(m−n)·(i+1)), then one can distinguish (S, S(~x)) and (S,Um),
which leads to a contradiction to Lemma 11.

More formally, let A be a PPT distinguisher that has advantage ε = 1/poly(k) distinguishing
(S, Sih(~x)) and (S,U(m−n)·(i+1)), then we are going to design a distinguisher B for (S, S(~x)) and
(S,Um) by a hybrid argument.

Given a system S and a hash function h as stated, we define hybrid distributions for j ∈ [i] as
follows:

Hj =
(
S,U1

m−n, . . . , U
j
m−n, S

i−j
h (h(Un))

)
,

and we define
H0 =

(
S, Sih(h(Un))

)
, Hi+1 =

(
S,U1

m−n, . . . , U
i+1
m−n

)
,

where Un is uniformly random over Fnq , and U `m−n’s are independent copies of random vectors over
Fm−nq for ` ∈ N.

First we observe that Hi+1 = (S,U(m−n)·(i+1)) by its definition. On the other hand, since h
maps a uniform random vector to a uniform random vector in Hn

β , and thus h(Un) is identically

distributed with ~x. This implies H0 = (S, Sih(~x)).
From the advantage of A between H0 and Hi+1, by an average argument there exists an i∗ ∈ [i]

such that Pr[A(Hi∗) = 1] − Pr[A(Hi∗+1) = 1] > ε/(i + 1). We remark that here we assume that
the distinguisher B has the non-uniformity advice of i∗ for simplicity of presentation, but we can
remove it by a random guess from [i] as the standard hybrid argument proof.

Let (S, ~z) be the input of B where ~z comes from either S(~x) or Um. Denote ~z = (~z1, ~z2) where ~z1

is the prefix of the n elements and ~z2 is the suffix of the rest. Then B samples u1, u2, . . . ui∗ ← Un−m

independently, and then B outputs A
(
S, u1, . . . ui∗ , ~z2, S

i−i∗−1
h (h(~z1))

)
.

In the following claims, we are going to argue that the two different input distributions of B
can be translated to Hi∗ and Hi∗+1 respectively, and thus A’s advantage can be carried to B.

Claim 34 If ~z comes from the distribution Um, then we have(
S, u1, . . . ui∗ , ~z2, S

i−i∗−1
h (h(~z1))

)
= Hi∗+1.
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Proof of claim: This follows directly from that the distribution of ~z1 is Un. 2

Claim 35 If ~z comes from the distribution S(~x) = (~z1, ~z2), then we have(
S, u1, . . . ui∗ , ~z2, S

i−i∗−1
h (h(~z1))

)
= Hi∗ .

Proof of claim: We observe that in this case, (~z1, ~z2) = (~x0, ~y0). Then by the
definition, we have Sj+1(~x) = (y0, S

j(h(~x0)) for any j ∈ N. Thus we have

LHS =
(
S, u1, . . . ui∗ , S

i−i∗
h (~x)

)
=
(
S, u1, . . . ui∗ , S

i−i∗
h (h(Un))

)
= Hi∗ .

Note that h(Un) is identical to ~x, and thus the above equation holds.
2

Thus, the advantage of A carries to B, and B can distinguish the two distributions with advan-
tage ε/(i+ 1) = 1/poly(k), which leads to a contradiction.

5.2 Construction of the KEM Scheme

In previous sections, we have constructed the bit encryption scheme E = (KeyGen(·),Enc(·),Dec(·))
described in section 3.2, and the pseudorandom generator above. Here we describe a KEM scheme
EKEM = (KeyGenKEM(·),EncKEM(·),DecKEM(·)) that can encrypt messages with un-prespecified
lengths (polynomially bounded).

• KeyGenKEM(1k): run KeyGen(1k). In particular, the algorithm chooses public parameters
n,m, q,Φα, Hβ in the range as stated in the MQ assumption, and also a hash function h :
Fnq → Hn

β with the property h(Un) being uniform over Hn
β as discussed in the above section.

Then it samples a random instance (S, S(~x))←MQ(n,m, q,Φα, Hβ), and deontes ~y = S(~x).
Then it sets pk = (S, ~y), sk = ~x.

• For any L = poly(k), and any message M ∈ FLq , EncKEM(M) does the following: the algorithm
samples ~s ∈ Hn

β , and computes ci = Enc(pk, ~si) for i ∈ [n]. Then let t = dL/(m − n)e, and

compute c∗ = M ⊕ Sth(~s).7 The resulting ciphertext will be c = (c1, c2, . . . , cn, c
∗).

• DecKEM(c): the algorithm computes ~s by running Dec(sk, ci) for i ∈ [n]. Then it outputs
M = c∗ ⊕ Sth(~s).

5.3 The Analysis

Here we briefly argue the correctness and the security of the scheme EKEM. The correctness follows
directly from that of the bit encryption scheme E . The security follows from the folklore. Here we
informally outline the proof.

• By the semantic security of E , we know that (pk,Enc(pk, ~s), ~s) ≈c (pk,Enc(pk, ~s), ~r) where
~s, ~r are i.i.d and uniformly random from Hn

β .

7Here ⊕ means we add two vectors component-wise. That is, let ~a,~b ∈ FLq , then we say ~a ⊕ ~b = [~a1 + ~b1,~a2 +
~b2, · · · ,~aL +~bL]T .
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• Then we know that (pk,Enc(pk, ~s), Sth(~s)) ≈c (pk,Enc(pk, ~s), Sth(~r)) since applying a function
on a part of the distributions won’t affect computational indistinguishability.

• Then we have (pk,Enc(pk, ~s), Sth(~r)) ≈c (pk,Enc(pk, ~s), UL) by the property of Sth(~r). Note
that ~r now is an independent sample from ~s.

• Thus, we have any message M , (pk,Enc(pk, ~s), Sth(~s) ⊕M) ≈c (pk,Enc(pk, ~s), UL ⊕M) ≈
(pk,Enc(pk, ~s), UL). Thus, we have the fact that for any two messages M1,M2, we have
(pk,EncKEM(M1)) ≈c (pk,EncKEM(M2)).

Putting everything together, we obtain the following theorem.

Theorem 36 The scheme above EKEM is a semantically secure encryption scheme.

5.4 Concrete Parameters

Our goal here is to instantiate Theorem 36 with concrete parameters. Here, we exhibit two sets of
parameters (for proven security levels 280 and 2128) based on a conservative estimate of the hardness
of MQ systems (i.e., assuming the general applicability of sparse matrix solvers in XL [YCBC07]),
and no particular effort in optimization.

Our security level aims for time 280, and ε = 2−10, i.e., no adversary within running time 280

can distinguish two ciphertexts with advantage better than 2−10. Since our construction uses the
KEM mechanism, we need parameters for (1) (S, Sth(~x)) to be a PRG some length L, and (2) E to
be a semantically secure bit-encryption scheme. It follows from a standard argument that the KEM
security achieves this level (with a slight loss) once both the underlying PRG and the encryption
scheme achieve this level of security.

First we analyze the security of the PRG (S, Sth(~x)) by calculating the concrete parameters of
Theorem 33. Suppose there exists an adversary A running in time T with advantage ε that can
distinguish it from random, then by the analysis of Theorem 33, there is an adversary B running in
time T ′ = T +m ·n2 · log2 q with advantage ε′ = ε/t (recall that t = dL/(m−n)e) that distinguishes
(S, S(~x)) from (S,Um). Then by Theorem 22, we know that there exists an adversary C running
in time T ′′ = 128 · |Hβ|2 · (n2/ε′2) ·T ′ with probability ε′′ = ε′/4q that solves the MQ hard problem.
(Our choice of q is large enough for Theorem 23 such that we can apply this bound for ε′′.)

Then we analyze the security of the encryption scheme. The encryption scheme needs to encrypt
n · log q bits. The security follows from the indistinguishability of (S, S(~x)) ≈c (S,Um). That is,
suppose there is an adversary running in time T with advantage ε that breaks the n · log q-bit
encryption scheme, by a union bound argument, the adversary can break the one-bit version in
time (almost) T with advantage ε′ = ε/n · log q. Then by Theorem 22, there exists an adversary B
running in time T ′ = 128 · |Hβ|2 ·n2/ε′2 ·T with probability ε′/4q that solves the MQ hard problem.

Now we are ready to set the parameters for the (bit) encryption scheme. Recall we need the
conditions:

1. k · α · n(2+λ) ·m · β2 ≤ q/4.

2. m · log(2nλ + 1) ≥ (n+ 1) · log q + 2k.

3. n,m, q, α, β satisfy the condition in the MQ assumption such that MQ(n,m, q,Φα, Hβ) is
hard to solve.
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Here we consider two sets of parameters of the MQ system:
Case k n m α β q Hardness (T , ν)

1 12 200 400 10 2 18031317546972632788519 ≈ 274 2156, 2−100

2 12 256 512 10 2 52324402795762678724873 ≈ 276 2205, 2−104

It is not hard to verify that the first two conditions of the encryption scheme are met. We
estimate the hardness using XL with a sparse matrix solver, with the complexity evaluated as in
[YCBC07]. We forgo more advanced Gröbner bases method such as F5 because they have the same
asymptotic behavior but much larger memory footprint, which we believe to be critical for large
enough problem sizes. Here a hardness of T, ν means: no solver running in time less than T can
solve the system with probability better than ν.

Then we are ready to analyze the security of the bit-encryption scheme.

• We claim that the security of the first case is 282, 2−11. That is no adversary running in time
282 can distinguish two ciphertexts with advantage better than 2−11. Suppose not, then there
exists a solver that solves the MQ system running in time (128 · |Hβ|2 · n2/ε′2) · 282 ≈ 2156

(where ε′ = ε/n log q) with probability better than 2−11/4q ≈ 2−87. This contradicts the
hardness estimation.

• We claim that the security of the second case is 2130, 2−11. That is no adversary running in
time 2130 can distinguish two ciphertexts with advantage better than 2−11. Suppose not, then
there exists a solver that solves the MQ system running in time (128·|Hβ|2 ·n2/ε′2)·2130 ≈ 2205

(where ε′ = ε/n log q) with probability better than 2−11/4q ≈ 2−89. This contradicts the
hardness estimation.

Now we are ready to hardness of the PRG for the two cases. We consider the block length
L = 220 (1 Mb).

• We claim that the security of the first case is 285, 2−11. That is no adversary running in
time 285 can distinguish the output of the PRG from the uniform distribution with advantage
better than 2−11. Suppose not, then there exists a solver that solves the MQ system running
in time (128 · |Hβ|2 · n2/ε′2) · 285 ≈ 2156 (where ε′ = ε/t, t = L/(m − n)) with probability
better than 2−11/4tq ≈ 2−100. This contradicts the hardness estimation.

• We claim that the security of the second case is 2134, 2−11. That is no adversary running in
time 2134 can distinguish the output of the PRG from the uniform distribution with advantage
better than 2−11. Suppose not, then there exists a solver that solves the MQ system running
in time (128 · |Hβ|2 · n2/ε′2) · 2134 ≈ 2205 (where ε′ = ε/t, t = L/(m − n)) with probability
better than 2−11/4tq ≈ 2−101. This contradicts the hardness estimation.

Thus, by a union bound argument, we are able to achieve the following table:
Case Hardness of MQ Security of Enc Security of PRG Security of KEM

1 2156, 2−100 287, 2−11 285, 2−11 285, 2−10

2 2205, 2−104 2130, 2−11 2134, 2−11 2130, 2−10

We remark the tuple (T, ε) in each cell means for any adversary running in time T has advantage
(or success probability) less than ε.
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6 Empirical Studies

In this section, we present our empirical results to confirm the hardness of the assumption in
Definition 9, which we restate in the following.

Definition 37 (MQ Hardness Assumption (restated)) Let k be the security parameter. For
every constant c > 1 ∈ N, every efficiently computable and polynomially bounded n,m, q : N → N,
α : N → [−q/2, q/2] and every 0 < β ≤ [q/2] such that (1) m = cn, (2) q is prime, (3) α = O(1),
let Φα be the distribution of m × n × n identical independent discrete Gaussian distribution Dα’s
with mean 0, standard deviation α, namely, each Dα samples z ← N(0, α2) (normal distribution
with mean 0, and standard deviation α), and then outputs bze (mod q), and let Hβ = {−β,−β +
1 . . . , β − 1, β}.

Then the problem MQ(n,m, q,Φα, Hβ) is hard to solve.

We know that MQ(n,m, q, U,Fq) is basically the standard MQ problem which most people
believe to be hard (cf. [BGP06]). We make the following observations about the hardness of the
problem as we make Φα a discrete Gaussian and restrict the input variables to a small Hβ.

The effect of restricting the input We consider H1 and H2 specifically because we used β = 2
as our choice of concrete parameters. Also, the problem for β = 1 is believed to be the easiest one,
so if the easiest one is hard, then all the other problems with larger β’s are hard as well.

Fixing all inputs to H1 or H2, which makes xj ∈ {±1, 0} (or resp. xj ∈ {±2,±1, 0}) is exactly
the same as adding equations x3

j = xj (resp. xj(x
2
j−1)(x2

j−4) = 0) for every j to the system. When
we solve a system via Gröbner bases methods (XL or F4/F5), these “extra” equations eliminate
all monomials with any of the exponents 3 (resp. 5) or above. This also happens when we solve a
random system in a small field such as GF(3) (or GF(5)), where the Frobenius equations x3

j = xj
(resp. x5

j = xj)
8 similarly cuts down the number of monomials.

Intuitively, since Gröbner bases methods involve linearization and elimination of monomials,
fewer monomials means less difficult to solve. [This is in fact why solving a random system of a
given size is easier for smaller fields.]

We observe that solving a quadratic system with the variables restricted to H1 (or resp. H2),
is similar to solving a system of the same size over a smaller field such as F3 (resp. F5). They
take almost the same number of arithmetic operations (multiplications). We remark that the total
complexity depends on the complexity of the multiplication, which is about poly(log q), where q is
the field size. For small fields, the difference is not significant.

In our experiments, we test the hardness of solving random systems over F3,F5. We observe
that solving systems in these small fields is also hard, and thus we can conclude that solving systems
in large field with restricted inputs is also hard.

The effect of the Gaussian Coefficients We also ran experiments where the quadratic coef-
ficients sampled as discrete normals for a wide spread of standard deviations α. We noted that
for α as little as only 1/4 (i.e., only about 4.5% of the coefficients are non-zero, and most of the
remainder are ±1), and fixing the input to {±1, 0}, solving the system via a Gröbner bases method
is still as difficult or more so than solving the same-sized system over F3.

8This equation is equivalent to xj(x
2
j − 1)(x2j − 4) = 0 in the field F5
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The above is expected given that [LLY08] already noted empirically that even if we sample the
quadratic coefficients of the instance S in a biased fashion, for example defined to be sparse, solving
the problem is still almost equally hard as long as the system does not “get too sparse”.

Alternatives to Gröbner Bases We should note that while there are some methods such as
SAT-solvers which does well in solving certain types of equations, these all have one or more of the
following drawbacks:

• Some are restricted to GF(2) or perhaps by extension small binary fields.

• Some are restricted to heavily cliqued systems, where each equation does not contain most of
the variables.

• Some are restricted to very sparse systems where the number of terms are linear or sub-linear
to the number of variables.

• Some are restricted to very overdetermined systems.

Therefore, it should not be surprising that we do not find anything in the literature which seems
to offer any particular advantage against our chosen MQ systems.

Operating Degree in Gröbner Bases Methods and Hardness Given the best way of solving
our special MQ problems still seems to be Gröbner bases, we note that the difficulty to solve a
system of equations can often gauged by one single standard metric, the operating degree D.

The running time of a modern Gröbner bases method at degree D is bounded by (T (D,n))ω

where ω is the order of matrix multiplication and T is the number of monomials which is equal
to
(
n+D
D

)
for large fields and

(
n
D

)
for q = 2. Typically, Dreg is asymptotically linear in n [BFS04,

BFSY05, YCC04], which means that T (D,n) will be singly exponential in n. This is consistent
with the impression that solving a system of equations is hard.

In the following we describe the experiments we ran to validate our observations above and our
contention that MQ(n,m, q,Φα, Hβ) is in fact hard.

Effects of Guessing and Probabilistic Solution A typical way of solving MQ-type problems
is to fix (guess at) some of the variables and then solve the rest via XL or F4/F5.

We note here that for most parameters within the range discussed in this paper, such Fixing
before solving does not result in a decrease in total workload. This point was mentioned before (e.g.,
in [YCC04]) that for any q and ω, one should guess at variables until the ratio m/n asymptotically
reaches an optimal point which depends only on q and ω, after no further guessing can decrease
the total amount of work done. This limit is typically already exceeded for ω = 2 + o(1) (i.e., XL
with Wiedemann) and m/n ≥ 2.

The above lemma relies implicitly on the fact that if it should not be possible to demonstrate
lack of solutions of a system in a substantially shorter time than it is to solve a similar system
with a solution. We also verify this empirically by running XL and F4/F5 on systems similar to
those we are interested, i.e., there would be n variables, m = cn equations where c is between 1.5
and 3, the equations have their quadratic coefficients in discrete normal distributions, and add the
equation x3

j = xj or xj(x
2
j − 1)(x2

j − 4) = 0 for every i. The only difference is that these extra test
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systems do not have solutions. We verify that MAGMA’s F4 does take longer to terminate when
the system is self-contradictory than when it has solution.

Given all the above, if we assume that XL with a sparse solver is essentially the best way to
solve MQ, then the minimum time T in which we can solve a system with probability ν = q−k,
can be evaluated by the complexity of XL after we guess at k variables. This explains how we
computed the “hardness (T, ν) in Sec. 5.4.

Description of Experimentation To evaluate the hardness of the problem, we use the best-
known and commercially available system-solver to our knowledge, which is the F4 implementation
in MAGMA-2.17-7, as produced by University of Sydney. The experiments were run on AMD
Opteron servers at 2.1GHz, and Intel Xeon CPU E7-7550 at 2.0GHz with 256 GHz each. Each
instance was sampled at least 3 times and averaged.

Let U denote the uniform distribution over quadratic coefficients. Since MQ(n,m, q, U,Fnq ) is
more well-studied in the literature since [BGP06], and is broadly believed as a hard problem, it is
a good reference with which the new assumption compares. We ran the following tests over many
different instances:

1. For simplicity, we set n = k, m/n = const. The ratio is set to 2 and 2.5, then we run the
solver on MQ(n,m, q,Φα, Hβ) for many different (n, q, α, β)’s.

2. We also run for comparison running times and memory use the following:

• MQ(n,m, q, U,Fq), where U denotes the uniform distribution over the quadratic terms,
and the input ~x comes from Fnq .

• MQ(n,m, q, U ′,Fq), where U ′ denotes m random quadratics with coefficients in Gaussian
distribution Φα, plus n random equations of degree 2β + 1 (simulating the restriction to
Hβ), and the input ~x comes from Fnq .

• MQ(n,m, 2β + 1, U,F2β+1), where we simply restrict the variables to a much smaller
field with 2β + 1 elements (which is legal for β = 1, 2, 3 since 2β + 1’s are primes for
these β’s ).

From our experiment results, we observe the following:

• For fixed β = 1, a fixed q, m = Θ(n), the time and space complexity of solving the system
MQ(n,m, q, U ′(Φα), Hβ) is larger than those of MQ(n,m, 2β + 1, U,F2β+1), which grow ex-
ponentially with n. It is always smaller than those of MQ(n,m, q, U,Fq), which also grow
exponentially. These are all in line with expectations.

• As expected, β = 1 is by far the simplest case, since it allows the substitutions x3
i = xi and

everything becomes much easier. In fact as β increases above 1, the running time quickly gets
very close to that of MQ(n,m, q, U,Fq) (a system with no restrictions on ~x).

• The complexity is almost indifferent to α. [LLY08] mentioned a similar phenomenon: As long
as there is enough variation such that enough of the coefficients are non-zero, the complexity
seems to be exponential in n for fixed m/n.
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• For different q’s, the complexities grow when q becomes significantly larger. This is not
surprising since the arithmetic operations take more time when q grows, and in particular
the dependency is polynomial in log q. In fact, the algorithm that MAGMA solves equations
is the same for any input finite field, so we can expect the numbers of multiplications are
roughly the same. Thus, the complexity for different q’s mainly depends on the complexity
of its fundamental operations. Our test cases for different q’s confirm this observation.

In our assumption, we assume the hardness up to some super-polynomial (i.e. against kω(1)

adversaries with advantages up to ngl(k)). The above observations suggest that the hardness of
MQ(n,m, q, U ′, Hβ) depends on n mostly and in an exponential way. In our parameterization, we
let n = poly(k), and thus the hardness also depends on k in an exponential way. This give a direct
justification of the hardness of the assumption, and moreover, the MQ problems may be even
harder than we’ve assumed; in the first item, we also compares our assumption with a believed
hard problem, and shows that the problem in our assumption is not easier. This gives another
confirmation.

6.1 Data

In this section, we present some of our data. All the time units are second(s), and memory units
are Megabytes (Mb). We attach several sample of our data here with β = 1, 2 and m/n = 2, 2.5,
and remark that all the others have similar natures. Then we also present comparison tables
between different cases. In particular, the tables here show that the complexities of all cases are
exponential. In addition, Table 4 (reps. Table 5) compares all instances to MQ(n,m, 3, U,F3)
(reps. MQ(n,m, 5, U,F5)) in m = 2n, which is the easiest one in our intuition but still has an
exponential behavior. Table 9 (reps. Table 10) compares all instances to MQ(n,m, 3, U,F3) (reps.
MQ(n,m, 5, U,F5)) also shows the same fact in the case m = 2.5n. This gives evidence of the
hardness for other cases. At the last part of the experimental result, according to Table 11, it takes
no advantages, or even more time (Table 12), to calculate a system without solutions. This means
that to guess some value of variables randomly also costs much in exchange.
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Figure 1: Trends of time of Case A, where m = 2n with F3 and Case B, with variables in {−1, 0, 1}.

Figure 2: Trends of time of Case A where m = 2n with F5 and Case C with variables in
{−2,−1, 0, 1, 2}.
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q F3 F5 F257

n Deg Time Mem Deg Time Mem Deg Time Mem

10 4 0.03 9.69 6 0.05 10.75 4 0.04 10.72

11 4 0.08 10.78 6 0.10 10.78 4 0.09 10.78

12 4 0.15 10.84 6 0.20 11.09 4 0.20 10.84

13 4 0.31 12.02 6 0.39 12.30 4 0.42 11.97

14 4 0.63 13.07 6 0.84 13.94 4 0.92 14.23

15 4 1.23 14.75 6 2.41 16.02 4 2.76 16.12

16 4 3.90 17.19 6 19.47 48.59 5 22.06 42.41

17 4 6.18 19.73 6 47.38 74.30 5 55.36 68.91

18 5 70.19 70.87 6 114.30 115.94 5 134.08 114.84

19 5 165.26 117.55 6 258.72 183.94 5 304.97 188.31

20 5 377.81 184.18 6 544.25 284.43 5 630.83 306.53

21 5 818.89 294.13 6 1177.47 438.94 5 1388.28 509.28

22 5 1665.64 468.80 6 2510.49 693.17 5 4484.46 790.72

23 5 3296.92 758.48 6 7401.08 1036.17 5 8818.85 1231.31

24 5 6129.03 1154.84 6 68628.94 6115.76 6 82959.59 8752.08

Table 1: m = 2n, Case A: Uniform quadratic coefficients in different fields.
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q = 257:
α 0.33 0.5 1

n Deg Time Mem Deg Time Mem Deg Time Mem

10 4 0.04 10.73 4 0.04 10.72 4 0.04 10.72

11 4 0.08 10.79 4 0.09 10.78 4 0.09 10.78

12 4 0.17 10.87 4 0.18 10.84 4 0.19 10.84

13 4 0.39 12.01 4 0.39 11.97 4 0.40 11.97

14 4 0.81 13.45 4 0.79 13.30 4 0.81 13.30

15 4 1.57 15.87 4 1.58 15.84 4 1.61 15.84

16 4 5.16 19.25 4 5.18 19.25 4 5.29 19.25

17 4 8.64 23.93 4 8.50 23.88 4 8.62 23.88

18 5 96.43 96.28 5 96.25 96.62 5 97.21 96.62

19 5 227.97 163.66 5 227.02 164.15 5 229.34 164.28

20 5 529.64 264.56 5 523.05 266.69 5 526.53 266.63

21 5 1098.82 449.59 5 1113.43 451.03 5 1118.36 451.99

22 5 2214.86 660.96 5 2240.20 663.56 5 2251.87 664.66

q ' n3:
α 0.33 0.5 1

n Deg Time Mem Deg Time Mem Deg Time Mem

10 4 0.04 10.73 4 0.04 10.72 4 0.04 10.72

11 4 0.07 10.79 4 0.09 10.78 4 0.10 10.78

12 4 0.17 10.88 4 0.19 10.84 4 0.19 10.84

13 4 0.37 11.98 4 0.39 11.97 4 0.40 11.97

14 4 0.76 13.41 4 0.79 13.30 4 0.81 13.30

15 4 1.56 15.81 4 1.58 15.84 4 1.61 15.84

16 4 5.21 19.25 4 5.22 19.25 4 5.31 19.25

17 4 8.50 23.91 4 8.51 23.88 4 8.63 23.88

18 5 95.89 95.69 5 96.36 96.62 5 97.52 96.97

19 5 227.84 163.37 5 227.77 164.15 5 230.02 164.28

20 5 525.33 264.68 5 525.47 266.63 5 528.16 267.53

21 5 1099.79 449.93 5 1117.60 451.99 5 1121.32 452.75

22 5 2224.06 662.26 5 2249.15 664.66 5 2257.76 665.84

q ' n8:
α 0.33 0.5 1

n Deg Time Mem Deg Time Mem Deg Time Mem

10 4 0.23 10.56 4 0.29 10.56 4 0.31 10.56

11 4 0.72 10.56 4 0.84 10.56 4 0.87 10.56

12 4 1.94 10.56 4 2.17 11.59 4 2.23 11.59

13 4 4.77 11.75 4 5.19 11.75 4 5.31 11.80

14 4 32.03 18.93 4 30.67 19.33 4 30.66 19.27

15 4 84.80 35.41 4 80.79 39.12 4 80.83 39.06

16 4 351.28 67.17 4 309.33 67.12 4 311.81 67.12

17 4 713.00 115.78 4 580.91 115.56 4 586.40 115.75

18 5 12146.62 229.81 5 9036.60 230.56 5 9055.74 230.81

19 5 30324.51 455.72 5 20520.21 456.75 5 20667.89 456.75

20 5 78325.85 922.58 5 63441.66 923.93 5 59827.03 924.56

21 5 154844.15 1681.13 5 153899.89 1682.44 5 154433.97 1683.81

22 5 512341.23 3180.26 5 499117.57 3182.25 5 505281.53 3184.93

Table 2: m = 2n, Case B: Solution ∈ {1,−1, 0} and different q’s with quadratic coefficients in
different Gaussian distribution.
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n Deg Time Mem

10 6 0.05 10.75

11 6 0.11 10.78

12 6 0.23 11.09

13 6 0.45 12.25

14 6 0.97 14.97

15 6 2.83 16.59

16 6 23.09 54.83

17 6 56.54 86.66

18 6 136.48 138.97

19 6 309.67 219.69

20 6 642.78 350.10

21 6 1405.60 564.16

22 6 3041.41 855.94

23 6 8944.66 1315.91

24 6 84963.55 8766.97

Table 3: m = 2n, Case C: Solution ∈ {2,−2, 1,−1, 0} in Fq, q ' n3 with quadratic coefficients in
Gaussian distribution α = 1.

q 3 257 ' n3 ' n8

n Time Time Ratio Time Ratio Time Ratio

10 0.03 0.04 1.33 0.04 1.33 0.31 10.33

11 0.08 0.09 1.13 0.10 1.25 0.87 10.88

12 0.15 0.19 1.27 0.19 1.27 2.23 14.87

13 0.31 0.40 1.29 0.40 1.29 5.31 17.13

14 0.63 0.81 1.29 0.81 1.29 30.66 48.67

15 1.23 1.61 1.31 1.61 1.31 80.83 65.72

16 3.90 5.29 1.36 5.31 1.36 311.81 79.95

17 6.18 8.62 1.39 8.63 1.40 586.40 94.89

18 70.19 97.21 1.38 97.52 1.39 9,055.74 129.02

19 165.26 229.34 1.39 230.02 1.39 20,667.89 125.06

20 377.81 526.53 1.39 528.16 1.40 59,827.03 158.35

21 818.89 1,118.36 1.37 1,121.32 1.37 154,433.97 188.59

22 1,665.64 2,251.87 1.35 2,257.76 1.36 505,281.53 303.36

Table 4: Comparison with Case A and Case B (α = 1) in m = 2n. The ratio is with respect to F3.
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q 5 ' n3

n Time Time Ratio

10 0.05 0.05 1.00

11 0.10 0.11 1.10

12 0.20 0.23 1.15

13 0.39 0.45 1.15

14 0.84 0.97 1.15

15 2.41 2.83 1.17

16 19.47 23.09 1.19

17 47.38 56.54 1.19

18 114.30 136.48 1.19

19 258.72 309.67 1.20

20 544.25 642.78 1.18

21 1,177.47 1,405.60 1.19

22 2,510.49 3,041.41 1.21

23 7,401.08 8,944.66 1.21

24 68,628.94 84,963.55 1.24

Table 5: Comparison with Case A and Case C in m = 2n. The ratio is with respect to F5.

q F3 F5 F257

n Deg Time Mem Deg Time Mem Deg Time Mem

10 4 0.01 9.53 6 0.03 10.72 3 0.02 9.53

12 4 0.03 9.53 6 0.12 11.09 4 0.10 10.81

14 4 0.32 12.39 6 0.39 13.00 4 0.40 13.47

16 4 1.11 15.02 6 1.43 16.94 4 1.49 17.28

18 4 3.85 21.12 6 4.68 26.88 4 5.14 26.25

20 4 11.88 35.00 6 23.51 44.94 4 27.49 46.60

22 4 53.65 61.25 5 1177.84 359.00 5 463.27 349.19

24 5 1277.55 571.21 6 5253.19 907.68 5 2289.08 1044.09

26 5 5458.47 1477.68 6 7798.39 2008.94 5 8898.08 2352.13

28 5 19398.69 3219.76 6 25802.27 4806.74 5 29501.02 4966.22

30 5 59976.91 6649.03 6 83591.07 11500.36 5 96003.79 12057.78

Table 6: m = 2.5n, Case A: Uniform quadratic coefficients in different fields.
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q = 257:
α 0.33 0.5 1

n Deg Time Mem Deg Time Mem Deg Time Mem

10 4 0.01 9.53 4 0.01 9.53 4 0.01 9.53

12 4 0.03 10.56 4 0.03 10.56 4 0.03 10.56

14 4 0.36 12.50 4 0.38 12.47 4 0.38 13.06

16 4 1.35 17.00 4 1.40 17.00 4 1.48 17.00

18 4 4.75 25.26 4 4.84 26.28 4 4.90 26.28

20 4 15.02 44.28 4 15.30 44.46 4 15.42 45.31

22 4 72.20 82.91 4 73.67 82.91 4 74.03 82.91

q ' n3:
α 0.33 0.5 1

n Deg Time Mem Deg Time Mem Deg Time Mem

10 4 0.01 9.53 4 0.02 9.53 3 0.01 9.53

12 4 0.03 10.56 4 0.04 10.56 4 0.03 10.56

14 4 0.36 12.47 4 0.37 12.47 4 0.39 13.12

16 4 1.34 17.01 4 1.39 17.00 4 1.49 17.00

18 4 4.73 25.28 4 4.88 26.28 4 4.92 26.28

20 4 15.33 44.42 4 15.41 44.63 4 15.44 45.31

22 4 72.43 82.91 4 73.72 82.91 4 74.29 83.94

q ' n8:
α 0.33 0.5 1

n Deg Time Mem Deg Time Mem Deg Time Mem

10 4 0.02 9.53 4 0.02 9.53 4 0.02 9.53

12 4 0.07 9.53 4 0.09 10.22 4 0.09 10.56

14 4 18.83 15.45 4 19.02 14.72 4 20.01 14.64

16 4 131.31 31.91 4 134.38 32.78 4 134.39 32.94

18 4 639.94 93.37 4 642.45 93.69 4 640.00 94.38

20 4 2479.73 266.88 4 2540.31 267.57 4 2536.36 267.91

22 4 13572.34 625.22 4 13570.33 626.25 4 13544.13 627.62

Table 7: m = 2.5n, Case B: Solution ∈ {1,−1, 0} and different q’s with quadratic coefficients in
different Gaussian distribution.
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n Deg Time Mem

10 6 0.02 10.72

12 6 0.10 11.09

14 5 0.43 14.03

16 6 1.56 19.03

18 6 5.26 28.97

20 6 27.02 51.12

22 6 1612.33 431.87

24 6 2341.27 1182.21

26 6 9142.07 2580.98

28 6 30187.27 5365.15

30 6 97189.53 12671.21

Table 8: m = 2.5n, Case C: Solution ∈ {2,−2, 1,−1, 0} in Fq, q ' n3 with quadratic coefficients in
Gaussian distribution α = 1.

q 3 257 ' n3 ' n8

n Time Time Ratio Time Ratio Time Ratio

10 0.01 0.01 1.00 0.01 1.00 0.02 2.00

12 0.03 0.03 1.00 0.03 1.00 0.09 3.00

14 0.32 0.38 1.19 0.39 1.22 20.01 62.53

16 1.11 1.48 1.33 1.49 1.34 134.39 121.07

18 3.85 4.90 1.27 4.92 1.28 640.00 166.23

20 11.88 15.42 1.30 15.44 1.30 2,536.36 213.50

22 53.65 74.03 1.38 74.29 1.38 13,544.13 252.45

Table 9: Comparison with Case A and Case B (α = 1) in m = 2.5n. The ratio is with respect to
F3.

q 5 ' n3

n Time Time Ratio

10 0.03 0.02 0.67

12 0.12 0.10 0.83

14 0.39 0.43 1.10

16 1.43 1.56 1.09

18 4.68 5.26 1.12

20 23.51 27.02 1.15

22 1,177.84 1,612.33 1.37

24 5,253.19 2,341.27 0.45

26 7,798.39 9,142.07 1.17

28 25,802.27 30,187.27 1.17

30 83,591.07 97,189.53 1.16

Table 10: Comparison with Case A and Case C in m = 2.5n. The ratio is with respect to F5.
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q F3 F5 F257

n w/ solution w/o solution w/ solution w/o solution w/ solution w/o solution

10 0.03 0.04 0.05 0.03 0.04 0.04

11 0.08 0.07 0.10 0.08 0.09 0.09

12 0.15 0.15 0.20 0.18 0.20 0.20

13 0.31 0.30 0.39 0.37 0.42 0.42

14 0.63 0.63 0.84 0.80 0.92 0.93

15 1.23 1.24 2.41 2.34 2.76 2.75

16 3.90 3.88 19.47 19.34 22.06 22.06

17 6.18 6.16 47.38 47.54 55.36 55.34

18 70.19 70.07 114.30 113.94 134.08 133.82

19 165.26 164.66 258.72 258.75 304.97 304.84

20 377.81 378.12 544.25 543.29 630.83 630.96

21 818.89 823.16 1177.47 1180.77 1388.28 1402.32

22 1665.64 1660.39 2510.49 2542.00 4484.46 4509.49

23 3296.92 3333.50 7401.08 7352.91 8818.85 8785.89

24 6129.03 6121.40 68628.94 68666.17 82959.59 82938.45

Table 11: Comparison of Time(s) between system with and without solutions in Case A.

q F257 q ' n3 q ' n8

n w/ solution w/o solution w/ solution w/o solution w/ solution w/o solution

10 0.04 0.04 0.04 0.04 0.31 0.34

11 0.09 0.09 0.10 0.09 0.87 0.94

12 0.19 0.20 0.19 0.20 2.23 2.45

13 0.40 0.41 0.40 0.42 5.31 5.60

14 0.81 0.92 0.81 0.92 30.66 35.22

15 1.61 2.74 1.61 2.74 80.83 143.68

16 5.29 21.95 5.31 22.04 311.81 1675.94

17 8.62 55.14 8.63 55.31 586.40 4577.53

18 97.21 133.48 97.52 133.83 9055.74 11817.38

19 229.34 304.45 230.02 305.09 20667.89 31752.26

20 526.53 630.09 528.16 632.38 59827.03 82175.13

21 1118.36 1356.02 1121.32 1367.34 154433.97 207822.16

22 2251.87 4387.78 2257.76 4403.85 505281.53 1145428.86

Table 12: Comparison of Time(s) between system with and without solutions in Case B(α = 1).
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[AFI+04] Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe, and Makoto Sugita. Com-
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