
 
 

  

Robot positioning is an important function of autonomous 
intelligent robots. However, the application of external forces 
to a robot can disrupt its normal operation and cause 
localisation errors. We present a novel approach for detecting 
external disturbances based on optic flow without the use of 
egomotion information. Even though this research moderately 
validates the efficacy of the model we argue that its application 
is plausible to a large number of robotic systems.  

I. INTRODUCTION 
MONG various subsystems implemented in 
intelligent autonomous robots one would distinguish 

self positioning as one of critical importance. An external 
force applied to the system may cause such a disturbance 
that the robot may be unexpectedely displaced. Hence, the 
localization subsystem may fail to update its parameters 
appropriately, possibly resulting in failure to localise. In 
this paper, we present a framework capable of detecting 
an event in real time using a monocular video sensor and 
without the use of egomotion information. 

This research has been motivated mainly from various 
robot competitions. There, the robots crashing into each 
other or nearby walls, or when picked up by a referee, 
often experience failures due to unmodelled external 
forces. This sometimes results in inaccurate internal maps 
of the environment. Consequently, a detection of such 
events would allow the robot to take corrective action.  

Such effects may be detected by incorporating 
expensive, power consuming and usually heavy 
equipment such as gyroscopes or acceleration sensors 
which limit the overall applicability of the system. 
However, we demonstrate that such events are detectable 
by using a camera which is inexpensive, portable, light 
and ordinary in robotic applications. 

Our approach has been founded on the following 
assumption. Given an external force, such that it may 
cause a disturbance capable of deceiving an arbitrary 
localization scheme, we should observe a notable 
discontinuity onto the motion of the system. Hence, it 
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should be detectable by measuring some quantity of a 
video sequence recorded from a video sensor mounted 
onto the robot.  

Our method can be summarized in four sections. First, 
the from a recorded video sequence during a  robot’s 
motion the corresponding optic flow fields are computed. 
Any of the known algorithms for optic flow computation 
[6, 10, 11, 12, 14, 15, 16, 17] may be incorporated. 
Second, assuming of local spatiotemporal smoothness of 
motion we predict the next optic flow field. Third, we 
utilize a similarity measure to compare the actual and 
predicted field. Finally, we perform classification with 
regard to the similarity distribution generated by previous 
observations of undisturbed motion.  

Hence, the model can be analysed in the following 
components: Estimation of optic flow, Prediction, 
Comparison and Classification. These are presented in 
detail below. Additionally, experimental results are 
provided based on offline analysis of appropriate video 
sequences. The usability, limitations and possible 
extensions of this work are examined in the discussion 
section. 

II. OPTIC FLOW 

A. Overview 
We have chosen a video sensor in order to maximize 

probable areas of the model’s applications. An appropriate 
notion to describe motion in a video sequence is optic 
flow. The latter has been employed extensively in 
numerous applications [1, 3, 4, 5, 8]. 

Optic flow can be identified as the apparent motion of 
brightness points on the two dimensional plane. This 
represents the planar projection of the field of view along 
two succeeding recorded fragments of motion [7, 11, 12]. 
When brightness motion is coherent with actual motion 
then we say that optic flow corresponds to the velocity 
field, which is the actual planar projection of points in the 
observed volume. However, that is implausible, mainly 
due to the Aperture Problem [2]. The latter states our 
inability to compute the optic flow along the isobrightness 
contour. Hence, we should consider optic flow as the 
lower limit approximation of the velocity field [17]. 
Recovering egomotion information from either the 
velocity field or optic flow is ill-posed [6]. Thus, specific 
constraints are usually set, such as spatiotemporal 
smoothness, irradiance smoothness, image brightness 
constancy, and Lambertian surfaces [16]. These are 
usually violated in the general case and specifically in real 
world applications. Commonly, problems arise when 
dealing with shadows, highlights, surface translucency 
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and occlusions, moving objects, transparencies and 
reflective surfaces [16]. However, the principal effects in 
the optic flow field are mainly due to egomotion. A 
disturbance in egomotion, caused by an external force, 
would probably be propagated as a spatiotemporal 
discontinuity of optic flow. On this ground we expect an 
external force to be detected in optic flow. 

B. Optic Flow Algorithms 
As mentioned, there exist a large number of algorithms 

that attempt to overcome the difficulties mentioned above. 
These are distinguished by the constraints imposed, data 
conservation, smoothness, spatial coherence, modelling 
assumption, and robustness [14], [16]. Moreover, we may 
divide them into five major categories based on the way 
optic flow is computed: feature selection or affine 
matching, gradient computation, correlation, energy and 
phase. 

Feature selection techniques attempt to detect objects or 
features among sequential frames and measure the 
disparity. In gradient computation algorithms [6], [14], 
[17], the main concept is to estimate the spatiotemporal 
derivatives of the irradiance among frames. A different 
approach is correlation. There, the key concept is to 
correlate parts between frames. In energy based methods a 
Fourier transformation is performed on the spatiotemporal 
energy on a plane in frequency space [14]. In phase based 
algorithms spatiotemporal band pass filters are applied to 
extract binary edge maps to track the edges [16]. Finally, 
another approach is to augment any of the above 
estimators in a robust statistical estimator by incorporating 
a minimization of a parametric model [17].  

C. Selection of the appropriate Optic Flow algorithm 
Obviously, from the variety of algorithms summarized 

above there exists a subgroup that best fits the needs of the 
presented framework. Specifically, our choice has been 
based on both theoretical grounds and experiments 
performed on simplified artificial scenery. In order to 
preserve the validity of our initial assumption we have set 
two prerequisites. First, that the algorithm has low 
computational cost, since we aim at real time applications. 
Second, that computation along the field preserves spatial 
features and therefore avoids over-smoothed optic flow 
field. The latter allows a larger divergence to be detected. 

An experimental comparison was performed between 
the “Second Order Approach”, Barron-Beauchemin [14], 
the “Robust Gradient Estimator”, M.J. Black [16] and the 
“Laplacian Pyramid”, P. Anandan [15]. We have 
compared the three algorithms in regard to speed, 
flexibility and accuracy. Our goal was to minimize time 
spent to compute Optic Flow, allow for parameter 
flexibility which would allow to better fine tune the model 
to the environment and maximize accuracy in the 
computation of the flow fields. 

The experiments were carried out on two sequences, the 
well known Yosemite sequence [18] and an artificial two 
dimensional scene of a square moving in frame with 

standard speed. In both occasions the velocity field was 
known. The three algorithms were optimized in regard to 
their parameters and the best results were compared with 
each other. Extensive results are provided in [20].   

All three algorithms demonstrated sufficiently low, 
average magnitude and angular error in areas of adequate 
texture. However, in areas of contradictory brightness 
transition, error measures reached maximal values. 
Among the three the “Robust Gradient Estimator” 
demonstrated consistent performance in all tests and had 
always minimal errors. The latter was also the fastest and 
above all its implementation permitted numerous 
parameters to fine tune its performance. Moreover, these 
were much more than pre-processing tasks such as 
smoothing. In contrast, they affected the evaluation of the 
spatiotemporal brightness change across images.  

In conclusion, we observe that it is feasible to make an 
approximation of the velocity field from just the optic 
flow field. Even though that would be far from completely 
recovering the velocity field in the general case it is 
feasible to have a measure of egomotion by measuring 
optic flow. Below, we demonstrate that this may provide 
detection of an external disturbance. 

III. DIRECT OPTIC FLOW PREDICTION 
We wish to predict the next optic flow frame from just 

the current frame. At this point we shall make the 
following assumption. There exists such a fragment of 
time in which the motion of the system is normal and 
smooth. Also, this can be expanded in the following 
manner. There exists such a fragment of time in which the 
projected planar motion of the observed velocity volume 
appears to be normal and smooth. Thus, we may now 
associate the current field with the next one in a linear 
fashion. 

Specifically, this can be done by associating the next 
field directly with the previous by assuming local 
spatiotemporal consistency. Hereon, let us denote the 
current optic flow field with O  , next and previous fields 
as +O  and −O  respectively, and the estimate as O

)
. An 

initial approach to estimate the next optic flow would be 
linearly. 

),0(ˆ σNOO +=+       (1) 
Let us assume of spatial local consistency of optic flow 

in a small neighbourhood around point 0r . Consequently, 
the Taylor expansion of the optic flow field around that 
point 0r  would be: 
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This estimates the optic flow in the neighbourhood of 

0r . Now, let us consider that expansion in the temporal 
sense. Then, the optic flow is a function of time and space 
as well. Hence, a Taylor expansion in the temporal 
neighbourhood around a moment 0t  would be: 
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Hence, it is possible to approximate the next optic flow 
field by knowing its temporal derivative. Now, for a 
discrete sampling sequence of appropriate frame rate we 
write: 

−+ += OOO δˆ         (4) 

Where −Oδ  is the spatiotemporal change in the optic 
flow between the current and previous frame. This can be 
found from the temporal derivative of optic flow which 
can be approximated as the difference among subsequent 
optic flows. By implementing noise in this formula we 
finally obtain: 

),0(ˆ σεδ NOOO ++= −+      (5) 
Where ),0( σN  represents noise in measurement and ε  

is a small value to ensure temporal locality.  

IV. SIMILARITY 
The resulting frame from the optic flow algorithm is 

usually erroneous in two aspects.  There is usually a 
systematic divergence from the correct optic flow field 
and a random aspect of local noisy estimates. 
Additionally, these errors are specific to the type of 
motion and the environment.  

The prediction should be compared with the actual 
frame and then the outcome would be classified as a 
product of normal motion or a disturbance. In this context 
we need a divergence measure of the density distributions 
of pixel velocities. Hence, by comparing the estimated 
flow with the true flow, we have means of signalling an 
event.  

Thereafter, it is possible to approximate the distribution 
of divergence and provide a probability level of belief on 
the current comparison, the next optic flow frame.  

Among the possible measures of similarity we 
distinguish: Euclidean Distance, Cross Entropy, Kullback-
Leibler Divergence and Jensen-Shannon Divergence. We 
have identified that the measure appropriate is KL-
divergence. Consider two distributions h  and g  in space 

ℜ∈C . Then the KL-divergence is defined in the discrete 
case: 
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The latter is always positive due to the fact that it is 
always greater than or equal to the cross entropy. In fact 
expanding the KL-divergence results in: 
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But, the cross entropy between two arbitrary 

distributions )||( ghH  is always greater than the 
entropy H of the distribution. 

KL-divergence does not in fact determine the 
divergence of distributions but provides a comparative 

measure of disorder. Hence, it is a measure of cross 
entropy disparity. When applying KL-divergence we 
perform a comparison on the deviation of cross entropy 
from entropy. This allows inference onto the magnitude of 
divergence between entropy functions of distributions.  

The key notion is that during normal motion systematic 
errors in the transformation from velocity field to optic 
flow and finally to the predicted frame would be 
propagated along with the entropy of the optic flow field. 
Hence, the divergence of the prediction and the actual 
next field should be constant plus added some noise. In 
case of an event we should measure a similarity outside 
the distribution of similarities of normal motion, due to the 
increased disorder in the field of optic flow. 

V. CLASSIFICATION 
We have selected a simple classification scheme to 

provide basic signalling for and event. We assume that 
when the system moves unaffected then the divergence 
should be near constant. Thus, a Gaussian distribution 
describes appropriately the distribution of observations. 
Hence, the probability of a new observation 

)|( 1: −− kkk KKP λ  belonging to the distribution can be 
evaluated from: 
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Where, kK is the KL-divergence corresponding to optic 

flow kO  from the previous optic flow 1−kO . The 
parameters mean μ  and variance σ , are estimated using 
observations 1−k  to λ−k  . By selecting an appropriate 
threshold we the new observation can be classified.  
Likewise, we employed a Maxwell distribution which in 
some situations yielded better results. A detailed 
discussion can be found in [20]. 

VI. THE FORWARD MODEL OF OPTIC FLOW 
We have laid out the essential components of the model 

and have set out a number of assumptions. First, we have 
assumed that there exists a fragment of time in the motion 
of the robot for which we can assume normality and 
smoothness. Secondly, we assume that the disturbance 
caused from an external force applied onto our system 
would be such that the first constraint would be violated.  

The first constraint ensures that there will be local 
constancy of similarity disparity between actual and 
predicted frame. Also, it allows for prediction using a 
spatiotemporal Taylor expansion of the optic flow field. 
The second constraint ensures that any other motion is 
disturbance which will cause significant variation in the 
predicted-actual frames similarities. 

The general framework may be summarized below: 
1. From the video sequence extract the image frames 
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2. Obtain the frames of optic flow for 
1,,1, +−= kkkiOi  

3. Compute the corresponding optic acceleration from 
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4. Predict the next field 
 ),0(ˆ
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5. Estimate KL-divergence for the predicted 1
ˆ

+kO  and 

the observed 1+kO  fields.  

6. Calculate the probability )|( 1: −− kkk KKP λ  as defined 
in (8), where λ  is the number of frames since the 
previous disturbance (sampling span), and update the 
distribution parameters. 

During the first three steps we capture the necessary 
image frames, compute the optic flow fields and the optic 
acceleration along them. In step four the predicted frame 
is computed for frame k . Thereafter, it is straightforward 
to compute KL-divergence and the probability of the 
observation belonging to the distribution of similarities. 
We have assumed a Gaussian probability distribution of 
similarities and used a classification threshold to perform 
classification. Other classifier schemes could also be used 
but this was sufficient for our purposes. 

VII. EXPERIMENTS 
We performed experiments using a KoalaTM wheeled 

robot, which would move in a straight-line manner 
without displaying any significant deviation from the 
expected route. The latter, could perform a variety of 
manoeuvres such as accelerating smoothly or rapidly, or 
turning on the spot, or even following a certain pre-
programmed path. Hence, it was possible using a mounted 
camera to record video sequences of certain motion as we 
thought fitting. The experiments were carried out within 
the lab where we had setup an artificial arena of boxes 
wrapped with newspaper, in order to provide sufficient 
texture. We shot at two frame rates of 12fps and 25fps and 
two focal lengths of 36mm and 78mm in controlled 
lighting environment. We include the results for two 
experiments. 

The first motion, which we refer to as a γ -motion type, 
consisted of an acceleration phase, traveling with constant 
speed and a sudden stop at 1.7 seconds; then on the spot 
right turn and then left turn, traveling forward for about 
4.3 seconds and finally halt. Additionally, we wanted to 
display the ability of the model to actually detect when it 
is being picked up. A different robot was incorporated, 
which had significantly less stability during its motion 
along with random vibrations from the suspension. The 
focal length was 35mm and we performed analysis at 
12fps image sequences. Results are displayed for assumed 
Gaussian and Maxwell similarity density distributions 
only for the case of the first robot γ -motion. Complete 

results are included in [20], which demonstrate the 
efficacy of our approach.  

VIII. EXPERIMENTAL RESULTS 
We have included two figures displaying results from 

the experiments described in the previous section. 
Looking at Fig. 1 we present the signalling output of the 
model when a robot is picked up. The two graphs display 
performance for an assumed Gaussian distribution of 
similarity density (top) and Maxwell (bottom). Angular 
and range components are noted with circle and cross 
respectively. The first graph demonstrates the model’s 
accuracy in detecting only the event of first grabbing the 
robot and then picking up the robot at frames 60 and 100-
120 respectively. Excessive signalling is displayed in the 
second graph which demonstrates the sensitivity to small 
variations when altering the classification scheme. These 
disturbances were generated from the suspension system. 
We observe that the range component has successfully 
detected major disturbances whereas the angular is more 
sensitive to small vibrations. On Fig. 2 KL-divergence is 
displayed during motion of type γ . The top four graphs 
demonstrate the divergence of the angular component of 
the optic flow field. The rest are for the range component. 
The figures on the left column are for analysis performed 
at 25fps and on the right at 12fps.  

Looking at any of the figures we identify four major 
disturbances, at about 30, 70, 130 and 260, for 25fps 
figures. These are better distinguished at lower frame rate 
when looking on the right side figures (15, 35, 65 and 130 
respectively). These may be identified as the four points 
disturbances during the motion of the robot, sudden stop, 
turn right, turn left, travel for a while and then stop. Also, 
one can distinguish the relative nature of the magnitude of 
disturbance. Particularly at frame 30 (25fps), a sudden 
stop is obvious. The latter presents in most graphs a 
significantly large value when compared with the previous 

Fig 1: Signaling output of picking up a robot 
Top: Gaussian. Bottom: Maxwell. Angular component is noted with 
circle (o) and the range with a cross (+). 



 
 

observations of the KL-divergence. 

IX. DISCUSSION AND CONCLUSIONS 
The possibility of a robot being displaced by an external 

force is rather significant given the increasingly complex 
areas of application in modern robotics. Specifically, such 
situations have been observed in various robot 
competitions where such disturbances often lead to failure 
of the localization algorithm. We approach the problem by 
making a prediction, based on a Forward Model of Optic 

Flow, and comparing that with the actual optic flow field.  
The experiments, firstly, demonstrate the ability to 

detect an event such as picking up a robot while it moves 
forward. Secondly, we present that the effects of the 
disturbance are propagated onto the entire optic flow field 
and can be detected through the KL-divergence. 
Additionally, further experimentation [20] has shown that 
detection is feasible in a dynamic environment as well.  

Notably, we have demonstrated that prediction of optic 
flow based on a noisy and ambiguous field is plausible. 

Fig. 2: KL Divergence, γ-motion type  
Scales are: horizontal axis: Corresponding frame number, vertical axis: KL Divergence.  
From left to right and down, frames per second and focal ratio are noted:   
1. angular at 25fps with 35mm, 2. angular at 12fps with 35mm, 3.angular at 25fps with 78mm, 4.angular at 12fps with
78mm, 5.range at 25fps with 35mm, 6.range at 12fps with 35mm,  7.range at 25fps with 78mm 8.range at 12fps with 78mm 
.



 
 

We have displayed that the detection of external forces 
can be founded on two related notions, discontinuity and 
incoherency. The exact prediction of the next optic flow 
frame is rather insignificant. Our objective is to predict the 
output of the optic flow algorithm for the next frame given 
the current. However, the presented algorithm is based on 
local temporal approximation which unfortunately 
includes the effects of an external force. If the force is 
applied smoothly enough then its effects would go 
undetectable. Nevertheless, that is a function of time and 
therefore it is possible to select such a frame rate that the 
disturbance will be rapid and thus detectable. Evidently, 
further work is needed regarding this matter. Finally, 
implementing an advanced classification algorithm would 
render the algorithm robust in performing detection for 
various motions. 

Concluding, we have made negligible assumptions 
about the environment and minimal regarding the 
egomotion. This makes the model applicable in a wider 
area of robotic systems. However, further work is 
necessitated regarding motion types of higher complexity. 
Moreover, extensions may be considered regarding 
classification and model parameter initialization. Even 
though, we have used a simple classification scheme, we 
have demonstrated that the algorithm can provide 
detection of external forces. 
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Figure 3: γ-motion type images from the sequence 
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