
Bounded-Error LQR-Trees

Barrett Ames1 George Konidaris2

Abstract— We present a feedback motion planning algorithm,
Bounded-Error LQR-Trees, that leverages reinforcement learn-
ing theory to find a policy with a bounded amount of error. The
algorithm composes locally valid linear-quadratic regulators
(LQR) into a nonlinear controller, similar to how LQR-Trees
constructs its policy, but minimizes the cost of the constructed
policy by minimizing the Bellman Residual, which is estimated
in the overlapping regions of LQR controllers. We prove a
sample-based upper bound on the true Bellman Residual, and
demonstrate a five-fold reduction in cost over previous methods
on a simple underactuated nonlinear system.

I. INTRODUCTION

Consider optimizing the control policy for a high-
performance robot arm in an industrial setting. At low and
medium speeds, the arm’s design keeps it rigid and kine-
matic plans work well. However, at high speeds, dynamics
begin to affect its ability to follow a desired trajectory. In
many cases, the dynamics come in the form of nonlinear
constraints. These problem characteristics make the LQR-
Tree algorithm [13] a reasonable choice for constructing a
policy. LQR-Tree is able to scale and handle nonlinearities
due to its use of trajectory optimization. In addition, the sta-
bility guarantees provide assurance that the arm can execute
the trajectories robustly. However, it does not optimize the
resulting policy in a global sense.

We introduce an algorithm that bounds the amount of
error present in a LQR-Tree policy by leveraging reinforce-
ment learning theory and distribution-free regression theory.
From reinforcement learning we use a generalization of the
Bellman Residual [16] (Fig. 1) to provide a measure of
how well the current set of controllers accomplishes the
task for a given reward function. We then upper bound this
theoretical quantity with a sampled version using tools from
distribution-free regression theory [4].

The algorithm developed in this paper inherits all of the
favorable properties of LQR-Trees. Primarily, it is capable
of constructing controllers as the state space scales, operates
directly on the continuous state and action spaces, has
verifiable stability, and considers feedback in the planning
process. This work adds the ability to bound the error from
optimal, an essential aspect for many tasks.

II. BACKGROUND

LQR-Tree [13] is a prominent feedback motion planning
algorithm. It uses advances in automatic controller construc-
tion to form a set of controllers for underactuated nonlinear
systems. LQR-Trees is a sampling-based planner [6] but

1Duke University Computer Science, cbames@cs.duke.edu
2Brown University Computer Science, gdk@cs.brown.edu

Fig. 1: An illustration of controller overlap. The cyan region
highlights the overlap between funnels, which can be used
for estimating the Bellman Residual. The residual is used
to determine whether the two funnels are consistent in their
value estimate.

the local planner is replaced with a method that creates
provably stable controllers. It continues to add controllers,
stably sequencing them, until they cover a bounded region of
configuration space. The components of the algorithm follow.

A. Stable Controller Construction

The first major component of the algorithm constructs a
stable controller that connects two states. First a reference
trajectory between the two states must be found. Trajectory
optimization finds a sequence of states and actions that
will take the robot from the start point to the goal while
obeying constraints enforced by the physics of the robot
and attempts to minimize the cost function. However, it can
only be guaranteed to find a local minimum. The output of
trajectory optimization is a single trajectory and if the robot
ever deviates from it, there is no defined control behavior.
Therefore, the LQR-Tree algorithm wraps each trajectory in
a Time-Varying Linear-Quadratic Regulator (TV-LQR) [1].
Before we review TV-LQR, we will briefly touch on the
Linear-Quadratic Regulator.

1) Linear-Quadratic Regulator (LQR): The Linear-
Quadratic Regulator (LQR) [1] assumes the state dynamics
are linear in the state and action variables, and that the cost
function is quadratic in the state and action variables. When
these assumptions are satisfied a continuous problem of high
dimension can be solved directly. The transition function of
the LQR is defined as:

ṡ(s, a) = As+Ba. (1)

Fig. 2: Time Varying LQR is an extension of LQR to handle
trajectory following. This figure depicts three different value
functions for three different time points along the trajectory.
Since the LQR problem is solved in relation to the trajectory
the value function solutions will change in time. Thus some
portions may have larger regions of stability than others.

A describes how an agent’s state would evolve passively over
time and B describes how an action changes the state of the
agent. s is the state of the system and a is the action taken.
The cost function of LQR is defined as:

c(s, a) = sᵀQs+ aᵀRa, (2)

where Q weights the how much the state affects the cost
incurred and R is the cost associated with taking an action.
LQR is heavily used in control theory because an optimal
solution is known for the continuous case. The value function
of an LQR problem is found via the Discrete Algebraic
Riccati equation:

P = AᵀPA+ (AᵀPB)(R+BᵀPB)−1(BᵀPA) +Q. (3)

The value function for this control problem is:

V (s) = sᵀPs. (4)

The ease of computing the solution is balanced by the
rather stringent requirements that the state dynamics are
linear, and the cost is quadratic. While this might seem to
limit the applicability of LQR, locally linearizing has proved
to be an effective solution for many systems [12].

2) Time-Varying LQR (TV-LQR): Time-Varying LQR [1]
is an extension of LQR which handles a time-varying goal
point, i.e., a trajectory. TV-LQR approximates the region
around a trajectory as an LQR problem and provides feed-
back commands for states that are off of the trajectory.

The state dynamics for the time-varying problem are
linearized as:

ṡ(s, a) = A(t)s+B(t)a. (5)

The value function and control are then determined in
relation to the goal trajectory, s̃, given:

V (s, a, t) =

∫ T

t

(
aᵀRa+ (s− s̃(t))ᵀQ(s− s̃(t))

)
dt.

The feedback control is then a linear term, K, summed with
the command selected by the trajectory optimizer, atraj :

aTV = Kᵀs+ atraj . (6)

Combining TV-LQR with trajectory optimization allows for
a small region of acceptable states around a trajectory to be
stabilized. Figure 2 depicts how the value function changes
along a trajectory at three different time points.

While the TV-LQR feedback controller is defined for
all states off of the trajectory, it is not stable for all of
those points. In order to determine the region of stability
around the trajectory, the LQR-Tree algorithm uses a convex
optimization approach which constructs an ellipse that is an
inner approximation of the region of stability. Any point
inside the region is stable in the sense of Lyapunov.

3) Lyapunov Stability Analysis: Lyapunov stability analy-
sis is a method for ensuring that a dynamical system reaches
a region around an equilibrium point. If a controller can
be constructed whose value function has a derivative that
is negative everywhere but at the goal, then that controller
is guaranteed to converge to the goal region:

V̇ = ∇V f(s(t), a(t)) ≤ 0. (7)

Intuitively, the negative derivative of the value function
for a controller ensures that every step of every trajectory
decreases in cost. The region around the goal point for which
the value function has a negative derivative is the region of
attraction. Any point in the region of attraction is guaranteed,
asymptotically, to converge to the goal.

There are several ways to construct Lyapunov functions
and their associated regions of attraction. The Sum-of-
Squares (SOS) [14] approach uses semi-definite program-
ming and a polynomial description of the dynamical sys-
tem to construct a provably conservative estimate of the
Lyapunov function. However, it does not scale well to
high dimensions. This is in part due to the explosion of
polynomial terms as the dimension of the system increases.
There are also simulation-based approaches [10] which rely
on probabilistic arguments for defining their regions of
attraction. Most recently, the simulation-based approaches
were paired with function approximators [11] to learn oddly-
shaped regions of attraction.

B. Space Covering

The LQR-Trees algorithm continues to construct these
stability region bounded controllers until a bounded region of
the state space has been covered in controllers. The addition
of controllers happens in a method similar to RRT [7].
A random point, not contained in any current controller’s
stability region, is selected. If a stable controller can be
constructed from that point to any point already on the
tree then that controller is added. If a controller cannot be
constructed then a new point is selected. Figure 1 provides
an idea of how the tree might grow to cover the configuration
space.

While the LQR-Trees algorithm provides a way to con-
struct provably stable policies for underactuated nonlinear
systems it is not capable of providing a bound on the error
of the policies generated.

III. BOUNDED-ERROR LQR-TREES

We use a combination of optimal control methods and
bounds from reinforcement learning to construct a bounded-
error policy for nonlinear underactuated systems. The
bounded error allows for the policies that are generated to be

optimized with respect to a cost function. In addition, having
bounded error provides some assurance that the system
will perform as expected, which is becoming increasingly
important as robotics begins to be applied in close proximity
to humans and in safety-critical applications.

The method described here combines several existing
methods in order to construct a set of controllers that cover
the configuration space with verifiable and approximately
optimal controllers. Trajectory optimization provides trajec-
tories that are locally optimal and respect constraints. TV-
LQR and Lyapunov analysis provide approximate methods
for determining the value of states around the trajectory, and
the boundaries of those estimates. Sampling-based motion
planning provides a method for covering the space, as well
as guidance on which neighbors to connect to. Finally,
reinforcement learning theory provides a way to verify
globally that the controllers are ε-optimal. Figure 3 provides
an overview of the whole process.

Fig. 3: A flow diagram of the system detailed in Section III.
The start point for the diagram is Sample State.

A. Dynamic Programming and Trajectory Optimization

Trajectory optimization has significant benefits over dy-
namic programming as the dimensionality of the problem
grows. However, trajectory optimization only finds locally
optimal trajectories. We combine these two approaches to
construct bounded cost controllers. Atkeson [2] notes that a
Bellman Residual can be calculated at any point where two
trajectories overlap. The Bellman Residual is a measure of
the inconsistency in value function estimates. Each trajectory
contains an estimate of the value function at that point,
thus the difference of the value functions at that point is
a sample of the Bellman Residual. This is accomplished by
constructing a value function for every trajectory returned by
the trajectory optimizer. The extent of the value function is
limited by Lyapunov analysis. Lastly, this cycle is repeated
until all controllers overlap with at least one other controller,
and all samples returned are within the threshold on the
Bellman residual.

1) Trajectory-Based Approximate Value Function: The
first step is to approximate the value function of a task using
a set of trajectories returned by the trajectory optimizer.
The trajectory τ returned by the trajectory optimizer is
the reference for a TV-LQR policy, which defines a value
function centered on the trajectory. The region of stability for

Fig. 4: The trajectory τ and its associated TV-LQR funnel
are used to approximate the value at Vlocal.

the TV-LQR defines the extent to which the value function is
considered valid. To be clear, the TV-LQR could approximate
the value of any point, however here the approximation is
restricted to the stable region around the trajectory. Only
using the values from inside the stability region defined by
the Lyapunov analysis ensures that only stable controllers
are constructed.

In order to estimate the value of a particular state, first
the value of the closest point, s0, on a trajectory is found by
backing up along the trajectory:

Vτ (s0) =

T∑
i=0

γir(si, τ(si)) + γT+1V (sT+1), (8)

where V (sT+1) is the value of the end point the trajectory
optimizer used, and γ is the discount factor, which weights
how a reward received now should be traded with a reward
in the future. The process of selecting the end point will
be discussed in Section III-A.2. Next, the value function
constructed by TV-LQR for that point on the trajectory is
used to estimate the local value of the sample point:

Vlocal(s) = sᵀPlocals. (9)

This local value is then combined with the backup from
equation 8 to provide a global action-value estimate:

V (s) = Vlocal(s) + Vτ (s0). (10)

This approximation is visualized in Figure 4. The local value
estimate, Vlocal, performs two duties here. First, it provides
an approximate value for the value function from a particular
point on the trajectory. Note that, the value function, Vlocal
returned by TV-LQR for a trajectory is not the same as
the value function for the task, but rather it is the value
function for stabilizing the system around the trajectory.
Freeman and Primbs [3] demonstrate that the Lyapunov value
function, in this case Vlocal is an upper bound on the optimal
value function for some meaningful reward function. Primbs
et al. [9] relate Vlocal and the optimal value function of a
known reward function by a scalar multiple:

VTask(s) ≈ λ(s)Vlocal(s). (11)

Knowledge of λ allows an approximation of the optimal
value function to be calculated from the TV-LQR value
function. Primbs et al. [9] demonstrate that λ can be derived
from Sontag’s formula [3], which results in the following:

λ(s) = 2

(
VsA+

√
(VsA)2 +Q(s)(VsBBtV ts)

VsBBtV ts

)
, (12)

where Vs is the derivative of the local value function,
Vlocal, with respect to the state space, A is the passive state
dynamics, B is the dynamics resulting from control, and Q
is the cost due to state only. This approximation works well
in areas where the shape of the local value function and the
optimal value function are similar. The Lyapunov analysis
ensures that the local value function and the optimal value
function are of similar shape in the stability region.

The second way the local value function is used is to
determine the boundary around the trajectory:

{s|Vlocal(s) < ε}. (13)

Here the level set of the local value function is used to
determine the region of stability for the controller. The
combination of these two aspects permits a value function
approximation to be constructed any time a point is contained
within a funnel.

2) Neighbor Selection: In addition to refining the trajec-
tories that a particular controller takes, the neighbor that a
particular start state is connected to will also affect the op-
timality of the solution. Following Hauser and Zhou [5], we
only consider neighbors with a decreasing cost as iterations
increase. Thus, in the limit, the trajectory optimization will
be using the approximately optimal value function, V̂ ∗, to
connect to the goal.

3) Termination Criteria: Convergence is determined by
evaluating the Bellman Residual at sample points drawn from
a uniform distribution over the state space. Since a point
may belong to more than two funnels, only the two lowest
cost estimates are used. If the lowest two approximations are
within ε of each other then we bound the error from optimal
using a technique from Williams and Baird [16]:

||V ∗ − V || = ε

1− γ
. (14)

We continue adding trajectories until all sampled points have
two funnels with approximate values within ε of each other.

One difficulty with this approach is that the Williams
and Baird bound is based on an ε that is defined over the
entire value function of a task, and here it is being used
to determine the convergence of a small number of funnels.
However, because each funnel is a partial policy, and all
partial policies are being held to this bound then the whole
policy will also obey it. Another difficulty is that the Bellman
Residual is defined over the whole function as opposed to
samples. We address the validity of the sample bound in
Section III-C.

B. Bounded-Error LQR-Trees Algorithm

The algorithm combines the two previous sections into
an alternating algorithm which first constructs an LQR-Tree
that probabilistically covers the configuration space. Lines
6-12 implement the same probabilistic coverage mechanism
that was used in the original LQR-Trees paper [13]. The
ValidValue function implements the bound from equation 14.
InFunnel checks whether a point is contained in any of
the regions of attraction for nodes of the LQR-Tree. The

Algorithm 1 Bounded-Error LQR-Trees

1: procedure CONSTRUCTLQRTREE(c, g, α, εmax)
2: . The cost function, the goal, the contraction

coefficient, and the maximum amount of error
3: T ← ∅
4: T ← LQR(g) . Add LQR solution for goal to tree
5: coverThresh ← 459
6: coverSum ← 0
7: ε = Rmax

2(1−γ)
8: while ε > εmax do
9: ε = α ∗ ε

10: while coverSum > coverThresh do
11: s← RandomConfiguration
12: if ValidValue(s, ε) then
13: coverSum ← coverSum+1
14: else
15: coverSum ← 0
16: if ¬InFunnel(s) then
17: n←SelectNeighbor(s, T)
18: τ ← ConstructFunnel(s, n, c)
19: T ← AddFunnel(τ, T)
20: return T

selectNeighbor function implements the method described
in the Neighbor Selection subsection. ConstructFunnel uses
a trajectory optimizer to connect s to sn, where sn is the
zero point defined by the Lyapunov function at node n, such
that the cost according to c is minimized. It then passes that
trajectory to a TV-LQR method which constructs a candidate
Lyapunov function that is then scaled by a Sum-of-Squares
Lyapunov analysis. AddFunnel takes the previously con-
structed funnel and adds representative Lyapunov functions
to the tree.

C. Empirical Bellman Residual Analysis
The algorithm presented in the previous section depends

critically on the existence of a sample-based upper bound on
the Bellman Residual. We call this the Empirical Bellman
Residual:

Definition 1.

Bn =
1

n

n∑
i

(fa(xi)− fb(xi))2, (15)

where fa is the value function from one funnel, and fb is
the value function from another funnel.

Now we prove that the Empirical Bellman Residual is
an upper bound for the value function approximation that
we have constructed. The approach taken here is similar to
Maillard et al. [8].

Theorem 1. The Bellman Residual is upper bounded by:

B < Bn + 32

√
2 log(16δ)

n
L2. (16)

L is the upper bound on the discounted value function, and
1− δ is the probability that this bound holds.

Proof: Györfi et al. [4], in Theorem 9.1, provide the
following general Hoeffding bound:

P
(
sup
g∈G

∣∣ 1
n

n∑
g(Xi)−E{g(X)}

∣∣ > ε
)
<

8E{N1(
ε

8
,G, Xn)}e

−nε2

128M2 , (17)

where G is the class of functions that are fit to samples
Xn. M is a bound on the value that samples drawn from
X can take, −M < x < M |x ∼ X . n is the number of
samples drawn. N1 is the ε-covering number for functions
in G w.r.t. the 1-norm, and ε

8 distance between them. In order
to determine M a bound for:

(fa(x)− fb(x))2,
must be determined. We know that the maximum value

a value function can reach in the discounted case is Rmax
1−γ ,

where Rmax is the maximum reward achievable from the re-
ward function. In order to be consistent with Györfi et al. [4]
we refer to Rmax

1−γ as L:

(fa(x)− fb(x))2 < (L− (−L))2 = 4L2.

This allows us to substitute M = 4L2 into equation 17.
Next we bound the ε-covering number for piecewise polyno-
mial function approximators that fit LQR solutions to each
region. From Györfi et al. [4], Lemma 9.3, we know that the
ε-covering number for the l2-norm can be upper bounded:

N2 ≤
(
4W + ε

ε

)D
.

W , which must be > 0, bounds the squared average value
of the function. D is the dimension of the function class.

However, we need a bound for the covering number with
respect to the l1-norm. This is obtained by multiplying by
the number of l1-norm ε balls that can fit inside a a unit
l2-norm ball:

N1 ≤ (
2

ε
)DN2 =

(
8W + 2ε

ε2

)D
.

For LQR-Trees the dimension of the function class must
be the number of polynomial basis functions plus one, times
the number of partitions, which is k below. This holds
because the function approximator constructed is a piecewise
polynomial approximation where every partition is fit with
the same degree polynomial. This can be combine with

equation 17 by setting W = ε(2
1
k ε−2)
8 . Thus we can upper

bound equation 17 by the following:

P
(
supg∈GLQR−Tree |

1

n

n∑
g(Xi)−E{g(X)}| > ε

)
<8

(
ε(2

1
k ε− 2) + 2ε

ε2

)k
e

−nε2

2048L4

=8

(
2

1
k

)k
e

−nε2

2048L4 .

The function class, GLQR−Tree, is the piecewise polyno-
mial class that contains all representations built by LQR-

Trees. Next we set ε = 32

√
2 log(16

δ)

n L2:

P
(
supg∈GLQR−Tree |

1

n

n∑
g(Xi)−E{g(X)}| > ε

)
<8

(
2

1
k

)k
e

−n
(
32

√
2 log(16

δ
)

n
L2
)2

2048L4

=8

(
2

1
k

)k
δ

16

=δ.

This implies that with probability 1 − δ equation 16 holds.

D. Experiments

In order to validate the model we evaluate its performance
on the constrained inverted pendulum problem. The con-
strained inverted pendulum problem was chosen because it
is an underactuated nonlinear control problem, which makes
it a reasonable first test for robotics control frameworks. The
approach detailed in the previous section is compared to two
baselines: a Value Iteration dynamic programming solution
that uses state space discretization, and LQR-Trees.

Comparisons between the baselines and the proposed
approach were performed by randomly selecting a start state
from the configuration space of the pendulum. The goal in
all experiments was to reach the inverted position, 3.14,
with velocity 0. Trajectories from all the different baselines
were re-sampled so that they used the same time step.
Then a trapezoidal integration was used on the re-sampled
trajectories to calculate the cost. This was repeated for 100
samples to gather sufficient statistics on max cost and average
cost. All experiments were carried out in MATLAB using
Drake [15].

E. Results

In order to compare bounded error LQR-Trees to the two
baselines the value function created by the value iteration
baseline was considered to be V ∗. In Figure 5 several
different bounded error LQR-Trees are compared to the
upper bound that they were given. Every tree respects the
upper bound it was provided, as we would expect from
our proof. The horizontal yellow line is the maximum
observed error from the baseline LQR-Tree. In summary,
Figure 5 demonstrates that the bound from equation 14 holds.
This validates that equation 14 holds if there are multiple
partial policies being concatenated. It also validates that the
approximation of the value function via the Primbs multiplier
(eqn. 12) and a quadratic Lyapunov function are an upper
bound on the optimal value function.

Next we compare the value functions produced by Value
Iteration and the first iteration of the bounded LQR-Trees
approach. Figure 6a is the approximate value function con-
structed by the proposed method after one iteration. Fig-
ure 6b is the value function created by Value Iteration. The

Fig. 5: A comparison of Bounded Error LQR-Trees and LQR-Trees. The red line is the error upper bound. The yellow line is
the maximum observed error of the LQR-Trees method. The blue line is the observed maximum error for the Bounded-Error
LQR-Trees method described in Section III. All the bounded error trees constructed stay under the requested error bound.

(a) The approximate value function constructed by sampling from
the Lyapunov stability regions.

(b) The value function constructed by Value Iteration for the same
problem.

Fig. 6: The LQR-Trees value function is similar in structure to the optimal value function from Value Iteration.

overall structures of the two value functions are similar. Both
contain a deep valley near the solution, with large ridges
near the corners (4.71, 10) and (4.71,−10). In addition,
they both contain a small bump centered on (0, 0). The
major difference between the two is the sharpness of the
creases. This is due to the application of Lyapunov stability
analysis to the approximation of values. In regions where
the dynamics might change rapidly, equation 7 may no
longer hold true, and thus the region of attraction will have
boundaries on or near rapid changes in the dynamics. This
prevents the value approximation from smoothing out creases
as is seen in Figure 6b. For example, the regions of attraction
found in the valley around the solution, (3.14, 0), are aligned
with the long axis of the valley, because the dynamics of
the system rapidly changes once a certain velocity threshold

is surpassed. This threshold corresponds to the top of the
ridge that defines the solution valley. In addition, since the
trajectory optimizer is discretizing in time as opposed to
space, there is no lower bound on how fine the representation
can be in regions of rapidly changing dynamics. Lastly, the
value function constructed according to the proposed method
estimates the cost-to-go of states to be much higher; this
is to be expected as the trajectory optimizer is a nonlinear
optimization. This will be corrected as more iterations are
performed and poorly performing funnels are replaced.

IV. RELATED WORK

Trajectory Centric Reinforcement Learning [2] and LQR-
Trees [10, 13] are the two pieces of work closest to our
method. While Trajectory Centric Reinforcement Learning

(TCRL) uses the Bellman Residual to construct optimal value
functions from sampled trajectories, it does not provide a
principled way for sampling new trajectory start points. It
also assumes that all trajectories end at the goal. While this
is a reasonable assumption for the inverted pendulum, trajec-
tory optimizers will have an easier time reaching subgoals in
high dimension nonlinear dynamics. Further, TCRL uses the
iLQR [12] to approximate the value function of the trajectory.
While this is reasonable for approximation, it says nothing
about the stability of points off the trajectory. LQR-Trees
is the direct predecessor to this work, sharing the most in
common with the approach outlined here. However, it is
missing any notion of optimality: the policies returned by it
are stable and will reach the goal, but may be sub-optimal.
The proposed approach tackles this by combining Primbs’
multiplier with the Bellman Residual approach of TCRL to
provide an upper bound on the error of the LQR-Tree.

V. CONCLUSION

We introduced a new algorithm that constructs bounded
error policies for underactuated nonlinear systems. The per-
formance of the resulting policies were bounded by the
Bellman Residual, for which a sample based upper bound
was constructed. Constructing funnels which minimized this
Empirical Bellman Residual resulted in LQR-Tree policies
that performed significantly better than vanilla LQR-Trees,
as was demonstrated on the inverted pendulum. This work
represents a significant step towards optimal and scalable
nonlinear control.

ACKNOWLEDGMENTS

This research was supported in part by DARPA under
agreement number D15AP00104, and the ONR under the
PERISCOPE MURI Contract N00014-17-1-2699. The U.S.
Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. The content is solely the responsibility of
the authors and does not necessarily represent the official
views of DARPA. Barrett Ames was supported by a NDSEG
Fellowship. A special thanks to Jiayue Fan for her insightful
comments on drafts of this paper.

REFERENCES

[1] B.D.O. Anderson and J.B. Moore. Optimal Control: Linear
Quadratic Methods. Prentice Hall, 1990.

[2] C. Atkeson and B. Stephens. Random Sampling of States in
Dynamic Programming. IEEE Transactions on Systems, Man,
and Cybernetics, Part B, 38(4):924–929, 8 2008.

[3] R.A. Freeman and J.A. Primbs. Control Lyapunov Functions:
New Ideas From an Old Source. In Proceedings of 35th IEEE
Conference on Decision and Control, 1996.

[4] L. Györfi, M. Kohler, A. Krzyzak, and H. Walk. A
Distribution-Free Theory of Nonparametric Regression.
Springer, 2002.

[5] K. Hauser and Y. Zhou. Asymptotically Optimal Planning by
Feasible Kinodynamic Planning in State-Cost Space. IEEE
Transactions on Robotics, 32(6):1431–1443, 2016.

[6] S.M. LaValle. Planning Algorithms. Cambridge University
Press, 2006.

[7] S.M. LaValle and J.J. Kuffner. Randomized kinodynamic
planning. In Proceedings of the 1999 IEEE International
Conference on Robotics and Automation, pages 473–479,
1999.

[8] O-A. Maillard, R. Munos, A. Lazaric, M. Ghavamzadeh,
M. Sugiyama, and Q. Yang. Finite-Sample Analysis of Bell-
man Residual Minimization. In Proceedings of the 2nd Asian
Conference on Machine Learning, pages 299–314, 2010.

[9] J.A. Primbs, V. Nevistić, and J.C. Doyle. Nonlinear Optimal
Control: A Control Lyapunov Function and Receding Horizon
Perspective. Asian Journal of Control, 1(1):14–24, 1999.

[10] P. Reist, P. Preiswerk, and R. Tedrake. Feedback-motion-
planning with simulation-based LQR-trees. The International
Journal of Robotics Research, 35(11):1393–1416, 2016.

[11] S.M. Richards, F. Berkenkamp, and A. Krause. The Lyapunov
Neural Network: Adaptive Stability Certification for Safe
Learning of Dynamical Systems. In Proceedings of the
International Conference on Robot Learning, 2018.

[12] Y. Tassa, N. Mansard, and E. Todorov. Control-Limited Dif-
ferential Dynamic Programming. In Proceedings of the 2014
IEEE International Conference on Robotics and Automation,
pages 1168–1175, 2014.

[13] R. Tedrake. LQR-Trees: Feedback Motion Planning on Sparse
Randomized Trees. In Robotics: Science and Systems V, 2009.

[14] Russ Tedrake. Underactuated Robotics: Algorithms for Walk-
ing, Running, Swimming, Flying, and Manipulation (Course
Notes for MIT 6.832). 2018. URL http://underactuated.csail.
mit.edu/.

[15] Russ Tedrake and Drake Development Team. Drake: A plan-
ning, control, and analysis toolbox for nonlinear dynamical
systems, 2016. URL https://drake.mit.edu.

[16] R.J. Williams and L.C. Baird. Tight Performance Bounds
on Greedy Policies Based on Imperfect Value Functions.
Technical Report NU-CCS-93-14, Northeastern University,
Boston MA, 1993.

http://underactuated.csail.mit.edu/
http://underactuated.csail.mit.edu/
https://drake.mit.edu

	Introduction
	Background
	Stable Controller Construction
	Linear-Quadratic Regulator (LQR)
	Time-Varying LQR (TV-LQR)
	Lyapunov Stability Analysis

	Space Covering

	Bounded-Error LQR-Trees
	Dynamic Programming and Trajectory Optimization
	Trajectory-Based Approximate Value Function
	Neighbor Selection
	Termination Criteria

	Bounded-Error LQR-Trees Algorithm
	Empirical Bellman Residual Analysis
	Experiments
	Results

	Related Work
	Conclusion

