
CST: Constructing Skill Trees by Demonstration

George Konidaris gdk@csail.mit.edu

MIT CSAIL, 32 Vassar Street, Cambridge MA 02139 USA

Scott Kuindersma scottk@cs.umass.edu
Roderic Grupen grupen@cs.umass.edu
Andrew Barto barto@cs.umass.edu

Computer Science Department, University of Massachusetts Amherst, Amherst MA 01003 USA

Abstract

We describe recent work on CST, an online
algorithm for constructing skill trees from
demonstration trajectories. CST segments
a demonstration trajectory into a chain of
component skills, where each skill has a goal
and is assigned a suitable abstraction from
an abstraction library. These properties per-
mit skills to be improved efficiently using a
policy learning algorithm. Chains from mul-
tiple demonstration trajectories are merged
into a skill tree. We describe applications of
CST to acquiring skills from human demon-
stration in a dynamic continuous domain and
from both expert demonstration and learned
control sequences on a mobile manipulator.

1. Introduction

Learning from demonstration (or LfD) (Argall et al.,
2009) offers a natural and intuitive approach to robot
programming: rather than investing effort into writing
a detailed control program, we simply show the robot
how to achieve a task. LfD has received a great deal of
attention in recent years because it aims to facilitate
ubiquitous general-purpose automation by removing
the need for engineering expertise and instead enabling
the direct use of existing human procedural knowledge.

This paper summarizes recent work on CST, an LfD
algorithm with four properties which, taken together,
distinguish it from previous work. First, rather than
converting a demonstration trajectory into a single
controller, CST segments demonstration trajectories
into a sequence of controllers (which we term skills, but

Appearing in Proceedings of the ICML Workshop on New
Developments in Imitation Learning, Bellevue, WA, USA,
2011. Copyright 2011 by the author(s)/owner(s).

are also called behaviors or motion primitives). This
aims to extract reusable components of the demonstra-
tor’s behavior. Second, CST extracts skills which have
goals—in particular, the objective of skill n is to reach
a configuration where skill n+1 can be successfully ex-
ecuted. Such skills can be refined by the robot using
policy improvement algorithms. Third, CST option-
ally supports skill-specific abstraction selection, where
each skill policy is defined using only a small number
of relevant state and motor variables. This affords ef-
ficient representation and learning, facilitates transfer,
and enables the acquisition of policies that are high-
dimensional when represented monolithically but con-
sist of subpolicies that can be individually represented
using far fewer state variables. Finally, CST merges
skill chains from multiple demonstrations into a skill
tree, allowing it to deal with collections of trajectories
that use different component skills to achieve the same
goal, while also determining which trajectory segments
are instances of the same policy.

2. Background

This work adopts the options framework—a hierar-
chical reinforcement learning formalism for learning
and planning using temporally extended actions or op-
tions—for modeling acquired skills.

An option, o, consists of three components: an option
policy, πo, giving the probability of executing each ac-
tion in each state in which the option is defined; an ini-
tiation set indicator function, Io, which is 1 for states
where the option can be executed and 0 elsewhere; and
a termination condition, βo, giving the probability of
option execution terminating in states where the op-
tion is defined. Given an option reward function (of-
ten just a cost function with a termination reward),
determining the option’s policy can be viewed as just
another reinforcement learning problem, and an appro-

CST: Constructing Skill Trees by Demonstration

priate policy learning algorithm can be applied. Once
acquired, a new option can be added to an agent’s ac-
tion repertoire alongside its primitive actions, and the
agent chooses when to execute it in the same way.

An option is a useful model for a robot controller:
it contains all the information required to determine
when a controller can be run (its initiation set), when
it is done (its termination condition), and how it per-
forms control (its policy). An option reward function
allows us to model controllers that can be improved
through experience. In the remainder of this paper,
we will use the terms skill and option interchangeably.

CST performs segmentation based on a linear value
function approximation. Each option value func-
tion, V , is thus approximated by a weighted sum
of a given set of basis functions, φ1, ..., φn: V̂ (x) =∑n

i=1 wiφi(x). We use the Fourier basis (Konidaris
et al., 2011b) throughout this work.

Although value function methods are widely used in
reinforcement learning, robotics applications typically
use policy gradient algorithms, which represent the pol-
icy π directly. Nevertheless, value function approxima-
tion is a key step in many policy gradient algorithms
since an approximate value function can be used to
obtain a low-variance estimator of the policy gradient
when π is differentiable (Sutton et al., 2000). Even
when it is not, an approximate value function is still
a useful guide to the structure of the policy and of-
ten contains richer information for use in segmenta-
tion than the policy itself (which is often piecewise
constant).

We may wish to define a skill policy in a smaller and
more task-relevant state space than the full state space
of the robot. This is known as an abstraction. In this
work we define an abstraction M to be a pair of func-
tions (σM , τM), where σM : S → SM is a state abstrac-
tion mapping the overall state space S to a smaller
state space SM (often simply a subset of the variables
in S, but potentially a more complex mapping involv-
ing significant feature processing), and τM : A → AM

is a motor abstraction mapping the full action space A
to a smaller action space AM (often simply a subset of
A). When using an abstraction, the agent’s sensor in-
put is filtered through σM and its policy π maps from
SM to AM . We assume that each abstraction has a
set of basis functions, ΦM , defined over SM which we
can use to define a value function. Therefore, using an
abstraction amounts to representing the relevant value
function using that abstraction’s basis functions.

3. CST

Given a demonstration trajectory, our task is to break
it into component skills. A common principle in
robotics, control and reinforcement learning is that
the goal of a skill is to reach another skill (Lozano-
Perez et al., 1984; Burridge et al., 1999; Tedrake, 2009;
Konidaris and Barto, 2009). Thus, we aim to slice the
trajectory into a chain of contiguous skill segments; we
would like to split a segment into two when its value
function is too complex to represent as a single seg-
ment, or when it is composed of two segments best
represented with different abstractions.

Statistical changepoint detection algorithms perform
just such a segmentation task. Here, we are given ob-
served data and a set of candidate models. We assume
that the data are sequentially generated by an instance
of a single model, occasionally switching between mod-
els at certain points in time, called changepoints. We
are to infer the number and positions of the change-
points and select and fit an appropriate model for each
segment. Figure 1 shows a simple example.

5 10 15 20 25 30 35 40 45 50 55 60

0

50

100

150

200

(a)

5 10 15 20 25 30 35 40 45 50 55 60

0

50

100

150

200

(b)

Figure 1. Artificial example data with multiple segments.
The observed data (a) are generated by three different
models plus noise (b; solid lines, changepoints shown using
dashed lines). The first and third segments are generated
by a linear model, whereas the second is quadratic.

Because our data are received sequentially and possi-
bly at a high rate, we would like to perform change-
point detection online—processing transitions as they
occur and then discarding them. Fearnhead and Liu
(2007) introduced online algorithms for both Bayesian
and maximum a posteriori (MAP) changepoint detec-
tion. We use the simpler MAP method.

Their model is as follows. A set, Q, of models is given
with prior p(q) for each q ∈ Q. Data tuples (xt, yt)
are observed for times t ∈ {1, 2, . . . , T}. The marginal
probability of a segment length l is modeled with prob-
ability mass function g(l) and cumulative distribution
function G(l) =

∑l
i=1 g(i). Finally, a segment from

time j + 1 to t can be fit using model q to obtain
P (j, t, q), the probability of the data segment condi-
tioned on q. This results in a Hidden Markov Model
where the hidden state at time t is the model qt and
the observed data is yt given xt. This model is de-
picted in Figure 2. Notice that all of its transition

CST: Constructing Skill Trees by Demonstration

probabilities are known or computed directly from the
data. Rather than attempting to learn the transition
probabilities of the hidden states, we are instead trying
to compute the maximum likelihood sequence of hid-
den states given their transition probabilities and the
data. We can therefore use an online Viterbi algorithm
to compute the most likely transition path through the
hidden states in this HMM given the data, and thereby
our segmentation.

qi qj

yi yi+1 yjyj-1...

i < j, q

P(i, j, qi)(1 - G(j - i - 1))

g(j - i - 1)p(qj)

Figure 2. The Hidden Markov Model for changepoint de-
tection. The model qt at each time t is hidden, but pro-
duces observable data yt. Transitions occur when the
model changes, either to a new model or the same model
with different parameters. The transition from model
qi to qj occurs with probability g(j − i − 1)p(qj), while
the emission probability for observed data yi, ..., yj−1 is
P (i, j, qi)(1−G(j− i− 1)). These probabilities are consid-
ered for all times i < j and models qi, qj ∈ Q.

Unfortunately, the number of possible paths in a
Viterbi algorithm grows over time. However, most
changepoint probabilities will be close to zero. We
can therefore employ a particle filter to discard most
of them and retain a constant number per timestep.
We use the Stratified Optimal Resampling algorithm
of Fearnhead and Liu (2007) for this purpose.

CST extracts skills by applying changepoint detection
to the demonstrated trajectory data. It uses the sets
of basis functions associated with each abstraction as
models and the sample return, Rt =

∑n
i=t γ

i−tri, from
the state at each time t as the target variable. This ef-
fectively performs changepoint detection on the value
function sample obtained from the trajectory. Segmen-
tation thus breaks that value function sample up into
simpler segments or detects a change in abstraction.
This is depicted in Figure 3.

We assume a geometric distribution for skill lengths
with parameter p, which gives us a natural way to set
p via k = 1/p, the expected skill length. Since we are
using linear value function approximation, we use a lin-
ear regression model with Gaussian noise as our model
of the data. Following Fearnhead and Liu (2007), we
assume conjugate priors: the Gaussian noise prior has

R
et
ur
n

Fe
at
ur
es Door Key Lock

Figure 3. An illustration of a trajectory segmented into
skills by CST. A robot executes a trajectory where it goes
through a door, approaches and picks up a key, and then
takes the key to a lock (bottom). The robot is equipped
with three possible abstractions: state variables giving its
distance to the doorway, the key, and the lock, respectively.
The values of these variables change during trajectory ex-
ecution (middle) as the distance to each object changes
while it is in the robot’s field of view. The robot also ob-
tains a sample of return for each point along the trajectory
(top). CST splits the trajectory into segments by finding
a MAP segmentation such that the return estimate is best
represented by a piecewise linear value function where each
segment is defined over a single abstraction. Changepoints
are indicated by dashed vertical lines.

mean zero and an inverse gamma variance prior. Note
that we are using each Rt as the target regression
variable in this formulation, even though we only ob-
serve rt for each state. However, the relevant sufficient
statistics can be computed incrementally using rt, and
thus the fit probability can be computed online at each
timestep without storing any transition data.

Given multiple skill chains obtained this way from dif-
ferent trajectories, we would like to merge them into a
skill tree by determining which pairs of trajectory seg-
ments belong to the same skills and which are distinct.

Because we wish to build skills that can be sequen-
tially executed, we only consider merging two segments
when they have the same target—which means that
their goals are either to reach the initiation set of the
same target skill, or to reach the same final goal. This
means that we can consider merging the final segment
of each trajectory, or two segments whose successor
segments have been merged. Thus, two chains are
merged by starting at their final skill segments. Each

CST: Constructing Skill Trees by Demonstration

pair of segments are merged if they are a good statis-
tical match. This process is repeated until a pair of
skill segments fail to merge, after which the remaining
skill chains branch off on their own. This process is
depicted in Figure 4. A similar process can be used
to merge a chain into an existing tree by following the
chain with the highest merge likelihood when a branch
in the tree is reached. For more details, see Konidaris
et al. (2010).

(a) (b) (c) (d)

Figure 4. Merging two skill chains into a skill tree. First,
the the final trajectory segment in each of the chains is
considered (a). If these segments use the same model, over-
lap, and can be well represented using the same function
approximator, they are merged and the second segment in
each chain can be considered (b). This process continues
until it encounters a pair of segments that should not be
merged (c). Merging then halts and the remaining skill
chains form separate branches of the tree (d).

4. Applications

4.1. The Pinball Domain

The Pinball domain is a difficult continuous domain
with dynamic aspects, sharp discontinuities, and ex-
tended control characteristics.1 The goal is to maneu-
ver a small ball (which starts in one of two places) into
a large red hole. The ball is dynamic, so its state is
described by four variables: x, y, ẋ and ẏ. Collisions
with obstacles are fully elastic and cause the ball to
bounce, so rather than merely avoiding obstacles the
agent may choose to use them to efficiently reach the
hole. There are five primitive actions: incrementing or
decrementing ẋ or ẏ by a small amount (which incurs a
reward of −5 per action), or leaving them unchanged
(which incurs a reward of −1 per action). Reaching
the goal obtains a reward of 10, 000.

Five pairs of demonstration trajectories (one trajec-
tory in each pair for each start state) were collected
from a human expert. Trajectory segmentation was
successful for all demonstration trajectories, and all

1Java source code for Pinball can be downloaded at:
http://www-all.cs.umass.edu/~gdk/pinball

pairs were merged successfully into skill trees. Ex-
ample segmentations are shown in Figure 5, and the
resulting initiation sets (learned using logistic regres-
sion, where states inside the skill segment are positive
examples and all other observed states are negative
examples) are shown in Figure 6.

Figure 5. Demonstration trajectories segmented into skill
chains, and the trajectory assignments obtained when the
two chains are merged.

Figure 6. The initiation sets for each option in the tree
shown in Figure 5.

Figure 7 shows learning curves comparing agents given
skill trees extracted by CST, agents that build skill
trees from scratch using skill chaining (Konidaris and
Barto, 2009), and agents given skills pre-learned using
250 episodes of skill chaining. The agents given CST
skill trees are able to learn very good policies within
10 episodes, by which time they even exceed the per-
formance of agents given pre-learned skills. This is
likely because agents with pre-learned skills begin with
many skills to learn how to sequence whereas the CST
agents identify only the number required to solve the
task. For more details see Konidaris et al. (2010).

4.2. Acquiring Mobile Manipulation Skills
from Human Demonstration

We next show that CST can scale up by applying it
to acquire skill chains from human demonstration data
on the uBot-5, a dynamically balancing mobile manip-
ulator. The robot’s task in this section is to enter a
corridor, approach a door, push the door open, turn
right into a new corridor, and finally approach and
push on a panel (illustrated in Figure 8). A human
operator provided 12 demonstration trajectories.

http://www-all.cs.umass.edu/~gdk/pinball

CST: Constructing Skill Trees by Demonstration

20 40 60 80 100 120 140
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2
x 10

4

Episodes

R
et

ur
n

Pre−learned
Skill Chaining
CST

Figure 7. Learning curves in the PinBall domain, for agents
employing skill trees created from demonstration trajecto-
ries, agents using incremental skill chaining, and agents
starting with pre-learned skills.

(a) (b)

(c) (d)

(e) (f)

Figure 8. The task demonstrated on the uBot-5. Starting
at the beginning of a corridor (a), the uBot approaches (b)
and pushes open a door (c), turns through the doorway
(d), then approaches (e) and pushes a panel (f).

To simplify perception, purple, orange and yellow col-
ored circles were placed on the door and panel, begin-
ning of the back wall, and middle of the back wall,
respectively, as perceptually salient markers. The dis-
tances (obtained using onboard stereo vision) between
the uBot to each marker were computed at 8Hz and
filtered. The uBot was able to engage one of two mo-
tor abstractions at a time: either performing end-point

position control of its hand, or controlling the speed
and angle of its forward motion. Using these features,
we constructed six sensorimotor abstractions, one for
each pairing of salient object and motor command set.
We performed policy regression to fit the segmented
policies for replay. Policy replay testing was performed
by varying the starting point of the robot by hand
and used hand-coded stopping conditions that corre-
sponded to the initiation set of the subsequent skill.

Of the 12 demonstration trajectories gathered from
the uBot, 3 had to be discarded because of data loss
due to excess perceptual noise. Of the remaining 9, all
segmented sensibly and 8 were able to be merged into
a single skill chain. Figure 9 shows a segmented tra-
jectory obtained using CST, with Table 1 providing
a brief description of the skills extracted along with
their selected abstractions, and the number of sam-
ple trajectories required for each skill to be replayed
successfully at least 9 times out of 10.

Figure 9. A demonstration trajectory of the uBot-5 per-
forming the task in Figure 8, segmented into skills.

Abstraction Description Examples
Required

a torso-purple Drive to door. 2
b hand-purple Open the door. 1
c torso-orange Drive toward wall. 1
d torso-yellow Turn toward panel. 2
e torso-purple Drive to the panel. 1
f hand-purple Press the panel. 3

Table 1. A brief description of each of the skills extracted
from the trajectory shown in Figure 9, along with their se-
lected abstractions, and the number of example trajectories
required for accurate replay.

CST is thus able to successfully segment trajectories
demonstrated on a mobile manipulator and assign the

CST: Constructing Skill Trees by Demonstration

relevant abstractions to each individual skill. Since
each skill is defined using only a small number of rel-
evant task variables, it requires a very low number of
demonstration trajectories to achieve reliable replay.
For details see Konidaris et al. (2010).

A similar experiment used CST in combination with
model-based control methods for obtaining the skill
policies. Here, the skill goals identified by CST (a
small region around the first few states of the successor
skill) were used as targets for closed-loop controllers.
By segmenting the demonstrated trajectory into sub-
tasks, we were able to achieve reliable replay using
just a single demonstration with a simple control al-
gorithm that would have been difficult or impossible
to apply monolithically. For details see Kuindersma
et al. (2010).

4.3. Acquiring Mobile Manipulation Skills
from a Learned Policy

We now describe a robot system that produces its own
demonstration trajectories by learning to sequence ex-
isting controllers and extracts skills from the resulting
learned solution. In the Red Room task, the uBot-5 is
placed in a small room containing a button and a han-
dle. When the handle is pulled after the button has
been pressed, a door in the side of the room opens, al-
lowing the robot access to a compartment which con-
tains a switch. The goal of the task is to press the
switch. A schematic and photographs of the domain
are given in Figure 10.

Button

Handle

Switch
Door

245 cm
355 cm

Start

Figure 10. The Red Room Domain.

The robot is given a fixed set of innate controllers for
navigating to visible objects of interest and for inter-
acting with them using its end-effector (by extending
its arm and moving it to the right, left, up, down,
or forwards). In order to actuate the button and the
switch, the robot must extend its arm and then move
it outwards; in order to actuate the handle, it must ex-
tend its arm and then move it downwards. The robot

constructed a transition model of the domain through
interaction and used it to compute a policy using dy-
namic programming. The robot was able to find the
optimal solution after five episodes.

The resulting optimal sequence of controllers was then
used to generate 5 demonstration trajectories for use
in CST. The resulting trajectories all segmented into
the same sequence of 10 skills, and were all merged
successfully. An example segmentation is shown in
Figure 11; a description of each skill along with its
relevant abstraction is given in Table 2.

Figure 11. A trajectory from the learned solution to the
Red Room task, segmented into skills.

Abstraction Description

A torso-button Align with the button.
B torso-button Approach the button.
C hand-button Push the button.
D torso-handle Align with the handle.
E torso-handle Approach the handle.
F hand-handle Pull the handle.
G torso-entrance Align with the entrance.
H torso-entrance Drive through the entrance.
I torso-switch Approach the switch.
J hand-switch Press the switch.

Table 2. A brief description of each of the skills extracted
from the trajectory shown in Figure 11, along with their
selected abstractions.

CST consistently extracted skills that corresponded
to manipulating objects in the environment, and nav-
igating towards them. In the navigation case, each
controller execution was split into two separate skills.
These skills correspond exactly to the two phases of the
navigation controller: first, aligning the robot with the
normal of the target object, and second, moving the
robot toward that feature. In the object-manipulation
case, a sequence of two controllers is collapsed into a
single skill: for example, extending the arm and then

CST: Constructing Skill Trees by Demonstration

extending it further toward the object of interest is col-
lapsed into a single skill which we might label push the
button. We constructed closed-loop manipulation poli-
cies by fitting splines over relative spatial waypoints
and obtained reliable replay using a single demonstra-
tion trajectory for each. Once these skills were added
to the robot’s control system, it was able to deploy
them in a second problem to solve it faster than it
could using just its innate controllers. For details see
Konidaris et al. (2011a).

5. Related Work

A great deal of work exists under the general heading
of LfD (surveyed by Argall et al. (2009)). Most meth-
ods learn an entire policy monolithically from data,
although some perform segmentation to extract skills.

The approach most closely related to CST is by Dixon
and Khosla (2004a), where a demonstration trajectory
is segmented into a sequence of linear dynamical sys-
tems. Each linear dynamical system is used to derive a
convergent controller, with a small region around the
final state considered its goal. The algorithm can be
run online and was used in conjunction with several
other methods to build a mobile robot system that
performed LfD by tracking a human user (Dixon and
Khosla, 2004b). This method differs from CST in three
ways: it does not use skill-specific abstractions; it seg-
ments demonstration trajectories into policies that are
linear in the robot’s state variables, which is a stronger
condition than a value function that is linear in a set of
basis functions; and finally, it uses a heuristic method
(an error metric exceeding a threshold parameter) for
segmentation.

Another closely related LfD framework is the
Performance-Derived Behavior Vocabularies (PDBV)
framework (Jenkins and Matarić, 2004), which seg-
ments demonstrated data into motion primitives and
clusters them to build a motion primitive library. CST
differs from PDBV in four major aspects. First, PDBV
is a batch method. Second, PDBV discovers a low-
dimensional representation (a motion-manifold) for
each primitive, rather than using an abstraction li-
brary. Third, PDBV extracts motion policies directly,
which are not amenable to automatic improvement be-
cause they do not have goals. Finally, PDBV performs
segmentation using Kinematic Centroid Segmentation,
a heuristic specific to human-like motions. More recent
work has used computationally expensive but princi-
pled statistical methods (Grollman and Jenkins, 2010;
Butterfield et al., 2010) to segment the data as a way
to avoid perceptual aliasing in the policy.

Chiappa et al. (2009) and Chiappa and Peters (2010)

described a principled statistical approach to acquir-
ing motion primitive libraries from data, where the
demonstrated trajectories are modeled as Bayesian lin-
ear Gaussian state space models. This approach au-
tomatically segments the demonstrated data into poli-
cies, and it can handle multivariate target variables
and models that repeat within a single trajectory.
Although these systems have achieved impressive re-
sults on real robots, they use computationally inten-
sive batch processing, do not use skill-specific abstrac-
tions, and do not result in skills with goals.

6. Discussion and Conclusion

The availability of a suitable abstraction library is
key to the application of CST in high-dimensional
domains. This could potentially require significant
(though in principle once-off) design effort to create,
program and debug a set of abstractions suitable for
representing anything the robot may decide to learn.
However, we expect that a small library consisting of
pairings of motor abstractions and one or two visible
objects will often be sufficient. If necessary, abstrac-
tion selection could be paired with a feature selection
method to augment the selected abstraction during
policy learning. Future work may also consider ap-
proaches to acquiring the abstraction library from data
or finding feasible ways to build skill-specific abstrac-
tions at runtime.

An important assumption made by CST is that each
skill segmentation should form a chain and the merged
chains should form a tree. In some cases, however,
they may form a more general graph (e.g., when the
demonstrated policy has a loop). The procedure to
merge skill chains could be generalized to accommo-
date such cases, and applied to merging skills both
within an individual chain and across chains.

CST is agnostic to the method use to learn each in-
dividual skill policy from data. The experiments re-
ported here used four different methods: value func-
tion regression in Pinball, both regression on motor
output and model-based planning for acquiring poli-
cies from a human expert on the uBot, and a spline-
based closed-loop controller for acquiring skills from
learned controller sequences on the uBot. For robust
and reliable robot control from demonstration data
we expect that either a stabilized, trajectory-following
controller or a dynamic movement primitive (Schaal,
2003) controller will provide a good balance between
learnability and efficiency.

CST aims to extract transferrable policy components
that the robot can retain, refine, and reuse. This is
accomplished through a principled approach to learn-

CST: Constructing Skill Trees by Demonstration

ing from multiple unsegmented trajectories, and the
use of skill-specific abstractions which enable efficient
representation and facilitate transfer. These advan-
tages offer a promising avenue of development toward
general-purpose learning from demonstration.

Acknowledgments

We would like to thank the members of the LPR for
their technical assistance. Andrew Barto and George
Konidaris were supported in part by the AFOSR un-
der grant FA9550-08-1-0418. George Konidaris was
also supported in part by the AFOSR under grant
AOARD-104135 and the Singapore Ministry of Educa-
tion under a grant to the Singapore-MIT International
Design Center. Scott Kuindersma is supported by a
NASA GSRP fellowship from Johnson Space Center.
Rod Grupen was supported by the Office of Naval Re-
search under MURI award N00014-07-1-0749.

References
B. Argall, S. Chernova, M. Veloso, and B. Browning. A

survey of robot learning from demonstration. Robotics
and Autonomous Systems, 57:469–483, 2009.

R.R. Burridge, A.A. Rizzi, and D.E. Koditschek. Sequen-
tial composition of dynamically dextrous robot behav-
iors. International Journal of Robotics Research, 18(6):
534–555, 1999.

J. Butterfield, S. Osentoski, G. Jay, and O.C. Jenkins.
Learning from demonstration using a multi-valued func-
tion regressor for time-series data. In Proceedings of
the Tenth IEEE-RAS International Conference on Hu-
manoid Robots, 2010.

S. Chiappa and J. Peters. Movement extraction by detect-
ing dynamics switches and repetitions. In Advances in
Neural Information Processing Systems 23, pages 388–
396, 2010.

S. Chiappa, J. Kober, and J. Peters. Using Bayesian dy-
namical systems for motion template libraries. In Ad-
vances in Neural Information Processing Systems 21,
pages 297–304, 2009.

K.R. Dixon and P.K. Khosla. Trajectory representation
using sequenced linear dynamical systems. In Proceed-
ings of the IEEE International Conference on Robotics
and Automation, pages 3925–3930, 2004a.

K.R. Dixon and P.K. Khosla. Learning by observation with
mobile robots: a computational approach. In Proceed-
ings of the IEEE International Conference on Robotics
and Automation, pages 102–107, 2004b.

P. Fearnhead and Z. Liu. On-line inference for multiple
changepoint problems. Journal of the Royal Statistical
Society B, 69:589–605, 2007.

D.H. Grollman and O.C. Jenkins. Incremental learning
of subtasks from unsegmented demonstration. In Inter-
national Conference on Intelligent Robots and Systems,
2010.

O.C. Jenkins and M. Matarić. Performance-derived behav-
ior vocabularies: data-driven acquisition of skills from
motion. International Journal of Humanoid Robotics, 1
(2):237–288, 2004.

G.D. Konidaris and A.G. Barto. Skill discovery in continu-
ous reinforcement learning domains using skill chaining.
In Advances in Neural Information Processing Systems
22, pages 1015–1023, 2009.

G.D. Konidaris, S.R. Kuindersma, A.G. Barto, and R.A.
Grupen. Constructing skill trees for reinforcement learn-
ing agents from demonstration trajectories. In J. Laf-
ferty, C.K.I. Williams, J. Shawe-Taylor, R.S. Zemel,
and A. Culotta, editors, Advances in Neural Informa-
tion Processing Systems 23, pages 1162–1170, 2010.

G.D. Konidaris, S.R. Kuindersma, R.A. Grupen, and A.G.
Barto. Autonomous skill acquisition on a mobile manip-
ulator. In Proceedings of the Twenty-Fifth Conference
on Artificial Intelligence, 2011a.

G.D. Konidaris, S. Osentoski, and P.S. Thomas. Value
function approximation in reinforcement learning using
the Fourier basis. In Proceedings of the Twenty-Fifth
Conference on Artificial Intelligence, 2011b.

S.R. Kuindersma, G.D. Konidaris, R.A. Grupen, and A.G.
Barto. Learning from a single demonstration: Motion
planning with skill segmentation. In Proceedings of the
NIPS Workshop on Learning and Planning from Batch
Time Series Data, December 2010.

L-J Lin. Programming robots using reinforcement learning
and teaching. In Proceedings of the Ninth National con-
ference on Artificial Intelligence, pages 781–786, 1991.

T. Lozano-Perez, M.T. Mason, and R.H. Taylor. Auto-
matic synthesis of fine-motion strategies for robots. The
International Journal of Robotics Research, 3(1):3–24,
1984.

F.G. Martin. The Handy Board Technical Reference. MIT
Media Lab, Cambridge MA, 1998.

S. Schaal. Dynamic movement primitives - a framework
for motor control in humans and humanoid robots. In
Proceedings of the international symposium on adaptive
motion of animals and machines, 2003.

R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour.
Policy gradient methods for reinforcement learning with
function approximation. In Advances in Neural Infor-
mation Processing Systems 12, pages 1057–1063, 2000.

R. Tedrake. LQR-Trees: Feedback motion planning on
sparse randomized trees. In Proceedings of Robotics: Sci-
ence and Systems, pages 18–24, 2009.

