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Abstract—Current methods for representing 3D objects for
robotic interaction have significant limitations. They do not
allow knowledge transfer from previously encountered objects to
similar but novel objects, they construct large object databases
that do not scale and are expensive to query, or they require
hand tuned object models. We propose the use of Variational
Bayesian Principal Component Analysis (VBPCA) directly on
3D object representations to create compact low-dimensional
probabilistic models for classes of 3D objects. We show that
these learned Bayesian Eigenobjects (BEOs) are well suited to
important and practical robotic tasks including the classification
and pose estimation of novel objects. Furthermore, we show that
this approach can complete partially observed novel objects,
allowing for the classification and pose estimation of novel
occluded query objects.

I. INTRODUCTION

It is inevitable that robots operating in the real world will be
required to interact with previously encountered objects. While
databases of object models exist with tens of thousands of
objects, the world contains orders of magnitude more variation.
Although 2D object detection has improved dramatically in the
recent years, techniques for detecting and interacting with 3D
objects are still quite limited. The common practice is still
to build a library of 3D object models and match them to
encountered objects in the world, often using ICP [18]. While
this can be successful in highly controlled environments, it can
not be feasibly scaled to less controlled settings where a wide
variety of objects must be considered. Take, for example, a
robot designed to clear dishes off of a table. The amount of
variation in the size and shape of bowls, platters, and plates
that the robot may encounter is huge. While such a task might
be feasible for a specific set of place settings, creating a
general purpose table clearer is beyond the current state of
the art. Thus, new approaches are needed to allow robots to
generalize across such highly variable objects.

There are several key building blocks of most robot appli-
cations involving interactions with objects in the world: object
detection, pose estimation, and classification. These tasks form
the perceptual foundation for many higher level operations
including object manipulation and world-state estimation. In
this work, we focus on the classification, pose estimation,
and geometric completion of novel objects and demonstrate
that Bayesian Eigenobjects (BEOs) are naturally suited to
facilitating these tasks.

Our work uses Variational Bayesian Principal Component
Analysis as the basis for a multi-class object representation.
By learning a compact basis for each class, we are able to

store previously encountered objects efficiently by storing only
their projection coefficients. Furthermore, novel objects can be
localized, classified, and completed by projecting them onto
class basis and then projecting back into object space. Because
we do not query a database of individual objects, our method
scales gracefully with the number of objects in each class—
requiring a constant amount of computation for projection and
reconstruction even as the number of previously encountered
data-points increases— and is able to handle objects of much
higher resolution than competing methods.

A key advantage of our single, unified, object representation
is its ability to perform partial object completion. Because
objects in real environments are rarely observable in their
entirety from a single vantage point, the ability to produce
even a rough estimate of the hidden regions of a novel object
can be extremely useful. Furthermore, being able to classify
partial objects dramatically improves the efficiency of object-
search tasks by not requiring the agent to examine all candidate
objects from multiple viewpoints. Experimentally, we applied
our method to several datasets consisting of scanned objects.
We were able to successfully estimate the rotational pose
of novel objects, reconstruct partially unobserved objects,
and categorize novel objects by class. We also show that
these completed objects are of suitable quality for use in
classification and pose estimation.

II. BACKGROUND

A. 3D Object Recognition

While significant work has been done on 3D object recogni-
tion of known objects [23, 19, 16, 10, 9, 14, 21], less progress
has been made on representing classes of 3D objects in a gen-
eral way. One class of related approaches are object-database
approaches [25, 2, 24, 12, 22, 13]. These methods construct
a large database of complete and high quality object scans.
When a novel object is encountered, it is used as a query into
the database. Commonly used features for matching include
local point features [2], shape features [12], global features
[25], or a mixture of local and global features [13]. While
these types of approaches have appealing properties, they
also have some limitations. Because the database explicitly
contains high quality models of object instances, extremely
accurate information on the query object is available if an
exact match to the query object exists. This is very effective
for tasks such as partially specified object completion [13]. A
significant drawback exists, however, if an exact match is not
found in the database. While some approaches still attempt



to find a nearest match in such a case [13, 2], the results
will be poor if the query object is sufficiently different from
any in the database. Looked at another way, instance-based
database models are necessarily discrete, containing only a
finite number of exemplars. If coverage of the object space
is not sufficient (does not include enough objects) then it will
yield poor results, in both match quality and in behavior trans-
fer. Furthermore, because the database is explicitly composed
of training examples, it necessarily scales with the size of the
training input. On moderately sized datasets this is often not
an insurmountable issue, but it can become a problem as both
the size of the class model and query latency increase with
the training size.

Another class of techniques consists of parts-based ap-
proaches. These methods learn a dictionary of parts and
represent objects via a combination of parts [8, 20, 17]. A key
advantage of parts-based approaches is compactness—a shared
dictionary of common parts means that maintaining a database
of all previously seen objects is unnecessary. Furthermore,
by associating an attribute (such as an affordance) to parts,
knowledge can be transferred to new objects. One drawback
of parts-based approaches is their inability to reconstruct
incomplete objects. Because objects are represented as a
collection of parts, a partial object model will not generally
specify what the hidden portion of the object geometry is.
While this is not necessarily an issue for recognition tasks,
it is a drawback in other contexts such as object interaction.
Furthermore, complex models consisting of numerous parts
may become computationally intractable to reason about as
the number of possible configurations is exponential in the
number of parts.

B. Variational Bayesian Principal Component Analysis

Our work uses Variational Bayesian Principal Component
Analysis (VBPCA) to learn compact bases for classes of
objects. VBPCA is an extension of probabilistic PCA (PPCA)
[15], which models each datapoint as

xi = Wci + µ+ εi ∀xi ∈ X, (1)

where εi is zero mean Gaussian noise associated with datapoint
i. PPCA also makes the assumption that each projected data-
point, cj, is generated from a zero mean Gaussian distribution.
The model parameters for PPCA may be efficiently found
using the EM algorithm, which alternates between updating
the estimate of each datapoint’s coefficient, cj, and updating
W , µ, and ε. This probabilistic approach to PCA provides a
density model which is well suited to density estimation and
data compression. Bayesian PCA (BPCA) [5] further extends
this model by introducing (Gaussian) priors (parametrized by
H) over the elements of µ and W . This allows BPCA to model
the entire posterior probability of model parameters:

p(W, µ,C|X,H). (2)

Unfortunately, there is no analytic form for this probability, so
straightforward application of the EM algorithm is problem-

atic. VBPCA approximates this posterior probability as:

q(W, µ,C) ≈ p(W, µ,C|X,H), (3)

where q(W, µ,C) is a factored approximation of the posterior:
[4, 1]

q(W, µ,C) =

d∏
i=1

q(µi)

d∏
i=1

q(wi)

n∏
i=1

q(ci). (4)

This can be thought of as a regularized version of PPCA,
providing the advantages of PPCA (including intrinsic density
estimation) with increased resilience to over-fitting due to
the prior. This property makes it especially well suited for
situations where the dimensionality of the problem is high
compared to the number of datapoints, i.e. n <= d, as is true
in our case.

III. METHOD

Our approach is based on constructing a generative model
for each class of objects, and then using that model to answer
queries about novel or partial objects.

A. Class Models: Eigenobject Construction via VBPCA

We begin with a library of known objects of several classes,
consisting of a complete 3D scan of each object. For each
object in each class, we convert these scans into 3D voxel-
based objects with a canonical orientation. We use coordinate
descent congealing [11] to roughly align the objects in each
class and then manually inspect and refine the alignment
as needed. Congealing is a joint alignment algorithm that
iteratively seeks to minimize a measure of group dissimilarity
by warping group members at every iteration. We use element-
wise binary entropy across all voxel objects in a class as
our dissimilarity measure and allow rotation and translation
transformations. Some of our data was sourced from ShapeNet
[7] and generally arrived pre-aligned, while our manually
scanned objects required alignment.

To construct a model for each class, we performed VBPCA
on the registered 3D voxel representations of the class mem-
bers using a manually specified basis size, k. Our hyperpa-
rameters were all zero mean, unit variance Gaussians which
provided some regularization to the solution. A compact basis
for the objects in a given class can be found by retaining only
the first k rows of W. Given a novel object in voxel-vector
form, o, its projection onto W can be found via

o′ = WT (o− µ). (5)

Conversely, any point in the space of W can be converted
back to a voxel object by solving

ô = Wo′ + µ. (6)

We refer to ô as the “reconstructed” version of o and o′ as
the “projected” version of o (with respect to some class).

This formulation provides several benefits. First, we need
not store or query an entire object database; instead, we need
only store W and µ for each object-class. Second, we can
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Fig. 1. The pipeline for obtaining a compressed representation of a query object. The upper left picture shows the objects used to create the plug-object
manifold. The 10 most principal components and a mean vector were retained, leading to a 50 percent reduction in database size and capturing approximately
86 percent of variance in the input. The lower row shows an example query and reconstruction.

represent any object in a given class using a single coefficient
vector of dimension ki. In practice, k � d, providing an
extremely compact representation.

Once a model is learned, it is not necessary to retain the
original objects, O, or their VBPCA coefficients, O′. Instead,
we retain an estimate of the learned (compressed) basis, W,
the estimated mean, µ, and the estimated variance of the noise,
vε. Because it is assumed that the VBPCA coefficients for a
given object, o′i are normal, i.e.

p(o′i) = N (o′i : 0, vε(vεI+WTW)−1), (7)

this representation is also sufficient to provide a predictive
density in the learned class manifold.

B. Pose Estimation

Pose estimation, the determination of an object’s position
and orientation, is necessary for many robotic manipulation
and planning tasks. While it is relatively straightforward to ac-
quire a rough estimate of object position given object detection
and segmentation, determining orientation is more difficult.
Using BEOs, it is possible to determine object orientation
using a try-verify approach. We define a score based upon
the L2 error between two voxel objects,

ri(o, ôi) = 1− ||o− ôi||2
|o|

, (8)

where a score of 1 denotes a perfect match and a score of
0 indicates that all voxels differ between the two objects.
This score can be used to localize an object by projecting
it, in various orientations, onto a basis and then picking the
orientation that yields the highest reproduction score.

Let O = o1,o2, ...op be object o in p orientations. To
estimate the true orientation or o we solve

g(o) = argmax
oi∈o

ri(o, ôi). (9)

In general, if a fine resolution orientation is required, there
may be a large number of candidate poses. With three degrees
of freedom for 3D rotations, discretizing to 1 degree of
precision requires 46, 656, 000 candidate poses. Fortunately,
two mitigating factors make this less daunting. First, each
query is totally independent and thus trivially parallelizable;
it is possible to distribute the workload to multiple processors
or accelerate it via GPU. Second, and more germane to this
paper, searching all of SE(3) is often unnecessary in practice.
For instance, objects in an environment often have a canonical
base upon which they sit. Leveraging this yields the common
“up is up” assumption which reduces the space of possible
orientations to those about the z axis only. Under such an
assumption, 1 degree of pose precision only requires 360
candidate poses.

C. Object Classification

Another essential part of many robotic tasks is the classi-
fication of novel objects. Let the learned models for multiple
classes be denoted θ1, θ2, ..., θm where θi = {Wi,mui, viε}
and let the novel query object be denoted oq. We wish to
assign a label, li, to oq from the set L = {1, 2, ...,m} where
li corresponds to class i. Intuitively, a key attribute of an
object’s true class is the error between the original object and
the object obtained by projecting o into the basis learned for
its true class and then projecting back into voxel space. Care
must be taken in several areas, however, to create a successful
3D object classifier. Equation 8 works well for objects of the
same class, but can be misleading when applied to objects of
very different shape. Consider, for instance, the comparison
of two significantly different objects, both with little solid
volume. The first object is a bowl with thin sides while the
second is a tall and thin flower. Because both objects have
small filled volume, much of the unfilled space in the voxel
representation will correspond between the two object models.
Directly applying equation 8 in such a situation would lead to



misleadingly low error given how different the two objects are,
making it unsuitable for comparing disparate objects across
multiple classes.

To address this issue, we leverage a more nuanced repre-
sentation of inter-object distance. Let o be the object to be
classified and

ôi = WiW
T
i (o− µi) + µi (10)

be the approximation obtained by projecting o onto the learned
basis for class i and then projecting back into object space.
From o and ôi we extract the Euclidean Distance Transform
[6] from each object, D and D̂i respectively. Each distance
transform forms a 3D matrix of the same dimensions as the
object from which it was extracted. Each entry in the distance
transform is the euclidean distance between its corresponding
voxel in the original object and the closest filled voxel. As a
result, entries that correspond to filled voxels have a value of 0
while entries that correspond to voxels far from filled portions
of the object have high value. By computing the 2-norm of
the difference between distance fields, we can create a more
robust measure of distance between two objects. Using these
distance norms, the distance reconstruction error between an
object and its approximation when projected onto class i is

ed(o, ôi) = ||D− D̂i||2. (11)

Because it implicitly captures shape differences between two
objects, this distance error provides a much more robust metric
for inter-class object comparison than equation 8.

Armed with this more versatile inter-object distance met-
ric, we can now construct an object classifier. Let O =
o1,o2, ...,oN be the set of all training objects used to find
bases for all classes. We train a multi-class classifier over these
objects with inputs X and y where element xh,i corresponds
to the reconstruction distance error obtained when projecting
the hth object onto class i

ed(o
h, ôh

i ) (12)

and yh is the true class label associated with the hth object.
This classifier can be used to determine the class of a novel
object, o by constructing a query vector,

xo = [ed(o, ô1), ed(o, ô2), ..., ed(o, ôm)], (13)

consisting of equation 11 applied to the query object and each
of the m classes. Our implementation uses a multi-class linear-
SVM [3], but any multi-class classifier suffices.

This formulation has several advantages over alternative
classification strategies. First, unlike methods that operate
directly on objects, there is no need to tune 3D features
for individual classes. Furthermore, even objects of 250 ×
250×250 size contain over fifteen million voxels. Using such
high dimensional input for classification is often infeasible,
especially when the number of training examples is relatively
small. Second, by leveraging reconstruction error instead of
directly using projection coefficients, our approach eliminates
the necessity of handling variable length classifier input.

Unless each class has the same number of components, the
projection coefficients obtained by projecting a single object
onto multiple classes will not be the same length.

D. Partial Object Completion

In real-world environments, robots almost never have entire
views of the objects they encounter. Even with the prevalence
of multiple sensor, multiple modality, perception on modern
robots, obtaining a complete 3D view of an encountered object
requires sensing from multiple sides. If robots are to be mobile
and operate outside of lab environments, it is unreasonable to
expect that they will perceive objects from numerous vantage
points before reasoning about them.

The alternative is to infer, from a partial model of an object
and prior knowledge, what the remaining portions of the object
may be. BEOs naturally provide this ability because they offer
a generative representation of objects in a class. Since each
learned basis provides an object-class manifold, if we are able
to find the point on this manifold that best corresponds to
a given partial object, reconstructing by projecting back into
voxel object space will yield a prediction for the unobserved
portions of the object.

Similar to Li et al. [13], we assume that the partial object,
op, consists of filled, empty, and unknown pixels. It is useful
to define a n by k diagonal and binary selection matrix V such
that Vop = w where w is a length k < d vector consisting
of only the known (filled and empty) elements of op. The ith
element along the diagonal of V will be 1 if the ith element of
op is known, and 0 otherwise. Let o′p denote the smallest error
projection of op onto the class basis W. The error induced
by an arbitrary projection o′i with respect to op is

E(o′i) = ||V (Wo′i + µ)−w||2. (14)

The gradient of this error with respect to o′i is thus

E
′
(o′i)do

′
i = 2WTV T [V (Wo′i + µ)−w]. (15)

This error function is quadratic and hence convex. To find
the projection that minimizes E(o′i) we set the gradient to 0
and solve the linear system for o′.

Ao′ = b (16)

where

A = WTVTVW (17)

and

b = WTVT (w −Vµ). (18)

Once we have obtained our projection estimate o′ we can
reconstruct the object using equation 6. This reconstructed
object, ô, will be complete in that it minimizes the error
between itself and the known portion op while predicting the
unknown portions of op.



Fig. 2. Partial object completion. Original object is shown in blue boxes (left), the partial queries are shown in gold (middle), and the resulting estimated
object is shown in red (right).

IV. EXPERIMENTAL RESULTS

In order to characterize the behavior of our approach, we
conducted experiments on three datasets. The first dataset
is comprised of 20 wall USB charging plugs. These plugs
were aligned to canonical orientation with the prongs directed
upward and scanned on a MakerBot 3D scanner. The scanned
mesh files were then voxelized into 254× 254× 254 objects,
forming the dataset. The other two datasets were both sourced
from ShapeNet [7]. One consists of a random sampling of
standing grandfather clocks while the other contains a random
sampling of tabletop lamps. ShapeNet provides an appealing
source of data because the objects it contains are oriented
and scaled to canonical pose and size. Both the lamp and
clock datasets were randomly split into two sub-groups for
training and testing. The lamp training set consists of 40 lamps
while the lamp test set consists of 10. The clock training set
consists of 35 clocks and the clock test set consists of 8. Both
lamps and clocks consist of size 273 × 273 × 273 objects.
Both the clock and lamp class manifolds were learned with
17 components while the plugs used 10.

A. Partial Object Completion
Each of our three datasets were used to complete partially

specified objects. The plug dataset illustrates the case where
the partial object is not novel; it was present in the group
of objects used to find the object-class manifold. The clock
and lamp sets were used to examine the novel case; the basis
for each class was created from a separate training set while

reconstruction of partially specified objects was performed
on a separate pool of novel objects. A random subset of
plugs, and each clock and lamp in the test set, were selected
to be reconstructed from a partial fragment. Each of these
objects was cut in half and the resulting incomplete object
was used as input to our completion algorithm. Figure 2
illustrates some of these results. The right portion of the
figure illustrates relatively successful reconstructions. While
the results usually are not perfect and may contain significant
noise, the overall shape profile remains intact. The left portion
of Figure 2 illustrates more challenging cases where the
resulting reconstruction differs in more meaningful ways from
the original. Generally, this results when the query object has
novel portions not present in the training objects. We observed
that the lamp dataset was by far the most challenging from a
reconstruction standpoint as it exhibits significant intra-class
variance. Such classes will require a larger number of training
objects and basis components for high quality results than
more homogeneous classes.

B. Pose Estimation

We next examined our approach’s ability to determine the
pose of objects. To reduce the dimensionality of the problem,
we assume that objects are centered in a reference frame
and are upright. To fully specify an object’s pose under
such circumstances, we require an estimate of that object’s
rotation about its vertical axis. We tested the results of our
pose estimator on all three datasets. Each object’s pose was



Fig. 3. Left: The lamp with success-
ful pose estimation. Right: A lamp
with incorrectly estimated pose.

Test Set Plug Accuracy Clock Accuracy Lamp Accuracy

Complete Objects 1.0 1.00 0.1
Partial Objects (Top Half) 0.95 0.95 0.6
Partial Objects (Bottom Half) 0.95 0.88 0.4

TABLE I
POSE ESTIMATION RESULTS

Test Set Clock Precision Clock Recall Lamp Precision Lamp recall Combined Accuracy

Complete Objects 0.73 1.00 1.00 0.70 0.83
Partial Objects (Top Half) 1.00 1.00 1.00 1.00 1.00
Partial Objects (Bottom Half) N/A 0.00 0.56 1.00 0.56

TABLE II
CLASSIFICATION RESULTS ON THE CLOCK AND LAMP TEST SET

estimated by rotating it, in intervals of 36 degrees, about its
vertical axis. We evaluate each candidate rotation as described
in section III-B and select the highest scoring pose as our
estimate. The results of this experiment are summarized in
Table I. While we achieved perfect pose estimation accuracy
on the plug and clock datasets, we observed poor results
on the lamps. Because most lamps exhibit a high degree
of rotation symmetry about their vertical axis, this set is
intrinsically very challenging. Figure 3 illustrates the single
success and an example failure case on the lamp dataset;
the failed lamp is almost completely symmetrical with only
tiny texture variations to distinguish its orientation while the
successfully localized lamp has much more distinct variation
about its vertical axis. Interestingly, both top-only and bottom-
only lamp experiments yielded significantly better results than
the complete object experiment. When analyzing this more
closely, we discovered that the top-only and bottom-only
experiments experienced success on different lamps. This is
likely the result of conflicting cues between the top and
bottom portions of lamps; for some lamps the base provided
misleading results while on others, the top was misleading.

C. Classification

Using the test set of 10 lamps and 8 clocks, we performed
a two class classification experiment. We ran three types of
experiments. The first experiment used the full test object as
input to our classifier while the second and third experiments
applied the approach outlined in section III-D to partial
objects. In experiment two, we used only the top half of each
object (simulating an occluded top) while in experiment three
we used only the bottom half. While our classifier achieved
good performance on full objects, it remarkably achieved
perfect performance when given only the top half of objects
and poor performance when given only the bottom half. The
most reasonable explanation is that the tops of lamps look
quite different from the tops of clocks while their bases can

look similar. As long as the non-occluded portion of the query
object is somewhat distinct, our approach is able to achieve
good performance, even when much of the rest of the object is
missing. It is also important to note that the classifier used in
all three experiments was the same; we did not retrain it based
on partially occluded objects for experiments two and three.
Although the classifier was only trained on on full objects, it
was able to generalize to distance field differences obtained
from partial objects.

V. CONCLUSION

Despite the ubiquity of object-centric tasks in modern
robotic applications, modeling, storing, reasoning about, and
extrapolating from previously encountered objects to novel
partially observed objects is still an open problem. We propose
the use of Variational Bayesian Principal Component Analysis
as the basis for a multi-class object representation. Novel ob-
jects can be localized, classified, and completed by projecting
them onto class basis and then projecting back into object
space.

A key advantage of our approach to object representation
is its ability to perform partial object completion. Because
objects in real environments are rarely observable in their
entirety from a single vantage point, the ability to produce
even a rough estimate of the hidden regions of a novel object
can be extremely useful. Furthermore, being able to classify
partial objects dramatically improves the efficiency of object-
search tasks by not requiring the agent to examine all candidate
objects from multiple viewpoints. Experimentally, we illus-
trated our method on several datasets consisting of scanned
objects. We were able to successfully estimate the rotational
pose of novel objects, reconstruct partially unobserved objects,
and categorize novel objects by class. We also showed that
not only could partial objects can be completed, but that these
completions are of suitable quality for use in classification.
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