
DeepMellow: Removing the Need for a Target Network in Deep Q-Learning

Seungchan Kim , Kavosh Asadi , Michael Littman and George Konidaris
Brown University Department of Computer Science

{seungchan kim, kavosh}@brown.edu, {mlittman, gdk}@cs.brown.edu

Abstract
Deep Q-Network (DQN) is an algorithm that
achieves human-level performance in complex
domains like Atari games. One of the important
elements of DQN is its use of a target network,
which is necessary to stabilize learning. We argue
that using a target network is incompatible with
online reinforcement learning, and it is possible
to achieve faster and more stable learning without
a target network when we use Mellowmax, an
alternative softmax operator. We derive novel
properties of Mellowmax, and empirically show
that the combination of DQN and Mellowmax, but
without a target network, outperforms DQN with a
target network.

1 Introduction
Reinforcement learning (RL) is a general framework to study
agents that make sequential decisions in an environment
to maximize long-term utility. Recent breakthroughs
in reinforcement learning have shown that reinforcement
learning algorithms can train agents in high-dimensional
complex domains when combined with deep neural networks.
Deep Q-Network (or simply DQN) [Mnih et al., 2015]
was the first algorithm that successfully instantiated
this combination; it yields human-level performance in
high-dimensional large-scale domains like Atari video games
[Bellemare et al., 2013].

An important component of DQN is the use of a target
network, which was introduced to stabilize learning. In
Q-learning, the agent updates the value of executing an action
in the current state, using the values of executing actions in a
successive state. This procedure often results in an instability
because the values change simultaneously on both sides of the
update equation. A target network is a copy of the estimated
value function that is held fixed to serve as a stable target for
some number of steps.

However, a key shortcoming of target networks is that they
move us farther from online reinforcement learning, a desired
property in the reinforcement learning community [Sutton
and Barto, 1998; van Seijen and Sutton, 2014]. The presence
of a target network can also slow down learning due to
delayed value function updates.

We propose an approach that reduces the need for a target
network in DQN while still ensuring stable learning and good
performance in high-dimensional domains. Our approach
uses a recently proposed alternative softmax operator,
Mellowmax [Asadi and Littman, 2017]. This operator has
been shown to ensure convergence in learning and planning,
has an entropy-regularization interpretation [Nachum et al.,
2017; Fox et al., 2016; Neu et al., 2017], and facilitates
convergent off-policy learning even with non-linear function
approximation [Dai et al., 2018]. We additionally show
that Mellowmax is convex regardless of the value of the
temperature parameter, monotonically non-decreasing with
respect to its temperature parameter, and that it alleviates the
well-known overestimation problem associated with the max
operator [van Hasselt, 2010]. These properties suggest that
the use of Mellowmax in DQN mitigates the main cause of
instability in online reinforcement learning with deep neural
networks.

We test the performances of DeepMellow, the combination
of Mellowmax operator and DQN, in two control domains
(Acrobot and Lunar Lander) and two Atari domains
(Breakout and Seaquest). Our empirical results show that
DeepMellow achieves more stability than a version of DQN
with no target network. We also show that, DeepMellow,
which has no target network, learns faster than the original
DQN with a target network, in these domains.

2 Background
RL problems are typically formulated as Markov Decision
Processes (MDP) [Bellman, 1957], described by the tuple (S,
A, T , R, γ). Here, S denotes the set of states and A denotes
the set of actions. The function T : S × A × S 7→ [0, 1]
specifies the transition dynamics of the process; specifically,
the probability of moving to a state s′ after taking action a
in state s is denoted by T (s, a, s′). Similarly, R : S × A ×
S 7→ R is the reward function, with R(s, a, s′) being the
expected reward upon moving to state s′ when taking action a
in state s. Finally, the discount rate γ ∈ [0, 1) determines the
importance of immediate rewards relative to rewards received
in the long term.

RL agents typically seek to find a policy π : S 7→ Pr(A)
that achieves high long-term reward. More formally, the
long-term utility (or value) of taking an action in a state is

defined as:

Qπ(s, a) := E[
∞∑
t=0

γtR(st, at, st+1)|s0 = s, a0 = a, π].

We can define the optimal Q value, meaning the value of a
state–action pair under the best policy π∗, as follows:

Q∗(s, a) := E[
∞∑
t=0

γtR(st, at, st+1)|s0 = s, a0 = a, π∗].

A fundamental result in MDPs is that Q∗ can be written
recursively:

Q∗(s, a) =
∑
s′∈S
T (s, a, s′)[R(s, a, s′) + γmax

a′
Q∗(s′, a′)] ,

in what are known as the Bellman equations [Bellman, 1957].
A generalization [Littman and Szepesvári, 1996] replaces the
max operator with a generic operator

⊗
as follows:

Q(s, a) =
∑
s′∈S
T (s, a, s′)[R(s, a, s′) + γ

⊗
a′
Q(s′, a′)].

The operator can be thought of as an action selector, which
summarizes values over actions; different choices of the
operator can lead to different solutions for Q.

2.1 Deep Q-Network
In its basic form, given a sample 〈s, a, r, s′〉, online tabular
Q-learning seeks to improve its approximate solution to
the fixed-point of the Bellman equation by performing the
following simple update:
Q(s, a)← Q(s, a) + α

(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
.

In domains with large state spaces, rather than learning
a value for each individual state–action pair, algorithms
must represent the Q-function using a parameterized function
approximator. DQN, for example, uses a deep convolutional
neural network [LeCun et al., 2015] parameterized by
weights θ. In this case, the value-function estimate is updated
as follows:
θ ← θ+α

(
r+γmax

a′
Q(s′, a′; θ)−Q(s, a; θ)

)
∇θQ(s, a; θ).

DQN employs two additional techniques, namely
experience replay and the use of a separate target network,
to stabilize learning and improve performance [Mnih et
al., 2015]. Experience replay stores samples 〈s, a, r, s′〉
in a buffer, randomly samples a minibatch, and performs
the above update over that minibatch. This approach helps
reduce the correlation between consecutive samples, which
can otherwise negatively effect gradient-based methods.

The second modification, the target network, maintains a
separate weight vector θ− to create a temporal gap between
the target action-value function and the action-value function
that updates continually. The update is changed as follows:
θ ← θ+α

(
r+γmax

a′
QT (s

′, a′; θ−)−Q(s, a; θ)
)
∇θQ(s, a; θ),

where the separate weight vector θ− is synchronized with θ
after some period of time chosen as a hyper-parameter. Using
a separate target network makes divergence unlikely, because
it adds a delay between the time that Q values are updated
and the time that the target QT values are updated.

2.2 Motivation: Removing the Target Network
We aim to remove the target network for the following
reasons. First, the target network in DQN violates online
reinforcement learning, and hinders fast learning. Online
learning enables real-time learning with streams of incoming
data, continually updating the value functions without
delays [Sutton and Barto, 1998; Rummery and Niranjan,
1994]. (Note that both using experience replay and a target
network are deviations from online learning, but our focus
is solely on the target network.) By eliminating the target
network, we can remove the delays in the update of value
functions, and thus support faster learning, as demonstrated
in our experiments.

Secondly, having a separate target network doubles the
memory required to store neural network weights. Thus,
removing the target network contributes to the better
allocation of memory resources. Lastly, we aim to
develop simpler learning algorithms since they are easier to
implement in practice and understand in theory. A target
network is an extra complication added to Q-learning to make
it work; removing that complication results in a simpler, and
therefore, better algorithm.

3 New Properties of the Mellowmax Operator
Softmax operators have been found useful across many
disciplines of science, including optimization [Boyd and
Vandenberghe, 2004], electrical engineering [Safak, 1993],
game theory [Gao and Pavel, 2017], and experimental
psychology [Stahl II and Wilson, 1994].

In reinforcement learning, softmax has been used in the
context of action selection to trade off exploration (trying new
actions) and exploitation (trying good actions), owing to its
cheap computational complexity relative to more principled
approaches like optimism under uncertainty [Brafman and
Tennenholtz, 2002; Strehl et al., 2006] or Bayes-optimal
decision making [Dearden et al., 1998]. We use softmax in
the context of value-function optimization, where we focus
on the following softmax operator:

mmω(x) :=
log(1n

∑n
i=1 exp(ωxi))

ω
.

This recently introduced operator, called Mellowmax [Asadi
and Littman, 2017], can be thought of as a smooth
approximation of the max operator. Mellowmax can also be
incorporated into the Bellman equation as follows:

Q(s, a) =
∑
s′∈S
T (s, a, s′)[R(s, a, s′) + γmmωQ(s, ·)].

In contrast to the more familiar Boltzmann softmax,
it yields convergent behavior due to its non-expansion
property. Recent research has also found an appealing
entropy-regularization characterization of this operator
[Nachum et al., 2017; Fox et al., 2016; Neu et al., 2017].

Mellowmax has several interesting properties. In addition
to being a non-expansion, the parameter ω offers an
interpolation between max (ω → ∞) and mean (ω → 0)
[Asadi and Littman, 2017]. In the next subsection, we
develop two novel mathematical properties of this operator:
convexity and monotonic non-decrease.

3.1 Convexity and Monotonic Non-decrease
Claim 1: For any ω ≥ 0, mmω(x) is convex.

Proof: Our proof generalizes the proof by Boyd and
Vandenberghe [2004]. Note that ∇2mmω(x) =

ω
(1>z)2

((1>z)diag(z) − zz>) where zi = eωxi . They
showed that 1

(1>z)2
((1>z)diag(z) − zz>) ≥ 0, and thus,

convexity holds as long as temperature ω ≥ 0.

Claim 2: For any ω ≥ 0 and any x, mmω(x) is
non-decreasing with respect to ω.

Proof: Let ω2 > ω1 > 0.
We want to show that mmω2(x) ≥ mmω1(x):

mmω2
(x) =

log 1
n

∑
i e
ω2xi

ω2

=
log 1

n

∑
i e
ω1xi

ω2
ω1

ω2

=
log 1

n

∑
i e

(ω1xi)
(
ω2
ω1

)

ω2
.

We now utilize the convexity of the function f(z) = zp for
z > 0 and p > 1. For any such convex function, Jensen’s
inequality holds:

1

n

∑
i

f(yi) ≥ f(
1

n

∑
i

yi).

Substituting f with yi = eω1xi and p = ω2

ω1
we get:

1

n

∑
i

e(ω1xi)
(
ω2
ω1

)

≥ (
1

n

∑
i

e(ω1xi))(
ω2
ω1

).

Using the above inequality, we finally get:

mmω2
(x) =

log 1
n

∑
i e

(ω1xi)
(
ω2
ω1

)

ω2

≥
log(1n

∑
i e

(ω1xi))(
ω2
ω1

)

ω2

=
(ω2

ω1
) log(1n

∑
i e

(ω1xi))

ω2

=
log(1n

∑
i e

(ω1xi))

ω1
= mmω1(x),

allowing us to conclude that mmω(x) is a non-decreasing
function of ω.

4 DeepMellow
We now introduce DeepMellow, a new algorithm that uses the
Mellowmax operator in DQN. We first present the theoretical
basis of our algorithm (overestimation bias analysis of the
Mellowmax operator), and then explain the details of the
algorithm.

4.1 Alleviation of Overestimation
Previous work [van Hasselt, 2010] showed that standard
Q-learning, which uses the max operator, suffers from an
overestimation problem: note that due to Jensen’s inequality
and the convexity of max,

E[max Q̂] ≥ maxE[Q̂] .

Q-learning can overestimate the target due to noise in the
estimator Q̂. In practice, this gap can be quite large. We
hypothesize that using a separate target network keeps the
target Q̂ constant for a while, and, in effect, removes the
randomness from the target. In this case, both sides of the
above inequality will be the same quantity: max Q̂.

By the same argument, and as a corollary of the
convexity argument of Mellowmax (Claim 1), Q-learning
with Mellowmax also suffers from this overestimation
problem. However, the magnitude of the overestimation is
reduced by lowering the temperature parameter ω, as we
argue next.

For this analysis, we assume that Q̂ is an unbiased estimate
ofQ as assumed by previous work. We further assume that Q̂
values are uncorrelated. We wish to find the following gap:

bias
(
mmω(Q̂)

)
= E[mmω(Q̂)]−mmω(Q).

We begin with a second-order Taylor expansion of
Mellowmax as a good approximation for convex functions:

mmω(y)−mmω(x)

≈ ∇mmω(x)
>(y − x) + 1

2
(y − x)>∇2mmω(x)(y − x).

Replacing x and y with Q and Q̂, we get:

mmω(Q̂)−mmω(Q)

= ∇mmω(Q)>(Q̂−Q)+
1

2
(Q̂−Q)>∇2mmω(Q)(Q̂−Q).

Taking the expectation from both sides, we notice that the left
hand side is exactly the quantity we are looking for, namely
the bias under Mellowmax:

E[mmω(Q̂)−mmω(Q)]

= E[mmω(Q̂)]−mmω(Q) = bias
(
mmω(Q̂)

)
.

Thus:

bias
(
mmω(Q̂)

)
= E[∇mmω(Q)>(Q̂−Q)]

+
1

2
E[(Q̂−Q)>∇2mmω(Q)(Q̂−Q)]

= ∇mmω(Q)>E[Q̂−Q]

+
1

2
E[(Q̂−Q)>∇2mmω(Q)(Q̂−Q)]

=
1

2
E[(Q̂−Q)>∇2mmω(Q)(Q̂−Q)]

=
1

2

∑
i

∂2mmω(Q)

∂(Qi)2
E[(Q̂i −Qi)2]

=
1

2

∑
i

∂2mmω(Q)

∂(Qi)2
Var[Q̂i].

Algorithm 1 DeepMellow
Procedure DeepMellow(ω)

1: Initialize experience replay memory D
2: Initialize action-value function Q with random θ
3: Initialize target function QT with initial weights θ− = θ
4: for episode = 1 to M do
5: Initialize sequence s1 and preprocess φ1 = φ(s1)
6: for t= 1 to T do
7: Select a random action at with probability ε
8: Otherwise, select at = argmaxaQ(φt, a; θ)
9: Execute action at and observe reward rt

10: Set a new state st+1 and preprocess φt+1

11: Store transition (φt, at, rt, φt+1) in D
12: Sample random batch (φj , aj , rj , φj+1) from D
13: if episode terminates at step j + 1 then
14: set yj = rj
15: else
16: set yj = rj + γmaxQT (φj+1, a

′; θ−)
17: set yj = rj + γmmω

a′
Q(φj+1, a

′; θ)

18: end if
19: Perform gradient descent on {yj −Q(φj , aj ; θ)}2
20: Every C steps, copy QT = Q
21: end for
22: end for

(Crossed-out texts denote modifications.)

We make two observations about the bias quantity. First,
the amount of bias relates to the variance of the estimator. If
the estimator Q̂ can perfectly estimateQ with one sample (no
variance), then there will also be no bias. Second, note that

∂2mmω(Q)

∂(Qi)2
=

ωeωQi
∑
i e
ωQi − weωQieωQi∑

i e
ωQi

∑
i e
ωQi

= ωx− ωx2

= ωx(1− x) where w > 0 and 0 < x < 1.

Here, x denotes eωQi/
∑
i e
ωQi . We see that the bias is

always positive and monotonically increases with ω.

4.2 DeepMellow
The target network is just a copy of the action-value function
that is updated with a delay, and it can serve as a stable
target between updates. We note that the analysis in the
previous subsection provides an explanation for how a target
network improves Q-learning—keeping the target network
fixed reduces the variance of estimator Q̂. As we showed
above, the variance of the estimator is connected to the
amount of bias, so using a target network results in a bias
reduction. Our analysis suggests that Mellowmax reduces
overestimation bias, and thus reduces the need for a target
network.

DeepMellow replaces the max operator in DQN with the
Mellowmax operator, as in the framework of generalized
MDPs [Littman and Szepesvári, 1996]. As described in
Algorithm 1, DeepMellow further differs from DQN, as it
does not use a separate target action-value function QT , and
thus does not copy the action-value function every C steps.

Parameters Acrobot Lunar Lander Atari
learning rate 10−3 10−4 0.00025
neural network MLP MLP CNN
layers 3 3 4
neurons per layer 300 500 –
update frequency 100 200 10000
number of runs 100 50 5
processing unit CPU GPU GPU

Table 1: Experimental details for each domain.

5 Experiments and Results
We tested DeepMellow in two control domains (Acrobot,
Lunar Lander) and two Atari games (Breakout, Seaquest).
We used multilayer perceptrons (MLPs) for the control
domains, and convolutional neural networks (CNNs) for
Atari games. The parameters and neural network
architectures for each domain are summarized in Table 1. For
the Atari game domains, we used the same CNN as Mnih et
al. [2015].

Target network update frequency is a crucial factor in our
experiments. In DQN, while the real action-value function is
updated every iteration, the target network is only updated
every C iterations—we call C the target network update
frequency.1 When C > 1, the target network is updated
with a delay. On the other hand, setting C = 1 means that,
after every update, the target network is copied from the real
action-value function immediately; we will use C = 1 as a
synonym for eliminating the separate target network.

Choice of Temperature Parameter ω
The temperature parameter ω of DeepMellow is an additional
parameter that should be tuned. Both too large and too small
ω values are bad—as ω increases, Mellowmax behaves more
like a max operator, so there is no advantage to using it. With
an ω close to zero, Mellowmax behaves like a mean operator,
resulting in persistent random behaviors. Intermediate values
yield better performances than the two extremes, but the
beginning and end of the “reasonable performance range” of
the parameter varies with domain. To find the optimal ranges
of the ω parameter for each domain, we used a grid search
method, as we did for other hyperparameters. We empirically
found that simpler domains (Acrobot, Lunar Lander) require
relatively smaller ω values while large-scale Atari domains
require larger values. For Acrobot and Lunar Lander, our
parameter search set was ω ∈ {1, 2, 5, 10}. For Breakout and
Seaquest, we tested ω ∈ {100, 250, 1000, 2000, 3000, 5000}
and ω ∈ {10, 20, 30, 40, 50, 100, 200}, respectively. An
adaptive approach to choosing this parameter can benefit
DeepMellow, but we leave this direction for future work.

5.1 DeepMellow vs DQN without a Target
Network

We first compared DeepMellow and DQN in the absence of
a target network (or target network update frequency C =
1). The control domain results are shown in the Figure 1

1Though we use the term “frequency”, “period” might be more
apt.

Figure 1: The performance of DeepMellow (no target network) and DQN (no target network) in control domains (left) and Atari games
(right). DeepMellow outperforms DQN in all domains, in the absence of target network. Note that the best performing temperature ω values
vary across domains.

(left). In Acrobot, DeepMellow achieves more stable learning
than DQN—without a target network, the learning curve
of DQN goes upward fast, but soon starts fluctuating and
fails to improve towards the end. By contrast, DeepMellow
(especially with temperature parameter ω = 1) succeeds.
Similar results are observed in Lunar Lander. DeepMellow
(ω ∈ {1, 2}) achieves more stable learning and higher
average returns than DQN without a target network.

In order to quantify the performances in each domain, we
computed the sum of areas under the curves for DeepMellow
and DQN (for the first 1000 episodes; y-axis lower bound
is -500). Setting the areas under the curves of DeepMellow
(ω = 1) as 100, the areas under the curves of DeepMellow
(ω = 2) and DQN were 88.9% and 78.7%, respectively,
in Acrobot. Similarly, in Lunar Lander domain, the areas
under the curves of DeepMellow(ω = 2) and DQN were
93.4% and 79.2% of that of DeepMellow (ω = 1). In both
domains, DeepMellow(ω = 1) performed best, followed by
DeepMellow(ω = 2), and then by DQN.

We also compared the performances of DeepMellow and
DQN in two Atari games, Breakout and Seaquest. We chose
these two domains because the effects of having a target
network are known to be different in each domain [Mnih et
al., 2015]. In Breakout, the performance of DQN does not
differ significantly with and without a target network. On
the other hand, Seaquest is a domain that shows a significant
performance drop when the target network is absent. Thus,
these two domains are two contrasting examples for us to see

whether DeepMellow obviates the need for a target network.
Figure 1 (right) shows the performances of DeepMellow

and DQN in these games. We used similar methods
to quantify their performances (computing the areas
under the curves), and the results were as follows: in
Breakout, compared with the areas under the curves of
DeepMellow(ω = 1000), those of DeepMellow(ω =
250, 3000, 5000) and DQN were 93.1%, 68.5%, 67.1%,
and 64.5%, respectively. In Seaquest, the performance
gaps widened as expected: the areas under the curves of
DeepMellow (ω = 20, 40) and DQN were 69.5%, 31.1%,
and 14.9% of that of DeepMellow(ω = 30).

DeepMellow performed better than DQN without a target
network in both Breakout and Seaquest; especially in
Seaquest, the performance gap was substantial. Also,
note that there are intermediate ω values that yield best
performances of DeepMellow in each domain. (ω = 30 is
better than ω = 20 or ω = 40 in Seaquest; ω = 1000 is
better than ω = 250 or ω = 3000, 5000 in Breakout.) These
results are consistent with the property of the Mellowmax
operator that both too large (behaving like max operator)
and too small (entailing random action-selection) ω values
degrade the performance.

5.2 DeepMellow vs DQN with a Target Network
In the previous section, we showed that DeepMellow
outperforms DQN without a target network. The next
question that naturally arises is whether DeepMellow without

Figure 2: Performances of DeepMellow (no target network) and DQN (with a target network). If tuned with an optimal temperature parameter
ω value, DeepMellow learns faster than DQN with a target network.

a target network performs even better than DQN with a target
network.

To see if DeepMellow has an advantage over DQN with a
target network, we compared their performances, focusing on
their learning speed. Our prediction is that DeepMellow will
learn faster than DQN, because DQN’s updates are delayed
(C > 1), and DeepMellow is likely to react faster to the
environment.

As shown in Figure 2, DeepMellow does learn faster than
DQN in Lunar Lander, Breakout, and Seaquest domains. In
Acrobot (not shown), there was no significant difference,
because both algorithms learned very quickly. In Lunar
Lander, DeepMellow reaches a score of 0 at episode 517 on
average, while DQN reaches the same point around episode
561 on average. (DeepMellow is 8% faster than DQN in
reaching to the zero-score.)

In Breakout and Seaquest, DeepMellow learns faster than
DQN and achieves higher performance, if tuned with an
optimal ω parameter. In Breakout, DeepMellow (ω = 1000)
reaches the score of 15 and 20 at timestep 55 × 104 and
95×104, while DQN reaches them at timestep 153×104 and
503 × 104. Similarly, in Seaquest, DeepMellow (ω = 30)
reaches the score of 600 and 800 at timestep 140 × 104

and 193 × 104, while DQN reaches them at 296 × 104 and
406 × 104. We also observed that, in both Atari games,
DeepMellow achieves higher scores than DQN. In Breakout,
at timestep 1000×104, the scores of DeepMellow (ω = 1000)
and DQN are 38 and 26, respectively, which means that
the score of DeepMellow at this timepoint is 42.6% higher
than DQN. Similarly in Seaquest, at timestep 800 × 104, the
scores of DeepMellow (ω = 30) and DQN are 1205 and 962,
respectively. At this timepoint, DeepMellow achieves a score
that is 25.2% higher than DQN.

6 Conclusion and Future Work
We have introduced a new algorithm, DeepMellow, that can
learn stably without the use of a target network. DeepMellow

replaces the max operator in DQN with the Mellowmax
operator. We proved new mathematical properties of the
Mellowmax operator (convexity, monotonic non-decrease,
and mitigation of overestimation) and explained how we can
reduce the instability of deep Q-learning using Mellowmax.
This increased stability reduces the need for a target network,
speeding up learning.

Our empirical results show that DeepMellow outperforms
DQN, both when DQN does and does not have a target
network. In control domains and Atari games, DeepMellow
(with temperature parameter tuned to each domain) showed
more stability, higher performance, and faster learning than
DQN. The improvement is likely due to the elimination of
delays between action-value function updates.

One limitation of this work is that we used an exhaustive
grid-search method to choose an optimal ω parameter. This
approach can be inefficient, especially when researchers
deal with large-scale domains with deep neural network
settings. Developing a new method that adaptively chooses
this parameter for each domain remains an open research
problem.

As a final remark, we note that DeepMellow is closer to
true online reinforcement learning, because using a target
network deviates from online learning. One possible future
direction of research is to reduce the need for an experience
replay, which is another deviation from online learning,
and achieve full online reinforcement learning in complex
settings. Another future research direction is to compare the
DeepMellow algorithm with other variants of DQN, such as
Double-DQN [van Hasselt et al., 2016] or Duel-DQN [Wang
et al., 2016].

Acknowledgements

This research was supported in part by the National Science
Foundation, under grant number 1717569.

References
[Asadi and Littman, 2017] Kavosh Asadi and Michael L.

Littman. An Alternative Softmax Operator for
Reinforcement Learning. In Proceedings of the 34th
International Conference on Machine Learning, pages
243–252, 2017.

[Bellemare et al., 2013] Marc G Bellemare, Yavar Naddaf,
Joel Veness, and Michael Bowling. The Arcade Learning
Environment: An Evaluation Platform for General Agents.
Journal of Artificial Intelligence Research, 47:253–279,
2013.

[Bellman, 1957] Richard Bellman. A Markovian Decision
Process. Journal of Mathematics and Mechanics, 6(5),
1957.

[Boyd and Vandenberghe, 2004] Stephen Boyd and Lieven
Vandenberghe. Convex Optimization. Cambridge
university press, 2004.

[Brafman and Tennenholtz, 2002] Ronen I. Brafman and
Moshe Tennenholtz. R-MAX—A General Polynomial
Time Algorithm for Near-Optimal Reinforcement
Learning. Journal of Machine Learning Research,
3:213–231, 2002.

[Dai et al., 2018] Bo Dai, Albert Shaw, Lihong Li, Lin Xiao,
Niao He, Zhen Liu, Jianshu Chen, and Le Song. SBEED:
Convergent Reinforcement Learning with Nonlinear
Function Approximation. In Proceedings of the
International Conference on Machine Learning, pages
1133–1142, 2018.

[Dearden et al., 1998] Richard Dearden, Nir Friedman, and
Stuart Russell. Bayesian Q-learning. In AAAI/IAAI, pages
761–768, 1998.

[Fox et al., 2016] Roy Fox, Ari Pakman, and Naftali Tishby.
Taming the Noise in Reinforcement Learning via Soft
Updates. In Proceedings of the Thirty-Second Conference
on Uncertainty in Artificial Intelligence, 2016.

[Gao and Pavel, 2017] Bolin Gao and Lacra Pavel. On the
Properties of the Softmax function with Application in
Game Theory and Reinforcement Learning. arXiv preprint
arXiv:1704.00805, 2017.

[LeCun et al., 2015] Yann LeCun, Yoshua Bengio, and
Geoffrey Hinton. Deep Learning. nature, 521(7553):436,
2015.

[Littman and Szepesvári, 1996] Michael L Littman
and Csaba Szepesvári. A Generalized
Reinforcement-Learning Model: Convergence and
Applications. In ICML, volume 96, pages 310–318, 1996.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas
Fidjeland, Georg Ostrovski, Stig Petersen, Charles
Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Human-level Control through Deep
Reinforcement Learning. Nature, 518(7540):529–533,
2015.

[Nachum et al., 2017] Ofir Nachum, Mohammad Norouzi,
Kelvin Xu, and Dale Schuurmans. Bridging the
Gap Between Value and Policy Based Reinforcement
Learning. In Advances in Neural Information Processing
Systems, pages 2775–2785, 2017.

[Neu et al., 2017] Gergely Neu, Anders Jonsson, and Vicenç
Gómez. A Unified View of Entropy-Regularized Markov
Decision Processes. arXiv preprint arXiv:1705.07798,
2017.

[Rummery and Niranjan, 1994] G. A. Rummery and
M. Niranjan. On-line Q-learning Using Connectionist
Systems. Technical Report CUED/F-INFENG/TR 166,
Cambridge University Engineering Department, 1994.

[Safak, 1993] Aysel Safak. Statistical Analysis of the Power
Sum of Multiple Correlated Log-Normal Components.
IEEE Transactions on Vehicular Technology, 42(1):58–61,
1993.

[Stahl II and Wilson, 1994] Dale O Stahl II and Paul W
Wilson. Experimental Evidence on Players’ Models
of Other Players. Journal of Economic Behavior &
Organization, 25(3):309–327, 1994.

[Strehl et al., 2006] Alexander L Strehl, Lihong Li, Eric
Wiewiora, John Langford, and Michael L Littman. PAC
Model-Free Reinforcement Learning. In Proceedings of
the 23rd International Conference on Machine Learning,
pages 881–888, 2006.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G.
Barto. Reinforcement Learning - An Introduction. MIT
Press, 1998.

[van Hasselt et al., 2016] Hado van Hasselt, Arthur Guez,
and David Silver. Deep Reinforcement Learning with
Double Q-learning. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, pages 2094–2100,
2016.

[van Hasselt, 2010] Hado van Hasselt. Double Q-learning.
In Advances in Neural Information Processing Systems 23,
pages 2613–2621, 2010.

[van Seijen and Sutton, 2014] Harm van Seijen and Rich
Sutton. True Online TD (lambda). In Proceedings of
the International Conference on Machine Learning, pages
692–700, 2014.

[Wang et al., 2016] Ziyu Wang, Tom Schaul, Matteo Hessel,
Hado van Hasselt, Marc Lanctot, and Nando de Freitas.
Dueling Network Architectures for Deep Reinforcement
Learning. In Proceedings of the 33nd International
Conference on Machine Learning, pages 1995–2003,
2016.

	Introduction
	Background
	Deep Q-Network
	Motivation: Removing the Target Network

	New Properties of the Mellowmax Operator
	Convexity and Monotonic Non-decrease

	DeepMellow
	Alleviation of Overestimation
	DeepMellow

	Experiments and Results
	Choice of Temperature Parameter
	DeepMellow vs DQN without a Target Network
	DeepMellow vs DQN with a Target Network

	Conclusion and Future Work

