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Abstract
The options framework provides methods for rein-
forcement learning agents to build new high-level
skills. However, since options are usually learned
in the same state space as the problem the agent
is solving, they cannot be used in other tasks that
are similar but have different state spaces. We in-
troduce the notion of learning options in agent-
space, the space generated by a feature set that is
present and retains the same semantics across suc-
cessive problem instances, rather than in problem-
space. Agent-space options can be reused in later
tasks that share the same agent-space but have dif-
ferent problem-spaces. We present experimental
results demonstrating the use of agent-space op-
tions in building transferrable skills, and show that
they perform best when used in conjunction with
problem-space options.

1 Introduction
Much recent research in reinforcement learning has focused
on hierarchical methods [Barto & Mahadevan, 2003] and in
particular the options framework [Sutton et al., 1999], which
integrates macro-action learning into the reinforcement learn-
ing framework. Most option learning methods work within
the same state space as the problem the agent is solving at the
time. Although this can lead to faster learning on later tasks
in the same state space, learned options would be more useful
if they could be reused in later tasks that are related but have
distinct state spaces.

We propose learning portable options by using two sepa-
rate representations: a representation in problem-space that is
Markov for the particular task at hand, and one in agent-space
that may not be Markov but is retained across successive task
instances (each of which may require a new problem-space,
possibly of a different size or dimensionality) [Konidaris &
Barto, 2006]. Options learned in agent-space can be reused in
future problem-spaces because the semantics of agent-space
remain consistent across tasks.

We present the results of an experiment showing that
learned agent-space options can significantly improve perfor-
mance across a sequence of related but distinct tasks, but are
best used in conjunction with problem-specific options.

2 Background

2.1 The Options Framework

An option o consists of three components:

πo : (s, a) 7→ [0, 1]
Io : s 7→ {0, 1}
βo : s 7→ [0, 1],

where πo is the option policy (a probability distribution over
actions at each state in which the option is defined), Io is the
initiation set indicator function, which is 1 for states where
the option can be executed and 0 elsewhere, and βo is the
termination condition, giving the probability of the option
terminating in each state [Sutton et al., 1999]. The options
framework provides methods for learning and planning using
options as temporally extended actions in the standard rein-
forcement learning framework [Sutton & Barto, 1998].

Algorithms for learning new options must include a
method for determining when to create an option or expand
its initiation set, how to define its termination condition, and
how to learn its policy. Policy learning is usually performed
by an off-policy reinforcement learning algorithm so that the
agent can update many option simultaneously after taking an
action [Sutton et al., 1998].

Creation and termination are usually performed by the
identification of goal states, with an option created to reach a
goal state and terminate when it does so. The initiation set is
then the set of states from which the goal is reachable. Previ-
ous research has selected goal states by a varierty of methods
(e.g., variable change frequency [Hengst, 2002], local graph
partitioning [Şimşek et al., 2005] and salience [Singh et al.,
2004]). Other research has focused on extracting options by
exploiting commonalities in collections of policies over a sin-
gle state space [Thrun & Schwartz, 1995; Bernstein, 1999;
Perkins & Precup, 1999; Pickett & Barto, 2002].

All of these methods learn options in the same state space
in which the agent is performing reinforcement learning, and
thus can only be reused for the same problem or for a new
problem in the same space. The available state abstraction
methods [Jonsson & Barto, 2001; Hengst, 2002] only allow
for the automatic selection of a subset of this space for option
learning, or require an explicit transformation from one space
to another [Ravindran & Barto, 2003].



2.2 Sequences of Tasks and Agent-Space
We are concerned with an agent that is required to solve a se-
quence of related but distinct tasks, defined as follows. The
agent experiences a sequence of environments generated by
the same underlying world model (e.g., they have the same
physics, the same types of objects may be present in the en-
vironments, etc.). From the sensations it receives in each en-
vironment, the agent creates two representations. The first
is a state descriptor sufficient to distinguish Markov states in
the current environment. This induces a Markov Decision
Process (MDP) with a fixed set of actions (because the agent
does not change) but a set of states, transition probabilities
and reward function that depend only on the environment the
agent is currently in. The agent thus works in a different state
space with its own transition probabilities and reward func-
tion for each task in the sequence. We call each of these state
spaces a problem-space.

The agent also uses a second representation based on the
features that are consistently present and retain the same se-
mantics across tasks. This space is shared by all of the tasks
in the sequence, and we call it an agent-space. The two
spaces stem from two different representational requirements:
problem-space models the Markov description of a particular
task, and agent-space models the (potentially non-Markov)
commonalities across a sequence of tasks. We thus consider
a sequence of tasks to be related if they share an agent-space.

This approach is distinct from that taken in prior reinforce-
ment learning research on finding useful macro-actions across
sequences of tasks [Bernstein, 1999; Perkins & Precup, 1999;
Pickett & Barto, 2002; Thrun & Schwartz, 1995], where the
tasks must be in the same state space but may have different
reward functions. An appropriate sequence of tasks under our
definition requires only that the agent-space semantics remain
consistent, so each task may have its own completely distinct
state space. Konidaris and Barto (2006) have used the same
distinction to learn shaping functions in agent-space to speed
up learning across a sequence of tasks.

One simple example of an appropriate sequence of tasks
is a sequence of buildings in each of which a robot equipped
with a laser range finder is required to reach a target room.
Since the laser-range finder readings are noisy and non-
Markov, the robot would likely build a metric map of the
building as it explores, thus forming a building-specific prob-
lem space. The range finder readings themselves form the
agent space, because their meaning is consistent across all
of the buildings. The robot could eventually learn options in
agent-space corresponding to macro-actions like moving to
the nearest door. Because these options are based solely on
sensations in agent space without referencing problem-space
(any individual metric map), they can be used to speed up
learning in any building that the robot encounters later.

3 Options in Agent-Space
We consider an agent solving n problems, with state spaces
S1, ..., Sn, and action space A. We view the ith state in task
Sj as consisting of the following attributes:

sji = (dji , c
j
i , r

j
i ),

where dji is the problem-space state descriptor (sufficient to
distinguish this state from the others in Sj), c

j
i is an agent-

space descriptor, and rji is the reward obtained at the state.
The goal of reinforcement learning in each task Sj is to find
a policy πj that maximizes reward.

The agent is also either given, or learns, a set of higher-
level options to reduce the time required to solve the task.
Options defined using d are not portable between tasks be-
cause the form and meaning of d (as a problem-space de-
scriptor) may change from one task to another. However, the
form and meaning of c (as an agent-space descriptor) does
not. Therefore we define agent-space option components as:

πo : (cji , a) 7→ [0, 1]

Io : cji 7→ {0, 1}
βo : cji 7→ [0, 1].

Although the agent will be learning task and option policies
in different spaces, both types of policies can be updated
simultaneously as the agent receives both agent-space and
problem-space descriptors at each state.

4 Experiments
4.1 The Lightworld Domain
An agent is placed in an environment consisting of a sequence
of rooms, with each room containing a locked door, a lock,
and possibly a key. In order to leave a room, the agent must
unlock the door and step through it. In order to unlock the
door, it must move up to the lock and press it, but if a key is
present in the room the agent must be holding it to success-
fully unlock the door. The agent can obtain a key by moving
on top of it and picking it up. The agent receives a reward of
1000 for leaving the door of the final room, and a step penalty
of−1 for each action. Six actions are available: movement in
each of the four grid directions, a pickup action and a press
action. The environments are deterministic and unsuccessful
actions (e.g., moving into a wall) result in no change in state.

We equip the agent with twelve light sensors, grouped into
threes on each of its sides. The first sensor in each triplet
detects red light, the second green and the third blue. Each
sensor responds to light sources on its side of the agent, rang-
ing from a reading of 1 when it is on top of the light source,
to 0 when it is 20 squares away. Open doors emit a red light,
keys on the floor (but not those held by the agent) emit a green
light, and locks emit a blue light. Figure 1 shows an example.

Five pieces of data form a problem-space descriptor for any
lightworld instance: the current room number, the x and y co-
ordinates of the agent in that room, whether or not the agent
has the key, and whether or not the door is open. We use the
light sensor readings as an agent-space because their seman-
tics are consistent across lightworld instances. In this case the
agent-space (with 12 continuous variables) has higher dimen-
sion than any individual problem-space.

Types of Agent
We used five types of reinforcement learning agents: agents
without options, agents with problem-space options, agents
with perfect problem-space options, agents with agent-space
options, and agents with both option types.



Figure 1: A small example lightworld.

The agents without options used Sarsa(λ) with ε-greedy
action selection (α = 0.1, γ = 0.99, λ = 0.9, ε = 0.01)
to learn a solution policy in problem-space, with each state-
action pair assigned an initial value of 500.

Agents with problem-space options had an (initially un-
learned) option for each pre-specified salient event (picking
up each key, unlocking each lock, and walking through each
door). Options were learned in problem-space and used the
same parameters as the agent without options, but used off-
policy trace-based tree-backup updates [Precup et al., 2000]
for intra-option learning. Options got a reward of 1 when
completed successfully, used a discount factor of 0.99 per
action, and could be taken only in the room in which they
were defined, and in states where their value function ex-
ceeds a minimum threshold (0.0001). Because these options
are learned in problem-space, they are useful but must be re-
learned for each individual lightworld.

Agents with perfect problem-space options were given pre-
learned options for each salient event. They still performed
option updates and were otherwise identical to the standard
agent with options, but they represented agents with perfectly
transferrable fully learned options.

Agents with agent-space options still learned their solution
policies in problem-space but learned their option policies in
agent-space. Each agent employed three options: one for
picking up a key, one for going through an open door and
one for unlocking a door, with each one’s policy a function
of the twelve light sensors. Since the sensor outputs are con-
tinuous we used linear function approximation for each op-
tion’s value function, performing updates using gradient de-
scent (α = 0.01) and off-policy trace-based tree-backup up-
dates. The agent gave each option a reward of 1 upon com-
pletion, and used a step penalty of 0.05 and a discount factor
of 0.99. An option could be taken at a particular state when
its value function there exceeded a minimum threshold (0.1).
Because these options are learned in agent-space, they can be
transferred between lightworld instances.

Finally, agents with both types of options were included to
represent agents that learn both general portable and specific
non-portable skills simultaneously.

Note that all agents used discrete problem-space value

functions to solve the underlying task instance, because their
agent-space descriptors are only Markov in one room light-
worlds, which were not present in our experiments.

Experimental Structure
We generated 100 random lightworlds, each consisting of 2-
5 rooms with width and height of 5-15 cells. A door and
lock were were randomly placed on each room boundary,
and 1

3 of rooms included a randomly placed key. This re-
sulted in state space with between 600 and approximately
20, 000 state-action pairs (4900 on average). We evaluated
each problem-space option agent type on 1000 lightworlds
(10 samples of each generated lightworld).

To evaluate the performance of agent-space options as the
agents gained more experience we similarly obtained 1000
samples, but for each sample we ran the agents once with-
out training and then with between 1-10 training experiences.
Each training experience for a sample lightworld consisted
of 100 episodes in a training lightworld randomly selected
from the remaining 99. Although the agents updated their
options during evaluation in the sample lightworld, these up-
dates were discarded before the next training experience so
the agent-space options never received prior training in the
evaluation lightworld.

Results
Figure 2 shows average learning curves for agents employ-
ing problem-space options, and Figure 3 shows the same
for agents employing agent-space options. The first time an
agent-space option agent encounters a lightworld it performs
similarly to an agent without options (as evidenced by two
topmost learning curves in each figure), but its performance
rapidly improves with experience in other lightworlds. Af-
ter experiencing a single training lightworld the agent has a
much shallower learning curve than an agent using problem-
space options alone, until by 5 experiences its learning curve
is similar to that of an agent with perfect problem-space op-
tions (compare with the bottom-most learning curve of Figure
2), even though its options are never trained in the same light-
world in which it is tested. The comparison between Figures
2 and 3 shows that agent-space options can be successfully
transferred between lightworld instances.

Figure 4 shows average learning curves for agents em-
ploying both types of options.1 The first time such agents
encounter a lightworld they perform as well as agents us-
ing problem-space options (compare with the second high-
est curve in Figure 2), and thereafter rapidly improve their
performance (performing better than agents using only agent-
space options) and again by 5 experiences performing nearly
as well as agents with perfect options. We conjecture that
this improvement results from two factors. First, the agent-
space is much larger than any individual problem-space,
so problem-space options are easier to learn from scratch

1In 8 of the more than 200, 000 episodes used when testing
agents with both types of options an agent-space value function ap-
proximator diverged and we restarted the episode. Although this is
a known problem with the backup method we used [Precup et al.,
2000], it did not occur at all during the same number of samples
obtained for agents with agent-space options only.
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Figure 2: Learning curves for agents with problem-space op-
tions.
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Figure 3: Learning curves for agents with agent-space op-
tions, with varying numbers of training experiences.
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Figure 4: Learning curves for agents with agent-space and
problem-space options, with varying numbers of training ex-
periences.

than agent-space options. This explains why agents us-
ing only agent-space options and no training experiences
perform more like agents without options than like agents
with problem-space options. Second, options learned in our
problem-space can represent exact solutions to specific sub-
goals, whereas options learned in our agent-space are gen-
eral and must be approximated, and are therefore likely to be
slightly less efficient for any specific subgoal. This explains
why agents using both types of options perform better in the
long run than agents using only agent-space options.

Figure 5 shows the mean total number of steps required
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Figure 5: Total steps over 70 episodes for agents with no
options (NO), learned problem-space options (LO), perfect
options (PO), agent-space options with 0-10 training experi-
ences (dark bars), and both option types with 0-10 training
experiences (light bars).

over 70 episodes for agents using no options, problem-space
options, perfect options, agent-space options, and both option
types. Experience in training environments rapidly drops the
number of total steps required to nearly as low as the num-
ber required for an agent with perfect options. It also clearly
shows that agents using both types of options do consistently
better than those using agent-space options alone. We note
that the error bars in Figure 5 are small and decrease with
experience, indicating consistent transfer.

4.2 The Conveyor Belt Domain
A conveyor belt system must move a set of objects from a row
of feeders to a row of bins. There are two types of objects
(triangles and squares) and each bin starts has a capacity for
each type. The objects are issued one at a time from a feeder
and must be directed to a bin. Dropping an object into a bin
with a positive capacity for its type decrements that capacity.

Each feeder is directly connected to its opposing bin
through a conveyor belt, which is connected to the belts above
and below it at a pair of fixed points along its length. The
system may either run the conveyor belt (which moves the
current object one step along the belt) or try to move it up
or down (which only moves the object if it is at a connection
point). Each action results in a penalty of−1, except where it
causes an object to be dropped into a bin with spare capacity,
in which case it results in a reward of 100. A small example
conveyor belt system is shown in Figure 6.

1

2

3

Figure 6: A small example conveyor belt problem.

Each system has a camera that tracks the current object and
returns values indicating the distance (up to 15 units) to the
bin and each connector along the current belt. Because the
space generated by the camera is present in every conveyor-



belt problem and retains the same semantics it is an agent-
space, and because it is discrete and relatively small (13, 500
states) we can learn policies in it without function approxima-
tion. However, because it is non-Markov (due to its limited
range and inability to distinguish between belts) it cannot be
used as a problem-space.

A problem-space descriptor for a conveyor belt instance
consists of three numbers: the current object number, the
belt it is on and how far along that belt it lies (technically
we should include the current capacity of each bin, but we
can omit this and still obtain good policies). We generated
100 random instances with 30 objects and 20-30 belts (each
of length 30-50) with randomly selected interconnections, re-
sulting in problem-spaces of 18, 000-45, 000 states.

We ran experiments where the agents learned three options:
one to move the current object to the bin at the end of the belt
it is currently on, one for moving it to the belt above it, and
one for moving it to the belt below it. We used the same
agent types and experimental structure as before, except that
the agent-space options did not use function approximation.

Results
Figures 7, 8 and 9 show learning curves for agents employing
no options, problem-space options and perfect options; agents
employing agent-space options; agents employing both types
of options, respectively.

Figure 8 shows that the agents with agent-space options
and no prior experience initially improve quickly but eventu-
ally obtain lower quality solutions than agents with problem-
space options (Figure 7). One or two training experiences re-
sult in roughly the same curve as agents using problem-space
options but by 5 training experiences the agent-space options
are a significant improvement, although due to their limited
range they are never as good as perfect options. This initial
dip is probably due to the limited range of the agent-space op-
tions (due to the limited range of the camera) and the fact that
they are only locally Markov, even for their own subgoals.

Figure 9 shows that agents with both option types do not
experience this initial dip, and outperform problem-space op-
tions immediately, most likely because the agent-space op-
tions are able to generalise across belts. Figure 10 shows
the mean total reward for each type of agent. Agents us-
ing agent-space options eventually outperform agents using
problem-space options only, even though the agent-space op-
tions have a much more limited range; agents using both types
of options consistently outperform agents with either option
type and eventually approach the performance of agents using
pre-learned problem-space options.

5 Discussion
The concept of an agent-centric representation is closely re-
lated to the notion of deictic or ego-centric representations
[Agre & Chapman, 1987], where objects are represented from
the point of view of the agent rather than in some global frame
of reference. We expect that for most problems (especially in
robotics) agent-space representations will be egocentric, ex-
cept in manipulation tasks where they will likely be object-
centric. In problems involving spatial maps, we expect that
the difference between problem-space and agent-space will
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Figure 7: Learning curves for agents with problem-space op-
tions.
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Figure 8: Learning curves for agents with agent-space op-
tions, with varying numbers of training experiences.
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Figure 9: Learning curves for agents with both types of op-
tions, with varying numbers of training experiences.

be closely related to the difference between allocentric and
egocentric representations of space [Guazzelli et al., 1998].

We also expect that learning an option in agent-space will
often actually be harder than solving an individual problem-
space instance, as was the case in our experiments. In such
situations, learning both types of options simultaneously is
likely to improve performance. Since intra-option learning
methods allow for the update of several options from the
same experiences, it may be better in general to simultane-
ously learn both general portable skills and specific, exact but
non-portable skills, and allow them to bootstrap each other.

The addition of agent-space descriptors to the reinforce-
ment learning framework introduces a design problem similar
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Figure 10: Total reward over 70 episodes for agents with no
options (NO), learned problem-space options (LO), perfect
options (PO), agent-space options with 0-10 training experi-
ences (dark bars), and both option types with 0-10 training
experiences (light bars).

to that of standard state space design. Additionally, for option
learning an agent-space descriptor should ideally be Markov
within the set of states that option is defined over. The agent-
space descriptor form will therefore affect both what options
can be learned and their range. In this respect designing
agent-spaces for learning options requires more care than for
learning shaping functions [Konidaris & Barto, 2006].

Finally, we note that although we have presented the no-
tion of learning skills in agent-space using the options frame-
work, the same idea can be used in other hierarchical rein-
forcement learning frameworks, for example the MAXQ [Di-
etterich, 2000] or Hierarchy of Abstract Machines (HAM)
[Parr & Russell, 1997] formulations.

6 Conclusion
We introduced the notion of learning options in agent-space
rather than in problem-space as a mechanism for building
portable high-level skills for reinforcement learning agents.
Our experimental results show that such options can be suc-
cessfully transferred between tasks that share an agent-space,
and that this significantly improve performance in later tasks,
both in isolation and in conjunction with more specific but
non-portable problem-space options.
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