
Efficient Skill Learning using Abstraction Selection

George Konidaris and Andrew Barto
Autonomous Learning Laboratory
Department of Computer Science

University of Massachusetts Amherst
{gdk, barto}@cs.umass.edu

Abstract
We present an algorithm for selecting an appropri-
ate abstraction when learning a new skill. We show
empirically that it can consistently select an appro-
priate abstraction using very little sample data, and
that it significantly improves skill learning perfor-
mance in a reasonably large real-valued reinforce-
ment learning domain.

1 Introduction
Much recent research in reinforcement learning has focused
on hierarchical reinforcement learning [Barto and Mahade-
van, 2003], which aims to create reinforcement learning
agents that use hierarchies of high level skills; one major goal
of such research is the autonomous discovery of such skill hi-
erarchies. Most existing research in skill discovery for hier-
archical reinforcement learning involves small discrete state
spaces, where the conjectured benefits of skill hierarchies are
to focus exploration and produce transferrable skills that im-
prove performance.

One class of reinforcement learning problems which re-
mains difficult to solve is that of high-dimensional, contin-
uous domains. A key approach to solving such hard prob-
lems is the use of an abstraction that reduces the number
of state variables used to solve the problem. However, it is
often difficult to find a single abstraction that applies to the
whole problem. Although such a problem might be intrinsi-
cally high-dimensional and therefore hard to solve monolithi-
cally, it may at the same time consist of several subproblems,
each of which is much easier and can be solved using only a
small set of state variables. Thus, a complex human task such
as driving to work, that seems infeasible to learn as a single
overall problem, might be broken into a series of small sub-
tasks (unlocking the car, starting the car, navigating to work,
parking, walking inside, etc.), each of which is manageable
on its own. We may therefore be able to gain an additional
advantage through the use of skill hierarchies by breaking
a large problem down into a series of subproblems, each of
which can be solved using its own abstraction.

In this paper, we propose that if an agent has a library of
abstractions available to it, then when it acquires a new skill
it can select one from among them, and apply it to aid in
skill learning. We present an abstraction selection algorithm,

show empirically that it selects an appropriate abstraction us-
ing very little sample data, and that it significantly improves
skill learning performance in the Continuous Playroom, a rea-
sonably large real-valued reinforcement learning domain.

2 Background
2.1 Reinforcement Learning in Continuous

Domains
Reinforcement learning algorithms usually (although not nec-
essarily, e.g. policy gradient algorithms, model based meth-
ods, etc.) learn by constructing a value function V map-
ping states of a task to return (expected discounted future re-
ward from a state). In many real-world applications, states
are described by vectors of real-valued features, and conse-
quently we must approximate a value function defined over
real-valued inputs. This creates two problems. First, we must
find a way to compactly represent a value function defined on
a multi-dimensional real-valued feature space. Second, that
representation must facilitate generalization.

The most common approximation scheme is linear func-
tion approximation [Sutton and Barto, 1998] which approxi-
mates V by a weighted sum of basis functions Φ:

V̄ (s) = w ·Φ(s) =
n∑

i=1

wiφi(s), (1)

where φi is the ith basis function. Thus learning entails ob-
taining a weight vector w such that the weighted sum in
Equation 1 accurately approximates V . Since V̄ is linear in
w, when this approximation is not degenerate there is exactly
one such optimal w; however, we may represent complex
value functions this way because each basis function φi may
be arbitrarily complex; in this work we use the Fourier Basis
[Konidaris and Osentoski, 2008].

The most common family of reinforcement learning meth-
ods, and the methods used in this work, are temporal differ-
ence methods [Sutton and Barto, 1998]. Temporal difference
methods learn a value function (and hence a policy) online,
through direct interaction with the environment.

2.2 The Options Framework
In hierarchical reinforcement learning, apart from a given set
of primitive actions an agent can also acquire and use higher-

level macro actions built out of primitive actions. In this pa-
per we adopt the options framework [Sutton et al., 1999], a
hierarchical reinforcement learning framework that provides
methods for learning and planning by adding temporally ex-
tended actions (called options) in the standard reinforcement
learning framework. An option o consists of three functions:

πo : (s, a) 7→ [0, 1]
Io : s 7→ {0, 1}
ζo : s 7→ [0, 1],

where s ∈ S is a state, a ∈ A is an action, πo is the option
policy (a probability distribution over actions at each state in
which o is defined), Io is the initiation set indicator function,
which is 1 for states where the option can be executed and
0 elsewhere, and ζo is the termination condition, giving the
probability of the option terminating in each state [Sutton et
al., 1999]. Algorithms for creating new options must include
methods for determining when to create an option or expand
its initiation set, how to define its termination condition, and
how to learn its policy. Policy learning is usually by an off-
policy reinforcement learning algorithm so that the agent can
update many options simultaneously after taking an action
[Sutton et al., 1998]. Creation and termination are usually
performed by the identification of subgoal states, with an op-
tion created to reach a goal state and to terminate when it does
so. The initiation set is then the set of states from which the
goal is reachable. Previous research has selected goal states
by a variety of methods, for example variable change fre-
quency [Hengst, 2002] and local graph partitioning [Şimşek
et al., 2005].

3 Abstraction Selection
Humans have many sensory inputs and degrees of freedom,
which viewed naively represent a very large state space. Al-
though such a state space seems too large for feasible learn-
ing, specific sensorimotor skills almost always involve a
small number of sensor features. One of the ways in which
we might draw inspiration from human learning is the extent
to which humans learning motor skills seem to ignore most
of the sensor and motor features in their environment.

In reinforcement learning, the use of a smaller set of vari-
ables to solve a large problem is modeled using the broad
notion of abstraction [Li et al., 2006]. For this work, we
consider an abstraction Mi to be a pair of functions (σi, τi),
where

σi : S → S′

is a mapping from the overall problem-specific state space S
to a smaller state space S′ (often simply a projection onto a
subspace spanned by a subset of the variables in S), and

τi : A→ A′

is a mapping from the full problem action spaceA to a smaller
action space A′ (often simply a subset of A). In addition,
we assume each abstraction has an associated vector of basis
functions Φi defined over S′ using which we can define value
functions.

Typically, a reinforcement learning agent tries to build a
single abstraction for the entire problem; however, in the hi-
erarchical reinforcement learning setting it may in principle

try to build as many abstractions as it has skills. An agent
that must solve many problems in its lifetime may thus ac-
cumulate a library of abstractions that it can later deploy to
solve new problems.

We propose that when an agent creates a new option it
should create it with an accompanying abstraction, and that
if it has a library of abstractions available it can select from
among them, refining the selected abstraction through experi-
ence if necessary. The agent can use the state-action samples
it experiences as it creates the option to decide which of the
available abstractions to use. We present an algorithm for ab-
straction selection in the following section.

3.1 Selecting an Abstraction
In the hierarchical reinforcement learning literature, an agent
creates an option to reach a particular state (or state region)
only after that region is first reached. Thus, we have a set of
sample interactions that ends at the new subgoal, and we may
consider it a sample trajectory for the option. Assuming the
trajectory has m steps, it consists of a sequence of m state-
action pairs and resulting rewards:

{(s1, a1, r1), (s2, a2, r2), . . . , (sm, am, rm)}.

Given a library of abstractions, we can apply each abstraction
to the sample trajectory and obtain:

{(si
1, a

i
1, r1), (si

2, a
i
2, r2), . . . , (si

m, a
i
m, rm)},

where (si
k, a

i
k, rk) = (σi(sk), τi(ak), rk) is a state-action-

reward tuple obtained from abstraction i describing the kth
state-action pair in the trajectory.

Abstraction Selection as Model Selection
If we are given the entire trajectory at once (or can store it all
in memory), we may compute Monte Carlo state-value sam-
ples (si, Ri) for each 1 ≤ i ≤ m, where Ri =

∑m
j=i rj , and

the problem reduces to model selection [Bishop, 2006], where
we select the best model (in our case, abstraction) for a re-
gression problem. A common model selection criterion is the
Bayesian Information Criterion (or BIC) [Schwarz, 1978],
which states that:

ln p(D|Mi) ≈ ln p(D|θMAP ,Mi)−
1
2
|Mi| lnm, (2)

where D is the data, Mi is abstraction i, p(D|θMAP ,Mi) is
the likelihood of D given the maximum a priori value func-
tion parameters θMAP for abstraction i, |Mi| is the number
of parameters in abstraction i and m is the sample size.

BIC has two important properties. First, it controls for dif-
ferent sized abstractions (through the second term in Equation
2) in a principled way. Second, if we wish we can use the re-
sults of Equation 2 and Bayes Rule to obtain a probability
that each abstraction is the correct one for a particular skill,
naturally incorporating prior beliefs the agent may have about
suitable abstractions and allowing for principled autonomous
decision making.

We must now select an appropriate statistical model for
the data; since we are using linear function approximation,
a linear regression model is a natural choice. In such mod-
els, it is typical to assume that the target variable has mean

w · Φi(s) for state s, where w is a weight vector parameter
and Φi is a set of basis functions (in our case those associated
with abstraction i), and variance β−1, which is assumed to be
the same for all samples. However, in the case of an MDP
Monte Carlo sample, all of the sample points do not have the
same variance; a sample point’s variance increases with the
length of the trajectory following it. For simplicity, we model
this increasing variance using a geometric series with factor
0 ≤ ρ ≤ 1. Thus, sample i in a trajectory of length m is
assumed to have variance (ρm−iβ)−1. This corresponds to
a weighted least squares regression model with sample i as-
signed weight ρm−i. The log likelihood of this model is:

ln p(D|Mi,w, β) = −β
2
ei +

m

2
(ln

β

2π
) +

m2 −m
4

ln ρ,
(3)

where β−1 is the variance, w is the function approximation
weight vector, and

ei =
m∑

j=1

ρ(m−j)[w · Φi(sj)−Rj]2, (4)

is the summed weighted squared error. Note that since max-
imizing Equation 3 with respect to w is equivalent to mini-
mizing the (weighted) value function error (Equation 4) the
resulting w vector can be used as an initial value function
parameter.

Since we wish to do selection with very little data if pos-
sible, we must avoid overfitting. We therefore regularize by
assuming a zero-mean Gaussian prior with precision α for
each element of w (this can be discarded if desired by setting
α = 0, which results in no regularization). The maximum a
posteriori (MAP) parameters are then:

β = e−1
i m

and w = (A+ ηI)−1b,
(5)

where

A =
∑m

j=1 ρ
(m−j)Φi(sj)ΦT

i (sj)
and b =

∑m
j=1 ρ

(m−j)RjΦi(sj),
(6)

with η = α(β−1). We can also rewrite ei as:

ei = wT Aw − 2w · b +Rc, (7)

with A and b defined as before, and Rc =
∑m

j=1 ρ
(m−j)R2

j .

Incremental Abstraction Selection
Thus far we have assumed that we are given the entire trajec-
tory at once (or can store it all in memory), and can thereby
compute the Monte Carlo return Ri for each sample (si, ri).
However, this is neither desirable nor necessary. From Equa-
tions 5 and 7, we see that in order to do selection incremen-
tally, we are only required to compute A,b andRc incremen-
tally in order to solve for the model parameters w and β and
weighted error ei, and thereby compute the BIC approxima-
tion to log likelihood (Equation 2, via Equation 3).

Following Boyan [1999], we can accomplish this by the in-
cremental (least-squares weighted TD(1)) algorithm given in
Figure 1. The algorithm is run simultaneously for each ab-
straction while the agent is interacting with the environment,

and then when the agent creates an option the algorithm com-
putes the associated log likelihood for each abstraction in one
step. The agent then selects the abstraction with the highest
log likelihood.

function Sensorimotor Abstraction Fit (i, ρ, η) :

1. Initialization:
Set A0,b0, z0, Rc and Rz to 0, g to 1

2. Iteratively handle incoming samples:

for each incoming sample (st, at, rt):

At = ρAt−1 + Φi(st)Φ
T
i (st)

bt = ρbt−1 + ρrtzt−1 + rtΦi(st)
zt = ρzt−1 + Φi(st)

Rc = ρRc + gr2t + ρrtRz
Rz = ρRz + 2grt
g = ρg + 1

3. Compute weights, error and variance:
(after m samples)
w = (Am + ηI)−1bm

e = wTAmw − 2w · bm +Rc
β = m

e

4. Compute log likelihood and BIC:
(quantities constant across abstractions ignored)
ll = −β

2
e+ m

2
lnβ

return ll - 1
2
|Φi| lnm

Figure 1: An incremental algorithm for computing the BIC
value of an abstraction i, using weight factor ρ and regular-
ization parameter η, given a successful sample trajectory.

More than one sample trajectory may be available, or may
be required to produce robust selection. Given p samples, the
algorithm can be modified to run steps 1 and 2 (initialization
and incoming sample processing) separately for each sample
trajectory, and then sum the resulting A, b and Rc variables.
Steps 3 and 4 (computing the parameters and returning the
BIC measure) using the summed variables would then per-
form a fit over all p trajectories simultaneously.

The algorithm usesO(q2i) memory,O(q2i) time at each step
and O(q3i) time at selection for every sensorimotor abstrac-
tion i using a function approximator with qi features. Since
we most likely wish for selection to be fast relative to learn-
ing, we can use a function approximator of the same type as
we use for learning but with fewer terms for selection, and
then upgrade it for learning. This additionally reduces the
sample complexity for successful selection, as we show in
the following section.

Once an abstraction has been selected, its weight vector
w is a vector of value function parameters obtained by a
weighted fit of the sample trajectory, and is thus hopefully
a good initial value function (and hence initial policy) from
which to begin learning.

4 Experiments
4.1 The Continuous Playroom
The Continuous Playroom is a real-valued version of the
Playroom domain [Singh et al., 2004]. It consists of an agent
with three effectors (an eye, a marker, and a hand), five ob-
jects (a red button, a green button, a light switch, a bell, a ball,
and a monkey), and two environmental variables (whether the
light is on, and whether the music is on). The agent is in 1x1
room, and may move any of its effectors 0.05 units in one
of the usual four directions. When both its eye and hand are
over an object it may additionally interact with it, but only
if the light is on (unless the object is the light switch). In-
teracting with the green button switches the music on, while
the red button switches the music off. The light switches tog-
gles the light. Finally, if the agent interacts with the ball and
its marker is over the bell, then the ball hits the bell. Hitting
the bell frightens the monkey if the light is on and the music
is on, and causes it to squeak, whereupon the agent receives
a reward of 100, 000 and the episode ends. All other actions
cause the agent to receive a reward of−1. At the beginning of
each episode the objects are arranged randomly in the room
so that they do not overlap.

Figure 2: An example Continuous Playroom.

The agent has 13 possible actions (3 effectors each with 4
actions, plus the interact action), and a full description of the
Playroom requires 18 state variables—x and y pairs for three
effectors and five objects (since we may omit the position of
the monkey) plus a variable each for the light and the music.
Since the domain is randomly re-arranged at the beginning of
each episode, the agent must learn the relationships between
its effectors and each object, rather than simply the absolute
location for its effectors. Moreover, the settings of the light
and music are crucial for decision making and must be used
in conjunction with object and effector positions. Thus, for
task learning we use 120 state variables—for each of the four
settings of the lights and music we use a set of 30 variables
representing the difference between each combination of ob-
ject and effector (∆x and ∆y for each object-effector pair, so
5 objects ×3 effectors ×2 differences = 30). These features
are used in an O(3) independent Fourier Basis (resulting in
480 basis functions per action), and learning is performed us-
ing Sarsa(λ) (α = 0.0025, γ = 1, λ = 0.9, ε = 0.01).

The Continuous Playroom is a good example of a domain
that should be easy—and appears to humans as easy—but is
made difficult by the large number of variables and interac-
tions between variables (e.g., between ∆x and ∆y values for
an object-effector pair) that cannot all be included in the over-
all task function approximator (an O(1) Fourier Basis over
120 variables that does not treat each variable as independent
has 2120 features). Thus, it is a domain in which options can
greatly improve performance, but only if those options are
themselves feasible to learn.

Originally, the playroom domain included options for mov-
ing each effector over each object [Singh et al., 2004]. In
this paper, we assume that these options must be learned ef-
ficiently, using only primitive actions, and that some given
option discovery method creates them for us when the agent
first encounters their goal state.

Abstraction Library and Option Learning
Since we know that the domain consists of objects and effec-
tors, we in addition form an abstraction library of 15 abstrac-
tions, one for each combination of object and effector. Each
abstraction consists of just two variables: ∆x and ∆y for the
object-effector pair. For learning we use a full O(7) Fourier
Basis (resulting in 64 basis functions per action) and Sarsa(λ)
(α = 0.0025, γ = 1, λ = 0.9, ε = 0.01). For option learn-
ing without an abstraction, we discard the lights and music
variables and learn using the 30 difference variables, using an
O(7) independent Fourier Basis (resulting in 240 basis func-
tions per action) and Sarsa(λ) (α = 0.001, γ = 1, λ = 0.9,
ε = 0.01). The learning rate and function approximation size
parameters were chosen for best performance in each case.
We use ρ = 0.99 and η = 0 for all experiments.

4.2 Results
The first two immediate questions that abstraction selection
raises are: does the quality of trajectory data matter?, and
how much sample data is required for selection to be accu-
rate? Figure 3 shows performance curves (accuracy vs. num-
ber of sample trajectories, averaged over 100 runs) for sample
trajectories obtained by an optimal hand-coded option (solid
lines) and by selecting actions randomly (dashed lines). Each
curve color corresponds to a Fourier Basis function approxi-
mator of different order. We chose random and optimal tra-
jectories because learning behavior (at least in the first few
episodes) will lie somewhere between these two, starting off
as near-random and moving towards optimal.

Figure 3 shows that both the quality of the trajectory data
and the function approximator size affect selection accuracy.
Better trajectory data leads to more accurate selection, al-
though the discrepancy is not dramatic. Lower order ap-
proximators (those with fewer terms) require fewer trajectory
samples to make an accurate selection, which is unsurprising
since they have fewer free parameters and thus require less
data to obtain a good fit. For an O(2) basis, approximately
9 trajectory samples are required in this domain to select the
appropriate abstraction perfectly.

The next important question is: how much of a perfor-
mance improvement does abstraction selection produce? Fig-
ure 4 shows a learning curve (averaged over 100 runs) for

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample Trajectories

P
ro

ba
bi

lit
y

of
 C

or
re

ct
 S

el
ec

tio
n

O(2) Given
O(4) Given
O(6) Given
O(2) Random
O(4) Random
O(6) Random
Chance

Figure 3: Selection accuracy for different orders of function
approximators, given varying numbers of sample trajectories.
Sample trajectories are either generated by a hand-coded op-
timal option policy (solid lines), or a random policy (dashed).

agents learning an option to place an effector over a target us-
ing all of the state variables compared to using the appropriate
abstraction. Agents that learn using an abstraction start bet-
ter, and are able to obtain better overall solutions. In addition,
Figure 4 shows a learning curve for agents that start off us-
ing the fit obtained from selection with 12 sample trajectories
(from either random or optimal action selection) and an O(2)
Fourier Basis, upgraded to O(7) for learning. These agents
start out better than learning from scratch, demonstrating the
benefits of the initial value function obtained by selection.
However, the quality of the trajectory data used for the fit sig-
nificantly impacts the resulting policy, with policies obtained
from fitting optimal sample trajectories performing much bet-
ter than those obtained from random sample trajectories.

5 Related Work
Existing reinforcement learning research on state space re-
duction takes one of two broad approaches. In state abstrac-
tion (surveyed by Li, Walsh and Littman [2006]), a large
state space is compressed by performing variable removal or
state aggregation while approximately preserving some de-
sirable property. However, without further information about
the state space we cannot examine the effects of abstraction
on the properties we are interested in—values or policies—
without an existing value function, and so these methods have
high computational and sample complexity.

The major alternative approach is to initially assume that
no states or state variables are relevant, and then introduce
perceptual distinctions [McCallum, 1996] by including them
when it becomes evident that they are necessary for learning
the skill. This requires a significant amount of data and com-
putation to determine which variable to introduce, and then
introduces them one at a time, which may require too much
experience to be practical for large continuous state spaces.

Rather than starting with all features and removing some,
or starting with none and adding one at a time, our method

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Episodes

S
te

ps

Abstraction
No Abstraction
Fit (Random)
Fit (Given)

Figure 4: Learning curves for an option with and without the
use of an abstraction, and with an abstraction using the ini-
tial value function fit obtained during random- and optimal-
trajectory samples and abstraction selection. A random policy
requires 2200 steps on average.

starts with a fixed number of potential abstractions and se-
lects one prior to learning. By thus bootstrapping learning,
the agent may be able to solve much larger problems, while at
the same time allowing for each skill to refine its abstraction
further if necessary. In addition, abstraction selection allows
the agent to leverage existing abstractions it has been given
or has already learned.

State abstraction and perceptual distinction methods are
usually applied monolithically to a single large problems.
However, some hierarchical reinforcement learning methods
make use of skill-specific abstractions. Most prominently, the
MAXQ hierarchical reinforcement learning formalism [Diet-
terich, 2000] assumes a hand-designed abstraction for each
level in the skill hierarchy. On the other end of the spectrum,
Jonsson and Barto [2001] have shown that each option can
learn its own abstraction from scratch in discrete domains
using a perceptual distinction method. However, in general
hierarchical reinforcement learning methods with abstraction
have been used only in relatively small discrete domains.

Another related method is work by van Seijen et al. [2007],
where an agent with multiple representations is augmented
with actions to switch between them. This fits neatly into the
reinforcement learning framework, but does not appear likely
to scale up to large numbers of representations since each new
representation adds a new action to every state.

6 Discussion and Conclusion
The benefits of acquired skill hierarchies have been well ex-
amined in the context of small discrete domains. However,
in high-dimensional continuous domains there may be addi-
tional benefits. Konidaris and Barto [2008] have shown that

skill discovery in continuous domains improves performance,
and suggest that it does so because the agent employs a dis-
tinct function approximator to each subskill and can thereby
obtain a better overall solution than it could have using a sin-
gle monolithic function approximator.

Abstraction selection opens up a further advantage to skill
acquisition in high-dimensional continuous domains, allow-
ing an agent to exploit abstractions it has been given or has
already learned. In an environment where an agent may ac-
quire many skills over its lifetime this may represent a great
potential efficiency improvement, that in conjunction with a
good skill acquisition algorithm could enable reinforcement
learning agents to scale up to higher dimensional domains.
Additionally, abstraction selection opens up the possibility of
abstraction transfer, where an agent that has learned a set of
skills may benefit from the abstractions refined for each, even
if it never uses those skills again.

Although we only directly consider once-off selections in
this paper, an agent may continue to run the abstraction se-
lection once an initial selection has been made, allowing it to
modify its choice later (when it has more sample trajectories).
We expect that in many scenarios an agent will select an ab-
straction early and then repeatedly reconsider its selection if
its selection metrics for that skill later change significantly.

Our experiments show that abstraction selection along with
a library of available abstractions can be used to make skill
learning more efficient in a relatively high-dimensional con-
tinuous problem. In very high-dimensional problems, we ex-
pect that both temporal and state abstraction methods will be
required to create effective learning agents. Abstraction se-
lection provides a useful common ground where both types
of abstraction can be used together to improve performance.

Acknowledgements
We would like to thank Scott Kuindersma, Bruno Ribeiro,
Sarah Osentoski, Lihong Li and our anonymous reviewers for
their useful feedback. Andrew Barto was supported by the
Air Force Office of Scientific Research under grant FA9550-
08-1-0418.

References
[Barto and Mahadevan, 2003] A.G. Barto and S. Mahade-

van. Recent advances in hierarchical reinforcement learn-
ing. Discrete Event Systems, 13:41–77, 2003. Special Is-
sue on Reinforcement Learning.

[Bishop, 2006] C.M. Bishop. Pattern Recognition and Ma-
chine Learning. Springer, New York NY, 2006.

[Boyan, 1999] J.A. Boyan. Least squares temporal differ-
ence learning. In Proceedings of the 16th International
Conference on Machine Learning, pages 49–56, 1999.

[Dietterich, 2000] T.G. Dietterich. Hierarchical reinforce-
ment learning with the MAXQ value function decompo-
sition. Journal of Artificial Intelligence Research, 13:227–
303, 2000.

[Hengst, 2002] B. Hengst. Discovering hierarchy in rein-
forcement learning with HEXQ. In Proceedings of the

Nineteenth International Conference on Machine Learn-
ing, pages 243–250, 2002.

[Jonsson and Barto, 2001] A. Jonsson and A.G. Barto. Au-
tomated state abstraction for options using the U-Tree al-
gorithm. In Advances in Neural Information Processing
Systems 13, pages 1054–1060, 2001.

[Konidaris and Barto, 2008] G.D. Konidaris and A.G. Barto.
Skill discovery in continuous reinforcement learning do-
mains. Technical Report UM-CS-2008-24, Department of
Computer Science, University of Massachusetts Amherst,
July 2008.

[Konidaris and Osentoski, 2008] G.D. Konidaris and S. Os-
entoski. Value function approximation in reinforcement
learning using the Fourier basis. Technical Report UM-
CS-2008-19, Department of Computer Science, University
of Massachusetts, Amherst, June 2008.

[Li et al., 2006] L. Li, T.J. Walsh, and M.L. Littman. To-
wards a unified theory of state abstraction for MDPs. In
Proceedings of the Ninth International Symposium on Ar-
tificial Intelligence and Mathematics, 2006.

[McCallum, 1996] A. McCallum. Learning to use selective
attention and short-term memory in sequential tasks. In
From Animals to Animats 4: Proceedings of the Fourth In-
ternational Conference on Simulation of Adaptive Behav-
ior, 1996.

[Schwarz, 1978] G. Schwarz. Estimating the dimension of a
model. Annals of Statistics, 6:461–464, 1978.

[Şimşek et al., 2005] Ö. Şimşek, A.P. Wolfe, and A.G. Barto.
Identifying useful subgoals in reinforcement learning by
local graph partitioning. In Proceedings of the Twenty-
Second International Conference on Machine Learning,
2005.

[Singh et al., 2004] S. Singh, A.G. Barto, and N. Chentanez.
Intrinsically motivated reinforcement learning. In Pro-
ceedings of the 18th Annual Conference on Neural Infor-
mation Processing Systems, 2004.

[Sutton and Barto, 1998] R.S. Sutton and A.G. Barto. Rein-
forcement Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998.

[Sutton et al., 1998] R.S. Sutton, D. Precup, and S.P. Singh.
Intra-option learning about temporally abstract actions. In
Proceedings of the Fifteenth International Conference on
Machine Learning, pages 556–564, 1998.

[Sutton et al., 1999] R.S. Sutton, D. Precup, and S.P. Singh.
Between MDPs and semi-MDPs: A framework for tempo-
ral abstraction in reinforcement learning. Artificial Intelli-
gence, 112(1-2):181–211, 1999.

[van Seijen et al., 2007] H.H. van Seijen, B. Bakker, and
L.J.H.M. Kester. Reinforcement learning with multiple,
qualitatively different state representations. In Proceed-
ings of NIPS 2007 Workshop on Hierarchical Organiza-
tion of Behavior, 2007.

