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Abstract— We develop a system to disambiguate object
instances within the same class based on simple physical de-
scriptions. The system takes as input a natural language phrase
and a depth image containing a segmented object and predicts
how similar the observed object is to the object described
by the phrase. Our system is designed to learn from only a
small amount of human-labeled language data and generalize
to viewpoints not represented in the language-annotated depth
image training set. By decoupling 3D shape representation
from language representation, this method is able to ground
language to novel objects using a small amount of language-
annotated depth-data and a larger corpus of unlabeled 3D
object meshes, even when these objects are partially observed
from unusual viewpoints. Our system is able to disambiguate
between novel objects, observed via depth images, based on
natural language descriptions. Our method also enables view-
point transfer; trained on human-annotated data on a small
set of depth images captured from frontal viewpoints, our
system successfully predicted object attributes from rear views
despite having no such depth images in its training set. Finally,
we demonstrate our approach on a Baxter robot, enabling
it to pick specific objects based on human-provided natural
language descriptions.

I. INTRODUCTION

As robots grow increasingly capable of understanding
and interacting with objects in their environments, a key
bottleneck to widespread robot deployment in human-centric
environments is the ability for non-experts to communicate
with robots. One of the most sought after communication
modalities is natural language, allowing a non-expert user
to verbally issue directives. We focus our work here, ap-
plying natural language to the task of object-specification—
describing which of many objects is being referred to by a
user, is critically important when tasking a robot to perform
actions such as picking, placing, or retrieving an item. Even
simple commands, such as “bring me a small espresso cup”,
require object-specification to be successful.

Object-specification becomes far more difficult when the
robot is forced to disambiguate between multiple objects of
the same type (such as between several different teapots,
rather than between a teapot and a bowl). The solution to
this problem is to include descriptive language to not only
specify object types, but also object attributes such as shape,
size, or more abstract features. Many such descriptions are
largely physical in nature, relating directly or indirectly to
the actual shape of an object. For instance, descriptions
like “round”, “tall”, “vintage”, and “retro”, all relate to
shape. While current work exists to ground images to natural
language [1], [2], these systems only work when an object

Fig. 1. Our pipeline receives depth images and a natural language
command such as, “Pick up the bent couch”, to retrieve the described couch.

is observed from a similar viewpoint to human-annotated
training images. We must also handle partially observed
objects; it is unreasonable for a robot to observe objects
in its environment from many angles with no self-occlusion.
Furthermore, as human-annotated language data is expensive
to gather, it is important to not require language annotated
depth images from all possible viewpoints. A robust system
must be able to generalize from a small human-labeled
set of (depth) images to novel and unique object views.
We develop a system that addresses these challenges by
grounding descriptions to objects via explicit reasoning over
3D structure. We combine Bayesian Eigenobjects (BEOs)
[3], a framework which enables estimation of a novel
object’s full 3D geometry from a single partial view, with
a language grounding model. This combined model uses
BEOs to predict a low-dimensional object embedding into
a pose-invariant learned object space and predicts language
grounding from this low-dimensional space. Critically, BEOs
are well suited to the novel object case; using previously
seen objects they generalize well to make predictions about
previously unseen objects, even from partial views.

This structure has several advantages. First, it enables
training the object-understanding portion of the system from
a large set of non-language-annotated objects, reducing the
need for expensive human-generated object attribute labels



to be obtained for all the training data. Second, because the
language model learns to predict language groundings from a
low-dimensional subspace instead of high-dimensional 2.5D
or 3D input, the model complexity, and amount of labeled
training data required, is small; in our experiments, a simple
3-layer network was sufficient. Finally, because BEOs are
already well suited to novel objects, our system scales well
to new objects and partial views, an important capability
for a robot operating in an unstructured human-centric envi-
ronment. Unlike a single monolithic system which would
require human-annotated depth images from all possible
viewpoints, our approach allows a small number of annotated
depth images from a limited set of viewpoints to generalize
to significantly novel partial views and novel objects.

We evaluate our system on a dataset of several thousand
ShapeNet object instances [4] across three object classes,
paired with human-generated object descriptions obtained
from Amazon Mechanical Turk (AMT). We show that not
only is our system able to distinguish between objects of the
same class, it can do so even when objects are only observed
from partial views. In a second experiment, we train our
language model with a set of depth images taken only from
the front of objects and can successfully predict attributes
given test depth images taken from the rear. This view-
invariance is a key property afforded by our use of an explic-
itly learned 3D representation—traditional fully supervised
approaches are not capable of handling this scenario. Using
our system, we demonstrate a Baxter robot successfully
determining which object to pick based on a Microsoft
Kinect depth image of several candidate objects and a simple
natural language description of the desired object as shown
in Figure 1. Our system is fast, with inference running in
under 100ms for a single language+depth-image query.

II. BACKGROUND AND RELATED WORK

Object retrieval refers to the task of finding and recovering
an object specified by a human user, generally using natural
language. While it is an important problem within artificial
intelligence, it is particularly germane to robots, which have
the ability to physically interact with specified objects.

The computer vision and natural language grounding
communities attempt to solve object retrieval by locating
or grounding the object specified in an image using natural
language [1], [2]. Krishnamurthy and Kollar [1] use a dataset
of segmented objects and their natural language descriptions
to learn the grounding of words to objects in the image by
exploiting repeated occurrences of segmented objects within
images, along with their descriptions in natural language.
Hu et al. [2] use a similar approach albeit using deep neural
networks to avoid parsing and feature construction by hand.
Chen et al. [5] learn joint embeddings of language descrip-
tions and colored 3D objects. These approaches are trained
on image data collected from internet sources and may
differ from data observed on a robot’s camera. Moreover,
these approaches are either 2D, making them sensitive to
viewpoint differences, or not applicable to partially observed
objects, making them difficult to apply to a real robot.

Another relevant line of work is the SUN scene attribute
dataset [6] which maps images to attributes such as “hills”,
“houses”, “bicycle racks”, “sun”, etc. Such understanding
of image attributes provides high level scene descriptions,
for example “human hiking in a rainy field”. However,
these approaches are typically unsuited for direct robotics
application as they require explicit examples of similar
objects from many viewpoints, all annotated with language,
which is an expensive labeling task. Indeed, the typical
robotics approach involves creating a database of all objects
in the robot’s environment and retrieving the object that fits
the human requester’s description [7], [8], [9], [10].

Bore et al. [7] use a mobile robot to create a scene with
segmented 3D objects, where an object can be retrieved
on demand using a query object, thus bypassing language
grounding entirely. Whitney et al. [10] identifies objects in
a scene using their descriptions given by a human user; the
system uses Partially Observable Markov Decision Processes
(POMDPs) to ask questions to disambiguate the correct
object. The system itself does not perform any classification,
instead it uses POMDPs to choose the correct object after
it is confident of the human’s intention. Such an interactive
language grounding has been improved by approaches such
as Shridhar and Hsu [8] and Hatori et. al [9]. They use a
corpus of natural language question answering along with
images of the objects in the robot’s view to learn object
grounding with questions and answers without a POMDP,
by classifying the best fitting object and asking questions
based on a handcrafted policy. The improvements here are
that the grounding occurs in sensor data observed by the
robot without any handcrafted features. However, the agents
in these methods have seen all instances within the object
set. These systems would have a hard time grasping or
identifying a novel object given just a partial view, which is
a common in robotics.

Separately from language grounding, recent years have
seen an uptick of interest in the computer vision community
on the problem of partial object completion. These methods
take a partially observed object model (either in voxelized
form or via a depth image) and attempt to predict an
entire 3D model for the observed object. The most common
of these approaches are object-database methods which
construct an explicit database of complete object scans and
treat novel objects as queries into the database [11], [12],
[13]. While these approaches can be successful if the query
is very similar to a previously encountered object, they tend
to have issues if objects are sufficiently novel. More recently,
work has progressed on learned models that predict 3D shape
from partially-observed input [14], [15], [16], [3]. While
most of these methods require known voxelization of the
partially observed query object, recent work has allowed
for prediction directly from a depth image, an important
requirement for most robotic applications [17].

Bayesian Eigenobjects (BEOs) [3], [17] offer compact
representations of objects. Using 3D object models for
training, BEOs generate a low-dimensional subspace serving
as a basis which well captures the object classes used



to train it. This decomposition is achieved via Variational
Bayesian Principle Component Analysis (VBPCA) [18], en-
suring that the learned subspace does not over-fit the training
data. BEOs enable a number of useful features for robot
perception and manipulation tasks, namely accurate object
classification, completion, and pose estimation from object
depth-map data. This makes the BEO subspace a compelling
target for language mapping in a robotics domain. Critically,
the hybrid variant of BEOs (HBEOs) [17] learn an explicit
subspace like BEOs, but use a deep convolutional network
to learn an embedding directly from a depth image into
the object-subspace, allowing for high performance, fast
runtime, and the ability to complete objects without requiring
voxelization of observed objects.

III. METHODS

Our objective is to disambiguate between objects based on
depth images and natural language descriptions. The naive
approach would be to directly predict an object depth image,
or its representation, given the object’s natural language
description. However, this approach is difficult to train,
as depth-data is high-dimensional and highly continuous
in nature. Even more critically, such an approach would
require language+depth-image pairs with a large amount of
viewpoint coverage, an unreasonable task given the difficulty
of collecting rich human-annotated descriptions of objects.
Instead, our approach factors the representation, allowing it
to learn to reason about 3D structure from non-annotated 3D
models, to learn a viewpoint-invariant representation, BEO,
of object shape. We combine this representation with a small
set of language data to enable object-language reasoning.

Given a natural language phrase and a segmented depth
image, our system maps the depth image into a compact
viewpoint-invariant object representation and then produces
a joint embedding: both the phrase and the object represen-
tation are embedded into a shared low-dimensional space.
Language descriptions and depth images that correspond
will be close in this space, while pairs of depth images
and descriptions that do not correspond will be relatively
far apart.

We achieve this relationship by forcing the low dimen-
sional representations of a given object’s depth-data and its
referring natural language data to align closely with each
other by reducing a similarity metric during training. At
inference time, we compute this similarity metric between a
natural language command and candidate objects, observed
via a depth image, in the joint low-dimensional embedding.
We then select the object that has the most similar depth-
data to the given natural language command within our
learned embedding. Our approach also allows the prediction
of object attributes based on a depth image of an object or
a natural language description of that object.

The language grounding system (shown in Figure 2) con-
sists of two primary portions: An object embedding portion
(BEO module) which maps a partially observed object to a
point in low-dimensional embedding space, and a language-
BEO embedding portion which maps these embedded ob-

Fig. 2. Diagram of the language grounding pipeline, consisting of the
object and language-BEO embedding models.

jects into attribute-based language descriptions. The two
portions are trained in two different phases; first the BEO
module is trained from a set of non-annotated 3D object
models, and then the second phase learns a joint embedding
of the natural language descriptions of the objects and their
corresponding BEO representations. The training data used
for these two phases can be completely disjoint; there is no
requirement that all objects used to train the BEO module are
also used to train the language mapping portion. This permits
a larger corpus of 3D shape data to be used with a small
set of human-annotated data. Because the BEO module,
once trained, can produce predictions from a single depth
image, the human annotations need not be over entire 3D
objects, but could instead be assigned to individual images
for which no true 3D model is known. These annotations
need not cover the entire range of viewpoints a robot might
encounter, and could be from only a very limited set of
views, because the BEO module provides for generalization
across viewpoints.

A. Obtaining Low-Dimensional BEO Embeddings

The low-dimensional BEO embedding is learned from
a set of 3D meshes from a single class. These meshes
are aligned and voxelized as in Burchfiel and Konidaris
[17]. Each voxelized object is then stacked into a vector-
representation; an object is now a point in high-dimensional
voxel space. We perform VBPCA on these object points
to yield a low-dimensional subspace defined by a mean
vector, µ and basis matrix, W. We find an orthnormal basis
W′ = orth([W,µ]) using singular value decomposition
and, with slight abuse of notation, hereafter refer to W′

as simply W. Given a new (fully observed) object o, we
can obtain its embedding o′ in this space via

o′ = WTo, (1)

and any point in this space can be back-projected to 3D
voxel space via

ô = Wo′. (2)

We use the HBEONet network structure [17] to then learn a
deep model for partially-observable inference which, given a
depth image, directly predicts an embedding into the object
subspace. During training, HBEONet receives depth images
(generated synthetically from the 3D models) and target
object embeddings. It consists of several convolutional and



Fig. 3. Diagram of the language-BEO embedding model. After training, the
model outputs the cosine-similarity between a given language description
and the BEO embedding of an object. The model can also predict attributes
of an object given its BEO vector, or the object attributes given the natural
language used to refer to the object. num attributes is number of attributes
to be predicted.

fully connected layers [17]. This network is then used to
train the language grounding portion of the system.

B. Combining BEO Representations and Language

The BEO representations received from HBEONet are
low-dimensional representations of object 3D meshes. Sim-
ilarly, language can be represented in low-dimensional em-
beddings using techniques like Word2Vec [19], [20], or
GloVe [21]. However, the BEO embedding of an object has
no connection to or similarity with the language embedding
of the same object’s natural language description. The BEO
embeddings for a class of objects might be on a completely
different manifold than the language embeddings for the
descriptions of those objects, even if the dimensionality
of the embedding spaces is the same. This discrepancy
exists because these manifolds are learned for different tasks:
BEO embeddings are learned for compactness of 3D object
representation, whereas the language embeddings are learned
for the predictive power of word representations in the
context of a language model.

To overcome this and learn a joint embedding space, we
take an approach inspired by Siamese neural networks [22].
We train a joint model which learns new embeddings for
both BEO vectors and natural language. Embeddings of
language descriptions and BEO vectors for similar objects
should be close together in this new embedding space,
whereas embeddings of BEO vectors and language descrip-
tions that do not correspond to similar objects should be
farther apart. To measure closeness in this space, we use
cosine similarity:

cosine similarity(xxx,yyy) =
xxx · yyy
|xxx| · |yyy|

(3)

The cosine similarity of two vectors is defined as the
cosine of the angle between the vectors. It is calculated as
the inner product of the vectors, normalized by the product
of their lengths. The two vectors are maximally similar when

Fig. 4. Amazon Mechanical Turk data collection interface. Workers were
shown full 360-degree views of the 3D objects.

their cosine similarity is 1, and maximally dissimilar when
their cosine similarity is −1.

Given an object’s depth image and its corresponding
language description, we first compute the low-dimensional
BEO vector representation for the depth-data and then pass
this representation to our joint embedding model shown in
Figure 3. This model takes as input a BEO vector and a bag-
of-words sentence embedding of the natural language de-
scription. For sentence embeddings we use the mean GloVe
[21] embedding of all the words in a sentence. GloVe embed-
dings have been shown to be a robust sentence level feature
[23]. Both the BEO vector and the sentence embedding are
passed through hidden layers of size 256, and the embedding
dimension is then further reduced to size 64. The cosine
similarity loss is calculated between the 64 dimensional
embeddings of language and BEO vectors. We also predict
object attributes directly from the 256 dimensional hidden
layers for language and BEO vectors (separately), which we
train via binary cross-entropy loss. As a result, for each of
the inputs (natural language description and depth image),
two outputs are produced: a 64 dimensional joint embedding,
and a prediction over the six attributes selected for each
object class.1

C. Data Collection and ShapeNet Object Meshes

We used three classes of objects from ShapeNet as our
primary dataset: couches, cars, and airplanes. These models
consist of 3D meshes, aligned and scaled to relatively
consistent size. ShapeNet is a fairly noisy dataset with
significant amounts of variation; it is not unusual to find
models with extremely unusual shapes and some models
may be incomplete. We manually removed objects from each
category that were incorrectly classified or had significant
damage to their meshes, but retained odd and unusual
examples. During BEO training, each object was voxelized
to a resolution of 64× 64× 64 and 300 dimensional object-
subspaces were used, capturing between 80% — 90% of
training object variance.

We collected natural language text descriptions and at-
tribute labels, for the purpose of discriminating between dif-

1Each input modality, language and depth, takes an independent path
through the network. Therefore, we can obtain our 64-dimensional embed-
dings and attribute predictions from just a BEO vector or language vector,
which is required during attribute classification.



TABLE I
OBJECT RETRIEVAL RESULTS

Object Class Human Baseline Full-view Partial-view View-transfer
Top-1 (Std. Error) Top-1 Top-2 Top-1 Top-2 Top-1 Top-2

Couch 77.3% (0.025) 60.6% 87.1% 58.6% 86.3% 57.6% 85.1%
Car 76.0% (0.024) 74.6% 93.8% 73.5% 93.4% 72.2% 93.1%

Airplane 69.3% (0.027) 66.7% 92.8% 67.0% 92.5% 68.3% 92.7%

ferent objects using language descriptions, through Amazon
Mechanical Turk (AMT). The data collection interface can
be seen in Figure 4. AMT workers were shown full 360◦

views of the 3D object instances, and got to select from a
5-point scale for each attribute classification. The attribute
labels were collected to serve two purposes: First, they allow
us to observe the amount of object attribute signal present
in the BEO representation. Second, we wanted to guide the
natural language descriptions provided by the AMT workers,
as otherwise the workers are likely to just describe an object
with its name and not provide any object discriminative
language. The attributes were chosen such that they describe
physical and abstract properties of an object. For example,
physical attributes such as long/short and abstract attributes
such as luxury/economical were chosen for cars. We se-
lected attributes which had the highest inter-rater agreement,
as we wanted the attribute selections to have the highest
consistency among English speakers. The chosen object
attributes are listed in Table II. AMT data were collected
for 1250 couch, 3405 car, and 4044 plane object instances.
We collected 10 sentence and attribute descriptions for each
object instance.

IV. EXPERIMENTS AND RESULTS

Our evaluation was designed to verify that our combined
model can accurately select an object given a natural lan-
guage description of the object and depth image observations
of possible candidate objects. We evaluate our model on
two tasks: object retrieval and attribute classification. During
object retrieval, the system observes three possible objects
and must select the object corresponding to an input natural-
language description. When performing attribute classifica-
tion, the system observes a single object and must correctly
predict its attributes.

We split our collected AMT data using 70% for train-
ing, 15% for development, and 15% for testing. Training
examples for the language portion of the model consisted
of pairs of depth-image-induced BEO object vectors and
corresponding language descriptions, along with the mean
of the crowd-sourced attributes, binarized to signify the
presence or absence of an attribute. Negative examples
were generated by randomly selecting depth images and
language descriptions that do not correspond. An equal
number of positive and negative examples were shown to
the network over the course of training. The cosine similar-
ity loss we employed ensures that positive examples have
higher cosine similarities and negative examples have lower

cosine similarities in the 64 dimensional space.2 We then
trained the language-object embedding of our model using
5 randomly sampled depth images—and their resulting BEO
shape vectors—from each object in the training set, along
with the natural language description, and the binarized
mean of human-provided attribute labels, corresponding to
each depth image.

For the retrieval task, we show results for three training
conditions: 1) Full-view: a baseline where the system is
given a ground-truth 3D model for the object it is observing,
2) Partial-view: the scenario where the system is trained and
evaluated with synthetic depth images over a wide variety
of possible viewpoints for each object, 3) View-transfer: the
system is identical to the previous partial-view case, except
all training images come from a frontal viewpoint and all
evaluation images are obtained from a side-rear view. We
train our model separately on all three object classes we
sourced from ShapeNet. In all experiments, the input BEO
embeddings to the language portion of our network were
trained directly from all non-language-annotated meshes in
the training dataset. In the partial-view and view-transfer
cases, HBEONet was then trained using 600 synthetically
rendered depth images, across a variety of viewpoints, from
each 3D mesh. The baseline, full-view case, uses equation 1
instead of HBEONet to transform object observations into
BEO embeddings.

To demonstrate the ability of our system to produce
reasonable language attributes given a single query depth
image, we also evaluate our model’s attribute prediction
performance against a human baseline.

Finally, to show the applicability of our approach to
a real robot, we tested our system on a Baxter robot
and demonstrated successful discrimination between three
candidate objects given natural language descriptions and a
Microsoft Kinect-generated depth image.

A. Object Retrieval from Natural Language

To evaluate the retrieval performance of our model, we
randomly selected a set of 10 depth images for each object
in our test set. In the full-view case, we simply used the 3D
model for each object in the test set.

In each retrieval test, we showed the system three different
objects along with a natural language description of one
of those objects. We report the accuracy of our model in
selecting the correct object in Table I for both top-1 and
top-2 retrieval metrics.

2Training employed the Adam optimizer, with a learning rate of 0.0001,
and proceeded until accuracy on the development set began to decrease.



Observed Depth Image Ground Truth Object 
Model

Predicted Object Model Ground Truth 
Language Attributes

Predicted Language 
Attributes

Binarized Ground Truth 
Language Attributes

Fig. 5. Non-cherry-picked attribute prediction examples, produced by our model from single depth image input. The Predicted Object Model column
visualizes BEO-predicted embeddings projected back into voxel space via equation 2.

Fig. 6. Example training depth image (left) and test depth image (right)
from the view-transfer experiment. The underlying BEO representation
maps these substantially different viewpoints to the same embedding space,
helping the language grounding network ground object names and attributes
to objects from unseen viewpoints.

We also evaluated the robustness of our system to substan-
tial viewpoint differences between testing and training data
by training our language model with only frontal views while
evaluating model performance based only on rear-side views.
Figure 6 shows example training and testing depth images
from our view-transfer experiment for a car object instance.
Because the BEO representation is viewpoint invariant, our
system successfully performs this task despite the dramatic
distribution change between the training and evaluation
datasets; see View-transfer results in Table I.

We found that not only did the performance of our system
decline only slightly between the fully-observable-object
(full-view) baseline and the depth image-based partial-view
scenario, training our model with annotated images from a
single viewpoint (view-transfer) also failed to dramatically
reduce performance. These results constitute a strong indica-
tor that our system is successfully achieving view invariance

and generalization by relying on the larger set of unlabeled
object meshes used to train the BEO embeddings.

B. Human Retrieval Baseline

We compare the performance of our system to a human
baseline for the retrieval task. Humans are expert symbol
grounders and are able to ground objects from incomplete
descriptions rather well from an early age [24]. We showed
human users (full 360-degree views of) three objects and
one language description, where the language was collected
from AMT for one of the objects shown, and asked them
to pick the object to which the language refers. The sample
size for this experiment is 300 users, and the study was
done on AMT. The results are shown in Table I. We found
human performance similar to our system’s top-1 retrieval
accuracy in the full-view case. Even human users are not
perfect at this task, as ambiguity exists between objects and
their descriptions in many retrieval scenarios; because the
set of three objects to be retrieved are chosen at random,
there are often multiple very similar objects that must be
disambiguated, resulting in multiple reasonable predictions.

C. Object Attribute Prediction

We also evaluated the 6-category object attribute predic-
tions produced by our system; we predict language attributes
for each of our object classes; Table II summarizes our
system’s performance on this task, while Figure 5 illustrates
several example attribute predictions produced by our sys-
tem given a single query depth image. Attributes in each



TABLE II
CHOSEN OBJECT ATTRIBUTES AND OUR SYSTEM’S RESPECTIVE ATTRIBUTE PREDICTION F1 SCORES

Object Class Attr. 1 Attr. 2 Attr. 3 Attr. 4 Attr. 5 Attr. 6

Couch Straight/Bent Seats 1-5+ No-Arms/Has-Arms Plush/Understuffed Short/Long Simple/Ornate
0.87 0.87 0.80 0.64 0.83 0.67

Car Long/Short Curvy/Boxy Fast/Slow Emergency/Not Luxury/Economy Seats 1-5+
0.81 0.83 0.83 0.91 0.77 0.83

Airplane Rounded/Angular Commercial/Military Propeller/Jet Historical/Modern Engines 0-4+ Seats 0-4+
0.88 0.91 0.94 0.93 0.73 0.88

histogram are in the order, from left to right, that they are
listed in Table II. The first column of Figure 5 illustrates the
input depth image given to the system, the second column
the observed object’s ground truth shape, the third column
the shape back-projected, via Equation 2 from the predicted
BEO embedding, the fourth column contains raw attribute
labels gathered from human-labelers for that object, the fifth
column show these human-annotate labels after being bina-
rized, and the sixth column shows the attribute predictions
output by our system. Note that the system is trained with
binarized attribute labels. The system was generally quite
accurate when performing attribute predictions; it tends to
be most confident in scenarios where human-labelers were
highly mutually consistent, which likely resulted in increased
consistency among attribute labels for similar objects in the
training data.

D. Picking Physical Objects from Depth Observations and
Natural Language Descriptions

We implemented our system on a Baxter robot: a mechan-
ically compliant robot equipped with two parallel grippers.
For this evaluation, we obtained realistic model couches
(designed for use in doll houses) to serve as our test
objects. We use the same (synthetically trained) network
employed in the prior experiments, without retraining it
explicitly on Kinect-generated depth images. We passed a
textual language description of the requested object into our
model along with a manually-segmented and scaled Kinect-
captured depth image of each object in the scene. The robot
then selected the observed object with the highest cosine-
similarity with the language description and performed a
pick action on it. Our system successfully picked up desired
objects using phrases such as “Pick up the couch with no
arms.” Despite having no doll-house couches or Kinect-
produced depth images in its training data, our system was
able to generalize to this new domain.

V. FUTURE DIRECTIONS

One of the critical challenges in robotics is scaling tech-
niques to work in a wide array of environments. While
the results presented in this paper constitute an important
step towards grounding objects to natural language, existing
work in this area still generally only applies to a small
number, 1 — 4, of object classes [5], [25]. Moving forward,
more expansive datasets, of both natural language object
descriptions and 3D shapes, are necessary to enable larger
systems to be learned. While the ShapeNet object database

is incredibly useful, it is still small by modern machine
learning standards, containing roughly 50 classes (only 10
of which have at least 1k examples) and 50k object models.
Just as the introduction of ImageNet, with a thousand classes
and a million images, pushed the state of the art in 2D
classification forward, a similarly sized shape dataset would
be invaluable for 3D object understanding.

VI. CONCLUSION

We developed a system to ground natural language de-
scriptions of objects into a common space with observed
object depth images. This scenario is challenging because
novel objects will only be observed from a single, possibly
unusual, viewpoint. Our approach decouples 3D shape un-
derstanding from language grounding by learning a genera-
tive 3D representation (using BEOs) that maps depth images
into a viewpoint-invariant low-dimensional embedding. This
3D representation is trainable from non-annotated 3D object
meshes, allowing us to label only a small subset of object
depth images compared to the whole dataset. This viewpoint
invariance and data efficiency is key due to the difficulty of
acquiring large volumes of human-annotated labelling.

We show that our system successfully discriminates be-
tween objects given several segmented candidate depth im-
ages and a natural language description of a desired item,
performing almost as well as a human baseline. This object
discrimination is possible even in challenging scenarios
where the training depth images and evaluation depth images
are selected from entirely different viewpoints. We also
demonstrate our method on a Baxter robot and show that the
robot is able to successfully pick the correct item repeatedly
based on a natural language description.
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