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Abstract

One of the main challenges in reinforcement learn-
ing is solving tasks with sparse reward. We show
that the difficulty of discovering a distant reward-
ing state in an MDP is bounded by the expected
cover time of a random walk over the graph in-
duced by the MDP’s transition dynamics. We
therefore propose to accelerate exploration by
constructing options that minimize cover time.
We introduce a new option discovery algorithm
that diminishes the expected cover time by con-
necting the most distant states in the state-space
graph with options. We show empirically that the
proposed algorithm improves learning in several
domains with sparse rewards.

1. Introduction
A major challenge in reinforcement learning is how to ex-
plore in environments where reward is sparse.

One approach is the construction of temporally extended
actions, or options (Sutton et al., 1999) for exploration
(Machado et al., 2017). However, existing approaches lack
a principled theoretical grounding and their effectiveness
can only be evaluated empirically.

We introduce an option discovery method that explicitly
aims to improve exploration in sparse reward domains by
minimizing the expected number of steps required to reach
an unknown rewarding state. First, we model the behavior
of an agent early in its learning process (that is, before
observing the reward signal) as a uniform random walk over
the graph induced by the MDP’s transition dynamics. We
show that minimizing the graph cover time—the number
of steps required for a random walk to visit every state
(Broder & Karlin, 1989)—reduces the expected number of
steps required to reach an unknown rewarding state. We
then introduce a polynomial time algorithm to find a set of
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options guaranteed to reduce the expected cover time using
the transition function either given to or learned by the agent.
Finding a set of edges that minimizes expected cover time
is an extremely hard combinatorial optimization problem
(Braess, 1968; Braess et al., 2005). Thus, our algorithm
instead seeks to minimize the upper bound of the expected
cover time given as a function of the algebraic connectivity
of the graph Laplacian (Fiedler, 1973; Broder & Karlin,
1989; Chung, 1996) using the heuristic method by Ghosh &
Boyd (2006).

Finally, we evaluate our option discovery algorithm in six
discrete domains where the agent is given the state-space
graph but must learn the location of the reward online. Our
empirical results demonstrate that the approach outperforms
previous state-of-the-art methods.

2. Background
2.1. Reinforcement Learning

Reinforcement learning is the problem of learning a policy
that maximizes the total expected reward obtained by an
agent interacting with an environment. The environment
is often modeled as a Markov Decision Process (MDP)
(Puterman, 1994). An MDP is a five tuple (S,A, T,R, γ),
where S is a set of states, A is a set of actions, T : S ×A×
S → [0, 1] is a state transition function, R : S ×A → R is
a reward function, γ → [0, 1] is a discount factor.

The agent selects actions according to a policy π : S ×
A → [0, 1] mapping states to actions. The expected total
discounted reward from state s following a policy π is the
value of the state:

V π(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V π(s′). (1)

This function is called a value function. The action-value
function of a policy is an expected total discount reward
received by executing an action a and then follow policy π:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)V π(s′). (2)

The goal of the agent is to learn an optimal policy π∗

which maximizes the total discounted reward: π∗ =
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argmaxπ V
π, with corresponding optimal value functions

V ∗ = maxπ V
π and Q∗ = maxπ Q

π .

A state-transition in an MDP by a stationary policy π can
be modeled as a Markov chain {Xt} where P (Xt+1|Xt) =∑
a∈A π(a|s)T (s, a, s′)|Xt+1=s′,Xt=s. The state-transition

graph G = (V,E) of an MDP is a graph with nodes rep-
resenting the states in the MDP and the edges represent-
ing state adjacency in the MDP. More precisely, V = S,
e(s, s′) ∈ E iff ∃aT (s, a, s′) > 0 ∨ T (s′, a, s) > 0. An
adjacency matrix is a square matrix of size |S| × |S| with
(i, j)-value being 1 if e(si, sj) ∈ E and 0 otherwise.

2.2. Options

Temporally extended actions offer great potential for miti-
gating the difficulty of solving difficult MDPs in planning
and reinforcement learning (Sutton et al., 1999). We use
one such framework, the options framework, which defines
a temporally-extended action as follows.

Definition 1 (option): An option o is defined by a
triple: (I, π, β) where:

• I ⊆ S is a set of states where the option can
initiate,

• π : S → Pr(A) is a policy,
• β : S → [0, 1], is a termination condition.

Many previous approaches propose heuristic methods to
generate options where effectiveness can only be demon-
strated empirically (Iba, 1989; McGovern & Barto, 2001;
Menache et al., 2002; Stolle & Precup, 2002; Şimşek &
Barto, 2004; Simsek et al., 2005; Şimşek & Barto, 2009;
Konidaris & Barto, 2009; Machado & Bowling, 2016; Kom-
pella et al., 2017; Machado et al., 2017; 2018; Eysenbach
et al., 2019; Nair et al., 2018; Riedmiller et al., 2018).

As the options framework is very general and difficult to
analyze, we focus on point options (Jinnai et al., 2019), a
simple subclass of options where both the initiation set and
termination condition consist of a single state.

Definition 2 (Point option): A point option is any
option whose initiation set and termination set are
each true for exactly one state each:

|{s ∈ S : I(s) = 1}| = 1,

|{s ∈ S : β(s) > 0}| = 1,

|{s ∈ S : β(s) = 1}| = 1.

(3)

Adding a point option corresponds to inserting a single edge
into the graph induced by the MDP dynamics. We refer to
the state with β(s) = 1 as the subgoal state. Point options
are a useful subclass for several reasons. A point option
is a simple model of a temporally extended action whose

effect on the state-space graph is easy to specify, and whose
policy can often be efficiently computed. Moreover, any
option with a single termination state can be represented as
a collection of point options.

3. Cover Time
In this section we model the behavior of the agent in the
first episode as a random walk induced by a fixed stationary
policy, and show an upper bound to the expected cover time
of the random walk. We model the behavior of a fixed sta-
tionary policy for two reasons. First, it is a reasonable model
for an agent with no prior knowledge of the task. Second, it
serves as a worst-case analysis: it is reasonable to assume
that most of the cases efficient exploration algorithms such
as UCRL (Ortner & Auer, 2007; Jaksch et al., 2010) explore
faster than a fixed stationary policy. Thus the upper bound
we show for the expected cover time is applicable to other
algorithms.

Intuitively, the expected cover time is the time required for
a random walk to visit all the vertices in a graph (Broder
& Karlin, 1989). To define it formally, we first define the
hitting time of any discrete Markov chain {Xt}. Let us
assume this Markov chain has the state space of V , the
vertices of graph G. The hitting time Hij , where i, j ∈ V ,
is

Hij = inf
{
t : Xt = j|X0 = i

}
. (4)

In other words, Hij is the greatest lower bound on the num-
ber of time step t required to reach state j after starting at
state i. Cover time starting from state i is:

Ci = max
j∈V

Hij , (5)

and the expectation of cover time, E[C(G)], is the expected
cover time of trajectories induced by the random walk, max-
imized over the starting states (Broder & Karlin, 1989). As
such, the expected cover time bounds how likely a random
walk leads to a rewarding state.

Theorem 1. Assume a stochastic shortest path problem to
reach a goal g where a non-positive reward rc ≤ 0 is given
for non-goal states and γ = 1. Let P be a random walk
transition matrix, P (s, s′) =

∑
a∈A π(s)T (s, a, s

′) then:

∀g : V πg (s) ≥ rcE[C(G)]. (6)

where E[C(G)] is the expected cover time of a transition
matrix P .

Proof. The value of state s is rc times the expected number
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of steps to reach the goal state. Thus,

V πg (s) = rcE[Hsg]

≥ rcE[max
s′∈S

Hss′ ]

= rcE[Cs(G)]
≥ rcE[C(G)]

(7)

The theorem suggests that a smaller expected cover time
means easier exploration. Now the question is how to re-
duce the expected cover time without prior reward informa-
tion.

Let P be a random walk induced by a fixed policy π in an
MDP. Broder & Karlin (1989) showed that the expected
cover time E[C(G)] of a random walk P can be bounded
using the second largest eigenvalue of the random walk
matrix λk−1(P ):

E[C(G)] ≤ n2 lnn

1− λk−1(P )
(1 + o(1)), (8)

where n = |V | and k is the number of eigenvalues. The
normalized graph Laplacian of an unweighted undirected
graph is defined as:

L = I − T−1/2AT−1/2, (9)

where I is an identity matrix (Chung, 1996). The random
walk matrix can be written in terms of the Laplacian:

P = T−1A = T−1/2(I − L)T 1/2. (10)

Because P and I − L are similar matrices, they have the
same eigenvalues and eigenvectors. Thus, λk−1(P ) = 1−
λ2(L), where λ2(L) is the second smallest eigenvalue of L.
From Equation 8,

E[C(G)] ≤ n2 lnn

λ2(L)
(1 + o(1)). (11)

Thus, the larger the λ2(L) is, the smaller the upper bound
of the expected cover time.

The second smallest eigenvalue of L is known as the alge-
braic connectivity of the graph and its corresponding eigen-
vector is called Fiedler vector (Fiedler, 1973). There are
several operations we can apply to the graph to increase the
algebraic connectivity. First, adding nodes to the graph can
increase the algebraic connectivity. However, this increases
the number of nodes n, and thus the cover time does not
always improve. Second, we can rewire edges in the graph.
However, rewiring edges is undesirable as it amounts to re-
moving primitive actions from the MDP which may damage
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Figure 1: (a) The relationship between the algebraic connec-
tivity (λ2) and the cover time of a random walk on randomly
generated connected graphs. (b) The relationship between
the cover time of a random walk and the cost of random
policy.

the agent’s ability to optimally solve the MDP. Third, we can
add edges to the graph, which in the reinforcement learning
setting amounts to adding options to the agent. This strategy
preserves optimality as it does not remove any primitive
actions. Therefore, adding edges (i.e. options) is a reliable
way to reduce the cover time without potentially sacrificing
optimality.

As far as we are aware, we are the first to introduce the
concept of the cover time to reinforcement learning.

3.1. Empirical Evaluation

The preceding section showed that the bigger the algebraic
connectivity, the smaller the upper bound of the expected
cover time. We now empirically examine (1) the relationship
between the algebraic connectivity and cover time, and (2)
the relationship between cover time and the difficulty of an
MDP.

We randomly generated shortest path problems and plotted
the cost of a random policy, the cover time, and the alge-
braic connectivity of the state-space graph. We generated
100 random connected graphs with 10 nodes with the edge
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density fixed to 0.3. To generate a connected graph, we
use the following procedure. First, we start with a single
node. We pick one node from the existing graph and add
an edge to connect to a new node. We follow this proce-
dure for the number of nodes n − 1, generating a random
tree of size n. Then, we pick an edge uniformly randomly
from Ec until the edge density reaches the threshold. We
approximated the expected cover time of a random walk on
a random graph by sampling 10,000 trajectories induced by
the random walk and computing their average cover time.

We generated a shortest path problem by picking an initial
state and a goal state randomly for each graph. The agent
can transition to each neighbor with a cost of 1.

Figure 1a shows the relationship of the algebraic connectiv-
ity and the expected cover time of the random walk induced
by a uniform random policy. The result shows that the ran-
dom walk tends to have smaller expected cover time when
the underlying state-transition graph has larger algebraic
connectivity. Figure 1b shows the expected cost of a ran-
dom policy from the initial state to reach the goal state. The
cost of a random policy is correlated to the cover time.

4. Covering Options
We now describe an algorithm to automatically find options
that minimize the expected cover time. The algorithm is
approximate, since the problem of finding such a set of
options is computationally difficult; it is thought to be NP-
hard, though that has not been proven (Aldous & Fill, 2002).
Even a good solution is hard to find due to the Braess’s
paradox (Braess, 1968; Braess et al., 2005) which states that
the expected cover time does not monotonically decrease as
edges are added to the graph.

Thus, the expected cover time is often minimized indirectly
via maximizing the algebraic connectivity (Fiedler, 1973;
Chung, 1996). The expected cover time is upper bounded by
quantity involving the algebraic connectivity (Equation 11),
and by maximizing it the bound can be minimized (Broder
& Karlin, 1989). Adding a set of edges to maximize the
algebraic connectivity is NP-hard (Mosk-Aoyama, 2008), so
we use the approximation method by Ghosh & Boyd (2006):

1. Compute the second smallest eigenvalue and its corre-
sponding eigenvector (i.e., the Fiedler vector) of the
Laplacian of the state transition graph G.

2. Let vi and vj be the state with largest and smallest
value in the eigenvector respectively. Generate two
point options; one with I = {vi} and β = {vj} and
the other one with I = {vj} and β = {vi}. Each
option policy is the optimal path from the initial state
to the termination state.

3. Set G ← G ∪ {(vi, vj)} and repeat the process until
the number of options reaches k.
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Figure 2: The distance between the red state and all other
states, measured via Fiedler vector (left) and Euclidean
distance (right). The Fiedler vector captures the connectivity
of the graph, so distances measured using it reflect path
lengths in the graph; the pair of nodes with the maximum
and the minimum value are the farthest apart.

Intuitively, the algebraic connectivity represents how tightly
the graph is connected. The Fiedler vector is an embedding
of a graph to a line (single real value) where nodes connected
by an edge tend to be placed close by (see Figure 2 for
example). A pair of nodes with the maximum and minimum
value in the Fiedler vector are the most distant nodes in
the embedding space. Our method greedily connects the
two most distant nodes in the embedding; this operation
greedily maximizes the algebraic connectivity to a first order
approximation (Ghosh & Boyd, 2006).

Thus, our algorithm generates options which maximize the
algebraic connectivity, which in turn minimizes the upper
bound of the expected cover time. The algorithm is guaran-
teed to improve the upper bound and the lower bound of the
expected cover time:

Theorem 2. Assume that a random walk induced by a pol-
icy π is a uniform random walk:

P (u, v) :=

{
1/du if u and v are adjacent,
0 otherwise,

(12)

where du is the degree of the node u. Adding two options by
the algorithm improves the upper bound of the cover time if
the multiplicity of the second smallest eigenvalue is one:

E[C(G′)] ≤ n2 lnn

λ2(L) + F
(1 + o(1)), (13)

where E[C(G′)] is the expected cover time of the augmented
graph, F =

(vi−vj)2
6/(λ3−λ2)+3/2 , and vi, vj are the maximum

and minimum values of the Fiedler vector.

Proof. Assume the multiplicity of the second smallest eigen-
value is one. Let L′ be the graph Laplacian of the graph
with an edge inserted to L using the algorithm by Ghosh
& Boyd (2006). By adding a single edge, the algebraic
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connectivity is guaranteed to increase at least by F :

λ2 ≥ λ2 +
(vi − vj)2

6/(λ3 − λ2) + 3/2
, (14)

and the upper bound of the cover time is guaranteed to
decrease:

E[C(G′)] ≤ n2 lnn

λ2
(1 + o(1))

≤ n2 lnn

λ2 +
(vi−vj)2

6/(λ3−λ2)+3/2

(1 + o(1)).

As (vi−vj)2
6/(λ3−λ2)+3/2 is positive,

n2 lnn

λ2 +
(vi−vj)2

6/(λ3−λ2)+3/2

(1+o(1)) <
n2 lnn

λ2
(1+o(1)), (15)

thus the upper bound is guaranteed to decrease.

Note that if the multiplicity of the second smallest eigen-
value is more than one, then adding any single option can-
not improve the algebraic connectivity. Assume the sec-
ond smallest eigenvalue is more than one. Then, λ2(L) =
λ3(L). From eigenvalue interlacing (Haemers, 1995), for
any edge insertion, λ2(L) ≤ λ2(L′) ≤ λ3(L). Thus,
λ2(L′) = λ2(L).

The state transition graph G must be given to or learned by
the agent. We assume that the graph is strongly connected,
so every state is reachable from every other state, and also
that the graph is undirected.

As in the work by Machado et al. (2017), our algorithm can
be generalized to the function approximation case using an
incidence matrix instead of an adjacency matrix.

4.1. Comparison to Eigenoptions

Machado et al. (2016; 2017; 2018) proposed a method to
generate options using the Laplacian eigenvectors. The pro-
posed algorithm is similar to eigenoptions but different in
several aspects. First and foremost, covering options ex-
plicitly seek to speed up the exploration by maximizing the
algebraic connectivity to improve the upper bounds of the
cover time. While the eigenoptions also use the graph Lapla-
cian for option discovery, their method is repurposed from
a feature construction method. Second, they are solving a
different optimization problem. The k-th covering option is
the one minimizing the algebraic connectivity of the graph
augmented with 1 to k− 1-th options. The k-th eigenoption
minimizes the algebraic connectivity of the original subject
to the constraint that the option has to be orthogonal to 1
to k − 1-th options. We did not find analytical results for
how the orthogonal constraint can contribute to minimizing

the algebraic connectivity or the expected cover time. Third,
covering options are fast to compute as the algorithms only
needs to compute the Fiedler vector. Although computing
the whole graph spectrum is a heavy matrix operation, the
Fiedler vector can be computed efficiently even for very
large graphs (Koren et al., 2002).

5. Empirical Evaluation
We used six MDPs in our empirical study: a 9x9 grid, a four-
room gridworld, Taxi, Towers of Hanoi, Parr’s maze, and
Race Track. 9x9grid, four-room, and Parr’s maze (Parr &
Russell, 1998) are 2-dimensional grid pathfinding problems
where the task is to reach a specific location. The agent can
move in four directions but cannot cross walls. The task in
Taxi (Dietterich, 2000) is to pick-up passengers and sends
them to their destination. Only one passenger can ride on
the taxi at the same time. Towers of Hanoi consists of three
pegs of different-size discs sorted in decreasing order of size
on one of the pegs. The goal is to move all discs from their
initial peg to a goal peg while keeping the constraint that a
smaller disc is above a larger one. In the Race Track task
the agent must reach the finish line by driving a car. The car
position and the velocity are discrete. The agent can change
the horizontal and vertical velocity by +1, -1, or 0 in each
step. If the car hits the track boundary, it is moved back to
the starting position.

We compared the performance of covering options, eigenop-
tions (Machado et al., 2017), and betweenness options
(Şimşek & Barto, 2009). We compare against these meth-
ods because they are the state-of-the-art option generation
methods which do not require reward information. Machado
et al. (2017) proposed to generate a set of options which
initialize at every state and terminate at the states which
have highest/lowest values for each eigenvector. To make
the comparison simple, we consider a point option version
of eigenoption method. For k-eigenvectors which corre-
spond to the smallest k eigenvalues, we generate a point
option from a state with the highest/lowest value to a state
the lowest/highest value in the eigenvector. The point option
constructed in this way minimizes the eigenvalue of each
corresponding eigenvector.

First, we consider the case where the agent has perfect
knowledge of the state-space graph in advance. Then, we
consider the case where the agent must sample the state-
transition for given amount of steps. Finally, we evaluate
an online option generation which discover options while
training in the environment.

5.1. Offline Option Discovery

Figure 3 shows the eight options generated by covering
options, and eigenoptions on four-room domain and a 9x9
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(a) Covering options (b) Covering options

(c) Eigenoptions (d) Eigenoptions

Figure 3: Visualization of covering options vs. eigenoptions
on four-room domain and 9x9 grid.

grid-world domain. Note that there are multiple possible set
of options acquired by the algorithm and we showed one
such set.

Table 1 shows the algebraic connectivity and expected cover
time with generated options. In both domains the covering
options achieved larger algebraic connectivity and smaller
expected cover time than eigenoptions. Figure 4 shows the
spectral graph drawing (Koren, 2003) of the state-transition
graph augmented with the generated options. The spectral
graph drawing is a technique to visualize the graph topology
using eigenvectors of the graph Laplacian. Each node n
in the state-space graph is placed at (v2(n), v3(n)) in the
(x, y)-coordinate, where vi is the i-th smallest eigenvector

four-room λ2 Expected Cover Time

Covering options 0.065 672.0
Eigenoptions 0.054 695.9
No options 0.023 1094.8

9x9 grid λ2 Expected Cover Time

Covering options 0.24 258.6
Eigenoptions 0.19 261.5
No options 0.12 460.5

Table 1: Comparison of the algebraic connectivity and the
expected cover time. For Covering options and eigenoptions
we add 8 options.

(a) Covering options
(four-room)

(b) Covering options (9x9 grid)

(c) Eigenoptions (four-room) (d) Eigenoptions (9x9 grid)

(e) No options (four-room) (f) No options (9x9 grid)

Figure 4: Spectral graph drawing of the state-transition
graph.

of the graph Laplacian. The figure indicates that the op-
tion generation methods are successfully connecting distant
states.

We now evaluate the utility of each discovered options for
learning. We used Q-learning (Watkins & Dayan, 1992)
(α = 0.1, γ = 0.95) for 100 episodes, 100 steps for 9x9
grid, 500 steps fourroom, Hanoi, and Taxi. We generated 8
options with each algorithm using the adjacency matrix rep-
resenting the state-transition of the MDP. Figure 5 compares
accumulated rewards averaged over 5 runs. In all experi-
ments, covering options outperformed or was on par with
eigenoptions. Figure 6a shows the comparison of accumu-
lated rewards with varying number of covering options on
fourroom domain. Overall, adding more options improves
performance but the additional utility is diminished. It is
to be expected as the target function is a concave function
of the number of edges added which roughly means that
the first few edges added lead to a much greater increase
in algebraic connectivity than those added later (Ghosh &
Boyd, 2006). Next, we evaluated the performance of the
options with all states in the initiation set. Figure 6b, 6c
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(a) 9x9 grid
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(b) four-room
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(c) Towers of Hanoi
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(d) Taxi

0 150 300 450 600 750 900
Episode Number

0

10

20

30

40

50

Cu
m

ul
at

iv
e 

Re
wa

rd
Q-learning-covering
Q-learning-eigen
Q-learning
Random

(e) Parr’s Maze
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(f) Race Track

Figure 5: Comparison of performance with different option generation methods. Options are generated offline from the
adjacency matrix for 9x9grid, four-room, Towers of Hanoi, and Taxi. Options are generated offline from an incidence matrix
for Parr’s maze and Race Track. Reward information is not used for generating options.

shows the comparison of accumulated rewards on fourroom
and 9x9 grid domain.

5.2. Offline Approximate Option Discovery

In the previous subsection we assumed that the agents have
access to the adjacency matrix of the MDP. However, this
may be difficult to achieve when the number of states is
too large, as agents are not able to observe the whole state
transitions in a reasonable amount of time. Following the
evaluation of Machado et al. (2017), we evaluate our method
using a sample-based approach for option discovery. Instead
of giving the agent an access to the whole adjacency ma-
trix, the agent sampled 100 trajectories of a uniform random
policy to generate an incidence matrix. We sampled each tra-
jectory for 1000 steps for Parr’s maze and 100 steps for the
Race Track domain. We feed the incidence matrix instead
of the adjacency matrix to the option generation method. As
the agent has no prior knowledge on states outside the states
in the incidence matrix, the agent terminates the option if
it reached the states not the incidence matrix in addition to
the subgoal state. Other experimental settings are the same
as the previous subsection. Figure 5 shows the resulting per-
formance. Overall, Covering options is outperforming or on
par with eigenoptions. We have no results on betweenness

options for Parr’s maze as it took more than 20 minutes to
generate the options.

5.3. Online Option Discovery

In the previous two subsections, we evaluated option dis-
covery methods assuming that the agent has access to the
state-transition function prior to solving the task itself. This
assumption is reasonable in some situations such as multi-
task reinforcement learning where the agent is supposed to
solve multiple different tasks (reward function) in the same
domain (problems with the same transition function).

In this section we evaluate our method on online option
discovery. The agents generate 4 options to add to their
option set every 10000 step for Parr’s maze and 500 steps
for the Towers of Hanoi and Taxi until the number of op-
tions reaches 32. The agents learned for 100 episodes, and
episodes were 10,000 steps long for Parr’s maze and 100
steps for the Towers of Hanoi and Taxi. We used Q-learning
(Watkins & Dayan, 1992) (α = 0.1, γ = 0.95). To com-
pute the policy of each option, we feed the trajectories
sampled by the agent so far to learn Q-values off-policy
(α = 0.1, γ = 0.95). We give an intrinsic reward of 1 to
the agent when it reaches the subgoal state and ignore the
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(b) 9x9 grid
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(d) Parr’s maze
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(e) Towers of Hanoi
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Figure 6: (a) Comparison of performance with varying number of covering options. (b-c) Comparison of performance of
options which all states are included in the initiation sets. (d-f) Comparison of online option generation methods.

rewards from the environment.

Figure 6d, 6e, and 6f shows the resulting performance. The
agents with options are able to learn the policy faster than the
agent only with primitive actions. The agents with options
can reliably find the goal state even in Parr’s maze whereas
an agent with primitive actions is unable to find the goal.

6. Related Work
Many option discovery algorithms are based on informative
rewards and are thus task dependent. These methods often
decompose the trajectories reaching the rewarding states
into options. Several works have proposed generating intrin-
sic rewards from trajectories reaching these rewarding states
(McGovern & Barto, 2001; Menache et al., 2002; Konidaris
& Barto, 2009), while other approaches use gradient descent
to generate options using the observed rewards (Mankowitz
et al., 2016; Bacon et al., 2017; Harb et al., 2018).

However, such approaches are often not applicable to sparse
reward problems: if rewards are hard to reach using only
primitive actions, options are unlikely to be discovered.
Thus, some works have investigated generating options with-
out using reward signals. Stolle & Precup (2002) proposed
to set states with high visitation count as subgoal states,
resulting in identifying bottleneck states in the four-room

domain. Şimşek & Barto (2009) generalized the concept
of bottleneck states to the (shortest-path) betweenness of
the graph to capture how pivotal the state is. Menache
et al. (2002) used a learned model of the environment to
run a Max-Flow/Min-Cut algorithm to the state-space graph
to identify bottleneck states whereas Simsek et al. (2005)
proposed to apply spectral cut to identify bottlenecks. These
methods generate options to leverage the idea that subgoals
are states visited most frequently. On the other hand, Şimşek
& Barto (2004) proposed to generate options to encourage
exploration by generating options to relatively novel states,
encouraging exploration.

7. Conclusions
In this paper, we tackled the sparse reward problem by dis-
covering options that encourage exploration. We introduced
the expected cover time which bounds the expected num-
ber of steps to reach the undiscovered rewarding state, and
introduced an option discovery method, Covering options,
which adds options that reduces the expected cover time. We
showed analytically that our method guarantees improve-
ment of the upper bound of the expected cover time under
certain conditions. We further conduct experiments, finding
that Covering options outperforms the previous state-of-the-
art in multiple sparse reward tasks.
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