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Abstract
The difficulty of deterministic planning increases ex-
ponentially with search-tree depth. Black-box plan-
ning presents an even greater challenge, since plan-
ners must operate without an explicit model of the
domain. Heuristics can make search more efficient,
but goal-aware heuristics for black-box planning
usually rely on goal counting, which is often quite
uninformative. In this work, we show how to over-
come this limitation by discovering macro-actions
that make the goal-count heuristic more accurate.
Our approach searches for macro-actions with fo-
cused effects (i.e. macros that modify only a small
number of state variables), which align well with
the assumptions made by the goal-count heuristic.
Focused macros dramatically improve black-box
planning efficiency across a wide range of planning
domains, sometimes beating even state-of-the-art
planners with access to a full domain model.

1 Introduction
In classical planning, an agent must select a sequence of de-
terministic, durationless actions to transition from a known
initial state to a state that satisfies the desired goal condition.
Planning assumes the agent has access to a model of the effects
of its actions, which it uses to reason about potential plans.
Usually this model takes the form of a PDDL description or
finite-domain representation [Fox and Long, 2003; Helmert,
2009], which specifies the preconditions and effects of each ac-
tion. However, in black-box planning [Lipovetzky et al., 2015;
Jinnai and Fukunaga, 2017], the model is instead defined im-
plicitly by a simulator that the agent can query to generate
state transitions.

In general, planning is hard: determining whether a plan
exists to reach the goal is PSPACE-complete [Bylander,
1994]. Heuristic search eases this computational burden
by guiding the search towards promising solutions. Of
course, heuristic search is only useful with a good heuris-
tic. In classical planning, much work has gone into the
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development of domain-independent methods that automat-
ically construct heuristics to exploit as much problem struc-
ture as possible from the formal PDDL problem descrip-
tion [Bonet and Geffner, 2001; Hoffmann and Nebel, 2001;
Helmert, 2006; Helmert and Domshlak, 2009; Helmert et
al., 2014; Pommerening et al., 2015; Keyder et al., 2014;
Domshlak et al., 2015]. However, black-box planners have no
formal domain description to exploit, and are therefore limited
to less-informed heuristics.

One simple, domain-independent heuristic that is compati-
ble with simulator-based planners is the goal-count heuristic
[Fikes and Nilsson, 1970], which counts the number of state
variables that differ between a given state and the goal. The
two basic assumptions of the goal-count heuristic are: a fac-
tored state space (i.e. there are state variables to count), and
a known goal condition (i.e. there is a reason to modify vari-
ables). A third, more subtle assumption is that the problem can
be decomposed into subproblems, where each state variable
can be treated as an approximately independent subgoal. Un-
fortunately, this subgoal independence assumption is invalid
for most planning problems of practical interest, and thus the
goal-count heuristic is often misleading.

A second domain-independent strategy for improving plan-
ning efficiency is to use abstraction in the form of high-level
macro-actions. When macro-actions are added to the set of
low-level actions, they can reduce search tree depth at the
expense of increasing the branching factor. In some cases, this
has been shown to improve planning efficiency, particularly
when the macro-actions cause the problem’s subgoals to be-
come independent [Korf, 1985]. We further explore this idea
in the context of black-box planning by constructing macros
that are well aligned with the goal-count heuristic.

We begin by examining why goal counting becomes unin-
formative for certain sets of actions. We show that both goal-
count accuracy and planning efficiency are linked to how many
state variables actions can modify at once. Our investigation
suggests a compelling strategy for improving the usefulness of
the goal-count heuristic: learning focused macro-actions that
modify as few variables as possible, so as to align with the
assumptions made by the goal-count heuristic. This approach
also seems well-aligned with human problem solving, for ex-
ample, among expert Rubik’s cube solvers, where focused
macros are essential for the most efficient planning strategies.

We describe a method for discovering focused macro-
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actions and test it on several classical planning benchmarks,
restricting our attention to quickly finding feasible plans, rather
than optimal ones, with the goal of minimizing the number
of simulator queries. Our learned macro-actions enable reli-
able and efficient planning, making dramatically fewer calls
to the simulator and improving solve rate on most domains.
Our approach is designed to improve the goal-count heuris-
tic, but it is compatible with more sophisticated black-box
planning techniques as well—with similar improvement. In
some cases, black-box planning with focused macros is even
competitive with approaches that have access to much more
detailed problem information.

2 Background
We consider the problem of black-box planning [Jinnai and
Fukunaga, 2017], where the planning agent does not have
access to a declarative action description. Formally, we define
a black-box planning domain using the following quantities:

• A set of states S, where each state is represented as a
vector v and each element vi is a state variable assignment
from some finite domain D(vi);

• An action applicability function A(s) that outputs the set
of valid grounded actions for the given state s ∈ S;

• A deterministic1 simulator function Sim(s, a), which the
agent can query to determine the next state s′ after exe-
cuting the action a ∈ A(s) from state s ∈ S.

Each of the above quantities is fixed for all planning prob-
lem instances in the domain. A particular problem instance
additionally contains:

• A start state, s0 ∈ S;

• A goal condition G, represented as a list of variable as-
signments to all (or some subset) of the state variables.

The planner’s objective is to find a plan that connects state
s0 to any state sG that satisfies G via a sequence of actions.
In general, actions can have associated costs, and an optimal
plan is one that minimizes the sum of its action costs. Here
we are concerned with planning efficiency, so we focus on
satisficing solutions—that is, finding a plan as quickly as
possible, regardless of cost. We measure planning efficiency
in terms of the number of simulator queries (equivalently, the
number of generated states) before finding a plan.

2.1 The Goal-Count Heuristic
The goal-count heuristic, #g, is defined in terms of the
problem-specific goal, G. For any goal condition G, #g(s)
counts the number of variables in state s whose values differ
from those specified in G, with #g(s) = 0 if and only if s sat-
isfies G. A well-known downside of the goal-count heuristic
is its dependence on the size of G. In the extreme case where
|G| = 1, the goal-count heuristic only separates goal states
from non-goal ones. Nevertheless, due to the relative lack of
information in black-box planning, the goal-count is often the
only goal-aware heuristic available. Other planners may add

1In general, black-box planning can include probabilistic effects,
but we leave this more general case for future work.

additional components, such as state novelty [Francès et al.,
2017], but the black-box versions of those planners still rely
on goal counting at their core.

2.2 Macro-Actions
A macro-action (or macro), is a deterministic sequence of ac-
tions,2 typically for the purpose of accomplishing some useful
subgoal. To avoid confusion, we often refer to the original non-
macro actions as “primitive” actions. Macros have parameters,
preconditions, and effects, just like primitive actions, but in
black-box planning, we again assume that the planner does not
have access to such a declarative description. Instead, when
planning with macro-actions, there are two alternatives. Either
the action applicability function A(s) and simulator function
Sim(s, a) are updated to additionally compute macro-action
validity and effects in a single step, or alternatively, each prim-
itive action in the macro must be simulated sequentially, with
longer macros requiring more simulator queries.

3 Effect Size and Goal-Count Accuracy
The goal-count heuristic implicitly treats each state variable
as an independent subgoal. There are two ways to satisfy this
assumption exactly. The first is if each subgoal can be achieved
in one step without modifying any other state variable. The
second, more general way, explored by Korf [1985], is if each
subgoal can be achieved in one step (possibly modifying other
state variables) and the subgoals are serializable—i.e. there is
an ordering of the state variables that retains previously-solved
subgoals when solving new ones.

In general, an action can of course change many state vari-
ables, and the problem representation may not allow the sub-
goals to be serialized—both of which can cause the goal-count
heuristic to be uninformative. However, for a heuristic to be
useful, it does not need to be perfect; it simply needs to be rank
correlated with the distance to the goal: higher true distances
should correspond to higher heuristic values [Wilt and Ruml,
2015]. When the heuristic is perfectly rank correlated, there
is a monotonic relationship between heuristic and true cost,
and best-first search will always expand nodes in order of their
true distance from the goal.

We hypothesize that if each action modifies only a small
number of state variables, the problem will better match the
assumptions of the goal-count heuristic, and thus the heuristic
and true goal distance will be more positively rank correlated.
We informally say such actions have “focused” effects, and
we formalize this idea with the following definitions:

Definition 1. The effect size of an action is the maximum
number of state variables whose values change by executing
the action, over all states where the action is applicable.

Definition 2. The effect size of a macro-action is the maxi-
mum number of state variables, measured at the end of macro-
action execution, that are different from their starting values,
over all states where the macro-action is applicable, even if
additional variables were modified during execution.

2For simulators with probabilistic effects, macro-actions could in
principle be generalized to more complex abstract skills incorporating
state information, but that extension is beyond the scope of this work.
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Figure 1: (Top) The Suitcase Lock domain with N = 4; (Bottom)
Generated states vs. effect size for Suitcase Lock.

If our hypothesis above is correct, we expect the goal-count
heuristic to be more accurate for domains where actions have
smaller effect size, and we further expect this to lead to an im-
provement in planning efficiency. In the following experiment,
we see better rank correlation between heuristic and true dis-
tance for domains whose actions have low average effect size,
and we see that this leads to an approximately exponential
improvement in planning efficiency.

3.1 The Suitcase Lock Domain
To study the relationship between effect size and planning effi-
ciency, we introduce the Suitcase Lock domain. The Suitcase
Lock is a planning problem whose solution requires entering a
combination on a lock with N dials, each with M digits, and
2N actions, half of which increment a deterministic subset of
the dials (modulo M ) and the other half of which decrement
the same dials (see Figure 1, top). For each problem instance,
a start state, goal state, and (fixed) action set are generated ran-
domly, and a parameter k controls the mean effect size across
all actions. This allows us to examine action effect size while
holding other problem variables constant. For implementation
details, see Appendix A of the supplementary materials.

Focused Actions Improve the Goal-Count Heuristic
We first investigate the accuracy of the goal-count heuristic
for two small Suitcase Lock problems. For each possible
effect size, we compute the true distance between all pairs of
states, and compare the results with the goal-count, treating the
second state of each pair as the goal. We compute the average
heuristic value for each true distance, and then compute the
Pearson correlation and Spearman rank correlation coefficients
between heuristic and distance. The results are shown in Table
1, where we see that actions with more focused effects (i.e.
lower k̄) lead to significantly higher correlation.

Focused Actions Improve Planning Efficiency
Next, we run two planning experiments using the goal-count
heuristic and greedy best-first search (GBFS). To evaluate
planning efficiency, we measure the number of generated states
needed to solve each instance, since we care about feasibile
plans, rather than optimal ones.

Effect Size N=10, M=2 N=5, M=4
k̄ ρP ρS ρP ρS

1 1.000 1.000 0.775 0.760
2 0.200 0.179 0.263 0.226
3 0.110 0.092 0.046 0.018
4 0.060 0.041 0.000 -0.044
5 0.020 0.013 – –
6 0.000 -0.007 – –
7 0.000 0.001 – –
8 0.000 -0.001 – –
9 0.000 0.005 – –

Table 1: Correlation results between the goal-count heuristic and true
distance for Suitcase Lock. Actions with smaller effect size (k̄) lead
to significantly higher Pearson’s correlation (ρP ) and Spearman’s
rank correlation (ρS) coefficients.

Figure 1 (bottom) shows an approximately exponential rela-
tionship between effect size and planning time. When M = 2
and k = 1, the goal-count heuristic is exactly equal to the
cost, and GBFS can generate at most N2 states before finding
the goal. By contrast, when k = (N − 1) the heuristic is
maximally uninformative, and GBFS may generate N · 2N
states in the worst case, since it cannot expand any nodes with
heurstic value k until it has expanded all nodes with heuristic
value < k. This exponential trend appears to hold even when
state variables are not binary.

These results on the Suitcase Lock domain suggest that
reducing effect size is a viable strategy for improving plan-
ning efficiency. To further investigate this idea, we propose a
method for learning macro-actions with low effect size.

4 Learning Macros with Focused Effects
We search for macro-actions using best-first search (BFS) with
a simulation budget of BM state transitions. We start the
search at a randomly generated state, and the search heuristic
is macro-action effect size—or infinity if the macro-action
modifies zero variables—plus the number of primitive ac-
tions in the macro. Technically, we would need to evaluate
each macro from every valid state to determine its effect size,
which is clearly infeasible. In practice, we simply measure
each macro’s effect size once and assume it doesn’t change
(although we could easily relax this assumption by running
the macro from multiple states).

We save the NM macro-actions with the lowest effect size,
and ignore duplicate macro-actions that have the same net
effect. To encourage diversity of macros, we can optionally re-
peat the search RM times, each time generating a new random
starting state in which none of the existing saved macro-actions
are valid, or until we fail to find such a starting state.3 This
ensures that we still find macros that apply in most situations,
even if there are constraining preconditions.

The pseudocode for this procedure is in Algorithm 1. We
use mi to denote the macro whose action sequence generated

3Finding such a state may be as hard as planning, unless the
simulator can be reset to generate new starting states; however, in
practice, a random walk is often sufficient (see appendix, Note B.2.1).



Algorithm 1 Learn macro-actions with focused effects
Input: Starting state s0, number of macro-actions NM , num-
ber of repetitions RM , search budget BM

Output: List of macro-actions LM

1: Define g(m) := length(m)

2: Define h(s) :=

{
|net effects(s− s0)| if > 0,
∞ otherwise

3: Define f(s,m) := g(m) + h(s)
where m is the macro (i.e. action sequence) from s0 to s

4: Let LM be an empty list of macro-actions
5: Let Q be a (max) priority queue of size NM/RM

6: for repetition r in {1, ..., RM} do
7: Run best-first search (BFS) from s0 with budget

BM/RM , minimizing heuristic f(s,m)
8: for each state si and macro mi visited by BFS do
9: Store mi in Q, with priority h(si)

// When Q becomes full, the action sequences
// with largest h-score will get evicted first

10: end for
11: Add each unique macro in Q to LM

12: Clear Q
13: s0 ← new random state, such that none of the macros

in LM can run
14: if s0 is None then
15: break
16: end if
17: end for
18: return LM

state si. Consider an example with two primitive actions a1
and a2, where BFS starts at state s0. Expanding s0, the action
a1 generates s1, and a2 generates s2. Expanding s1, a1 gener-
ates s3, and a2 generates s4. Thus macro m4, corresponding
to state s4, would be the action-sequence [a1, a2], and we
would evaluate its net effect by comparing s4 with s0.

5 Experiments
We evaluate our method by learning macro-actions in a variety
of black-box planning domains and subsequently using them
for planning. We use PDDLGym [Silver and Chitnis, 2020] to
automatically construct black-box simulators from classical
PDDL planning problems. Additionally, we use two domain-
specific simulators (for 15-puzzle and Rubik’s cube) that have
a different state representation to show the generality of our
approach. See the appendix for implementation details and
a discussion of how we selected the various macro-learning
hyperparameters (sections B and E, respectively).

We select the domains to give a representative picture of
how the method performs on various types of planning prob-
lems. For PDDLGym compatibility reasons, we restrict the
domains to those requiring only strips and typing. For
the domain-specific simulators, we select 15-puzzle and Ru-
bik’s cube in particular, because they present opposing chal-
lenges for our macro-learning approach. In 15-puzzle, primi-
tive actions have very focused effects (each modifies only the
blank space and one numbered tile), but naively chosen macro-

actions tend to have much larger effect sizes, and both prim-
itive actions and macros have state-dependent preconditions.
In Rubik’s cube, actions and macros have no preconditions,
but primitive actions are highly non-focused (each modifies
20 of the simulator’s 48 state variables) and the state space
is so large (∼ 4.3×1019 unique states [Rokicki, 2014]) that
black-box planning is unable to solve the problem efficiently.

5.1 Methodology
For each planning domain, we generate 100 problem instances
with unique random starting states and a fixed goal condi-
tion.4 All problem instances share the same state space, and
the planner has access to the simulator function, the action
applicability function, a vector of state information, and the
goal condition. We emphasize that although the PDDLGym
domains are specified using PDDL, the planner never sees the
PDDL during either macro search or planning.

We learn focused macro-actions as described in Sec. 4 and
add them to the set of primitive actions, which ensures that the
same set of states can still be reached. These macros are then
used to update the simulator and action applicability function,
allowing the learned macros to execute in a single step for
improved computational efficiency.5 Note that updating the
simulator in this way does not reduce search effort, only time.
Even if the primitive actions in a macro were simulated one-
by-one, the intermediate states are neither stored nor explored,
and hence do not count towards the number of generated states.

The macros are learned once, for the first problem instance,
and then reused on all remaining problem instances for that do-
main. In general, it can be challenging to incorporate macros
into any planning algorithm, since one must weigh their search
benefits against the increased branching factor. For simplicity,
our experiments fixed the number of macros NM (see Table
2), but in principle NM could be chosen automatically based
on which macros reduce the problem’s average effect size.

To solve each planning problem, we use greedy best-first
search (GBFS) with the goal-count heuristic and compare
performance with the additional learned macro-actions versus
with primitive actions alone. We measure planning efficiency
as the number of simulator queries that the planner makes
before finding a plan. This choice of performance metric is the
most natural fit for black-box planning, and it allows for fair
comparisons of algorithms across different implementation
languages and hardware configurations.

In Table 2, we show the average solve rate and number
of generated states (i.e. simulator queries) for each domain.
Since we only pay the macro-learning cost BM for the first
problem instance, we can in principle amortize this cost over
the total number of problem instances. (Note that the BM

values reported in the table are non-amortized and are separate
from the number of generated states.) Except in the case of
Depot, we see that planning with focused macros increases
solve rate and improves planning efficiency by up to an order
of magnitude versus planning with primitive actions alone. In

4All problem instances are included in the code repository.
5See Appendix C for details on how we update the simulator and

action applicability function to incorporate the learned macros.



GBFS(A) GBFS(A+M) BFWS(A) BFWS(A+M) LAMA(A)

Domain NM BM Gen Sol Gen Sol Gen Sol Gen Sol Gen Sol

Depot 8 50K 58275.9 0.74 55132.4 0.60 75966.9 0.48 72205.8 0.34 46620.9 1.00
Doors 8 5K 3050.7 1.00 512.6 1.00 4660.9 1.00 3057.3 1.00 293.0 1.00
Ferry 8 5K 1875.8 1.00 1151.4 1.00 1209.9 1.00 1163.5 1.00 699.8 1.00
Gripper 8 5K 7314.8 1.00 6277.0 1.00 44945.9 1.00 6295.9 1.00 6493.1 1.00
Hanoi 8 100K 78433.6 0.78 6358.8 1.00 63455.2 1.00 3365.9 1.00 65496.4 1.00
Miconic 8 5K 7559.4 1.00 1907.1 1.00 10269.2 1.00 1884.3 1.00 1316.7 1.00

15-Puz. 192 32K 30840.5 1.00 4952.4 1.00 109425.2 1.00 6290.1 1.00 – –
Rubik’s 576 1M >2M 0.00 171.3K 1.00 >2M 0.00 163.8K 1.00 9.13M 1.00

Table 2: Black-box planning results for PDDLGym-based simulators (top), and domain-specific simulators (bottom). (A) - primitive actions
only; (A+M) - primitive actions + focused macros; NM - number of macros; BM - macro-learning budget; Gen - generated states; Sol - solve
rate; (bold) - best performance of each planner. The efficiency of both GBFS and BFWS(R∗

G) are improved by adding focused macros. Note
that LAMA is an informed planner with access to much more information than black-box planners, and is only included for reference.

Rubik’s cube, focused macros still perform better, even if we
account for the entire macro-learning budget.

5.2 Comparisons with Other Planners
In addition to greedy best-first search (GBFS) with the goal-
count heuristic, we also evaluate our method in conjunction
with Best-First Width Search, or BFWS [Lipovetzky and
Geffner, 2017], a family of search algorithms that augment
their search heuristic with a novelty metric computed using
Iterated Width (IW) search [Lipovetzky and Geffner, 2012].

We specifically use the best-performing black-box planning
version of BFWS: BFWS(R∗G) [Francès et al., 2017]. This
version starts by running IW up to two times, with increas-
ing precision, to generate a set R∗G of goal-relevant atoms.
During search, each state s is evaluated based on how many
relevant atoms were satisfied at some point along the path to s.
This forms a relevance count #r(s), which is combined with
the goal-count #g(s) to compute the novelty width metric
w#r,#g . The algorithm runs GBFS using heuristic (w,#g, c),
evaluating nodes first by width, breaking ties with #g, and
then breaking further ties with c, the cost to reach the node.

We ran BFWS on each domain and measured its planning
efficiency (see Table 2). We followed Lipovetzky and Geffner
[2017] and limited the width precision to w ∈ {1, >1} on
Depot and Rubik’s cube to save computational resources.

Again we find that focused macros substantially improve
planning efficiency, likely because the heuristic still uses goal
counting at its core. Surprisingly, we found that BFWS did not
perform significantly better than the primitive-action GBFS
baseline. In fact, comparing against GBFS, we observe that
focused macros alone are more beneficial for planning than
the more sophisticated novelty-based heuristic.

As a point of reference, we also compared against LAMA
[Richter and Westphal, 2010] which has full access to a declar-
ative representation of the problem—information far beyond
what is available to black-box planners. We ran the first itera-
tion of LAMA on the same problems we used with PDDLGym,
as well as a SAS+ representation of the Rubik’s cube, adapted
from Büchner [2018]. On a different PDDL version of Rubik’s
cube, LAMA failed to complete the translation step before
running out of memory (16GB). We find our method is compet-

itive with LAMA, across the majority of domains, despite the
fact that LAMA has access to more information. On the 100
hardest Rubik’s cube problems from Büchner [2018], which
neither primitive-action baseline can solve, LAMA generates
9.1 million states on average, whereas our approach generates
only 171 thousand.

5.3 Comparison with Random Macros

One might wonder whether the improvements in planning
efficiency are due to the macros’ focused effects, or simply
the fact that we are using macros at all. To isolate the source
of the improvement, we conducted a second experiment using
15-puzzle and Rubik’s cube. Here we compared the focused
macro-actions against an equal number of “random” macro-
actions of the same length, which were generated (for each
random seed) by selecting actions uniformly at random from
the valid actions at each state.

We present the results in Table 3, as well as Figures 2a and
2b, where we observe that random macros perform signifi-
cantly worse than both the primitive actions and the learned
focused macros. In both domains, random macros also consis-
tently had larger effect sizes than focused macros. Figure 2c

Generated Remaining Solve
States Errors (#g) Rate

15
-P

uz
. Primitives only 30840.5 0.0 1.0

Random macros 72542.3 0.0 1.0
Focused macros 4952.4 0.0 1.0

R
ub

ik
’s

Primitives only >2M 11.8 0.0
Random macros >2M 16.4 0.0
Focused macros 171331.4 0.0 1.0
Expert macros 30229.1 0.0 1.0

Table 3: Planning results for 15-puzzle and Rubik’s cube comparing
different action spaces. Random macros perform significantly worse
than both primitive actions and focused macros. Trials with macros
also include the primitive actions.



(a) (b) (c)

Figure 2: (a) 15-puzzle planning efficiency by macro type. Adding focused macros leads to a significant performance improvement over
primitive-actions alone. Random macros have the opposite effect. (b) Rubik’s cube planning performance by macro type. The vertical axis
represents the best observed goal-count value for the number of generated states on the horizontal axis. (c) Effect size vs. length of Rubik’s
cube macro-actions, by type. (Some points overlap.)

shows a visualization of Rubik’s cube macro effect size versus
macro length. We suspect the higher planning cost of random
macros is partly due to their increased effect size.

5.4 Examining Expert Macros in Rubik’s Cube
Expert human “speedcubers” use macro-actions to help them
manage the Rubik’s cube’s highly non-focused actions. In
speedcubing, the goal is to solve the cube as quickly as possi-
ble, without necessarily finding an optimal plan. Most speed-
cubers learn a collection of macro-actions (called “algorithms”
in Rubik’s cube parlance) and then employ a strategy for
sequencing those macro-actions to solve the cube. Expert
macro-actions tend to affect only a small number of state vari-
ables, and proper sequencing enables speedcubers to preserve
previously-solved parts of the cube while solving the remain-
der. Common solution methods typically involve multiple lev-
els of hierarchical subgoals and produce plans approximately
twice as long as optimal.

As a benchmark, we consider a simplification of the most
common expert strategy, where macros are composed of just
primitive actions. We select a set of six hand-coded, expert
macro-actions to perform various complementary types of per-
mutations.6 We visualize one of these macro-actions, which
swaps three corner pieces, in Figure 3a. Since our simulator
uses a fixed cube orientation, we consider all 96 possible vari-
ations of each macro (to account for orientation, mirror-flips,
and inverses), resulting in 576 total macros—the same number
used for the random macro and focused macro trials.

In Figure 2c, we plot the effect size and length of each
macro, labeled by macro type. We can see that the focused
macros have significantly smaller effect size than primitive
actions or random macros, and begin to approach the effect
size of the expert macro-actions. We also note that the fo-
cused macros are somewhat shorter on average than the expert
macros, and we suspect that increasing the search budget
would result in learning macros with even smaller effects.

In Table 3 and Figure 2b, we compare planning with the
expert macros against the other macro types and see that while
planning with the expert macros is the most efficient, the

6Macro-action sequences are included in Appendix D.

learned, focused macros are not far behind. By contrast, the
random macros and primitive actions never solved the prob-
lem within the simulation budget. We also found that the
average solution length for focused and expert macro-actions
was about an order of magnitude longer than typical human
speedsolve solutions (378 and 319 primitive actions, respec-
tively, vs. ~60 [Speedsolving Wiki, 2021]), which suggests
that there are additional insights to be mined from human
strategy beyond just learning focused macro-actions.

5.5 Interpretability of Focused Macros

We examined the learned focused macros for several domains
and found that in addition to having low effect size, they were
also frequently easy to interpret. In 15-Puzzle, one type of
macro swapped the blank space with a central tile; another
type exchanged three tiles without moving the blank space.
In Rubik’s cube, one macro (Figure 3b) swapped three edge-
corner pairs while keeping them connected. In Tower of Hanoi,
macros moved stacks of disks at a time from one peg to another.
We remark that this is quite similar to the interpretability of
the human expert macros in Rubik’s cube.

5.6 Generalizing to Novel Goal States

Since our macro-generation step is goal-independent, we can
reuse previously learned macros to solve problems with novel
goal states. To demonstrate this, we generate 100 random
goal states for 15-puzzle and Rubik’s cube and then solve the
puzzles again. In both domains, we find that planning time
and solve rate remain effectively unchanged for novel goal
states (see Table 4).

(a) Expert 3-corner-swap (b) Learned 3-pair-swap

Figure 3: Expert and learned macro-actions (Rubik’s cube).



Domain Goal Generated Solve
Type States Rate

15-puzzle Default 4952.4 1.0
Random 4780.0 1.0

Rubik’s cube Default 171331.4 1.0
Random 152503.7 1.0

Table 4: Average planning efficiency and solve rate, when reusing
previously-discovered focused macros to solve 15-puzzle and Rubik’s
cube with either the default goal state or new randomly-generated
goal states. Novel goal state performance is effectively unchanged.

6 Related Work

The concept of building macro-actions to improve planning
efficiency is not new. Dawson and Siklossy [1977] considered
two-action macros and analyzed domain structure to remove
macros that were invalid or that had no effect. Korf’s [1985]
Macro Problem Solver investigated how to learn macros in
problems with decomposable operators and serializable sub-
goals. Macro-FF [Botea et al., 2005] and MUM [Chrpa et
al., 2014] learned macros from training problem instances and
later used them to improve the planning efficiency of testing
instances. The macros we discover in Sections 4 and 5 can
similarly be reused across problem instances; however, our
macro discovery procedure requires neither goal information
nor training instances. Our method is perhaps most similar
to MARVIN [Coles and Smith, 2007], which used macros to
escape plateaus during heuristic search, and CAP [Asai and
Fukunaga, 2015], which decomposed planning problems into
subgoals and then found macros to achieve those subgoals. In
all of the prior approaches, the learned macros were found to
be beneficial for planning, but they also required an explicit
model of the domain. Our method is more general than these
methods, as it is designed to handle the unique challenges of
black-box planning without an explicit model.

Lipovetzky and Geffner [2012] introduced Iterated Width
(IW) search, a “blind” planner compatible with black-box
simulators, and Lipovetzky et al. [2015] subsequently applied
it to planning in Atari video game simulators without known
goal states. This work led to the goal-informed Best-First
Width Search (BFWS) [Lipovetzky and Geffner, 2017; Francès
et al., 2017], which we include in our experimental evaluation.
Jinnai and Fukunaga [2017] formalized black-box planning
and described a method for pruning primitive actions and
short macros to avoid generating duplicate states; however
their approach did not incorporate goal information.

Recent work by Agostinelli et al. [2019] investigated how to
train black-box planning heuristics with neural networks and
dynamic programming by strategically resetting the simulator
to states near the goal state. Their approach learned heuristics
for several domains, including 15-puzzle and Rubik’s cube,
that supported fast, near-optimal planning. However, training
their neural network requires more than 1000 times the simu-
lation budget of our approach, and results in a heuristic that is
only informative for a single goal state, whereas ours works
for arbitrary goal states.

7 Discussion and Conclusion
We have described a method of learning focused macro-actions
that enables reliable and efficient black-box planning across a
variety of classical planning domains. While our approach is
designed to match the assumptions of the goal-count heuristic,
we find that it also improves the performance of more sophis-
ticated black-box planners. Moreover, our method is even
competitive with a state-of-the-art LAMA planner, despite the
latter having access to a declarative description of the problem.

We are encouraged to see that many of the learned macro-
actions had intuitive, interpretable meaning in the task domain.
This suggests that our method may be useful for improving
explainability in addition to planning efficiency.

This work employed a two-level hierarchy where macro-
actions are composed of primitive actions. One extension to
bring this method more in line with human-expert techniques
would be incorporating additional levels of action hierarchy
(i.e. macros composed of other macros), or macros that per-
mit side-effects to certain unsolved variables, combined with
macros to subsequently solve those remaining variables. We
leave an exploration of these ideas for future work.
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A Suitcase Lock Implementation
Each Suitcase Lock problem instance has N dials, each with M digits, and 2N actions, half which increment a deterministic
subset of the dials (modulo M ), and half which decrement the same dials (see Figure 1). Let ki denote the effect size of action
ai, and k̄ denote the mean effect size across all actions. Given a k̄, we generate problem instances with different start states, goal
states, and sets of actions such that they have mean effect size k̄.

We always ensure that every state can be reached from every other state. Note that if k̄ = N , or if all actions modify (for
example) an even number of state variables, it is not possible to reach every state from every other state. To circumvent this
issue, we check that for a given problem instance, the increment and decrement action sets can each be reduced to an N ×N
binary matrix with full rank. We repeatedly generate action sets with the desired mean effect size until we find one that satisfies
this condition. The resulting action sets are therefore different for each random seed, except when k̄ = 1 where we always use
the identity matrix I , and when k̄ = (N − 1) where we use 1− I with an extra 1 added to the first diagonal element to break
symmetry. The decrement actions are always the negation of the increment actions, and we ignore them for M = 2.



B Simulator Details
B.1 PDDLGym
We use the PDDLGym library [Silver and Chitnis, 2020] to automatically construct black-box simulators for PDDL planning
problems. State information is represented as a variable-length list of currently-true literals. The planning agent has access to
this state information, along with the goal (represented as a conjunction of literals), the action applicability function, and the
simulator function. We chose a representative set of PDDL problems and executed uniform random actions to generate 100
unique random starting states for each, keeping the goal fixed. The associated .pddl files can be found in the code repository.

B.2 15-Puzzle
The 15-puzzle is a 4 × 4 grid of 15 numbered, sliding tiles and one blank space (see Figure 4a). The puzzle begins in a
scrambled configuration, and the objective is to slide the tiles until the numbers are arranged in increasing order. There are
approximately 1013 states and the worst-case shortest solution requires 80 actions [Brüngger et al., 1999]. Our simulator uses a
state representation with 16 variables (for the positions of each tile and of the blank space), and 48 primitive actions (that swap
the blank space with one of the adjacent tiles), of which only 2–4 can be applied in each state. Similarly, macro-actions can only
run if they begin with the correct blank space location.

We set the macro-learning budget BM = 32,000 simulator queries, the number of macros NM = 192, and the number of
repetitions RM = 16. The budget was chosen to approximately match the number of steps required to solve one problem
instance with primitive actions. This resulted in 12 generated macros per repetition, and a per-repetition simulator budget of
2000 state transitions. We compared these macro-actions against 192 “random” macro-actions of the same lengths, which were
generated (for each random seed) by selecting actions uniformly at random from the valid actions at each state.

We then solved the 15-puzzle using greedy best-first search with the goal-count heuristic and a simulation budget of
BS = 500,000 state transitions. We generate 100 unique starting states by scrambling the 15-puzzle with uniform random
actions for either 225 or 226 steps, with equal probability (to ensure that we see all possible blank space locations). The resulting
puzzles can be found in the code repository.
Note B.2.1. On Finding States Where Macro Preconditions Do Not Apply

As mentioned in Section 4, the macro-learning procedure includes an option to repeat the search RM times from new starting
states where the previously-discovered macros are not applicable. In general, finding such a state can be as hard as planning,
although it might be easier if there is no requirement for generating a plan, e.g. by resetting the simulator to generate a new
starting state. Some environment implementations do not allow resetting to arbitrary states, and, in those cases, a plan must
be generated. 15-puzzle is the only domain where we use RM > 1, and for this domain, we found that either state generation
strategy was effective. For domains where the simulator cannot be reset, and where a random walk is insufficient, it is possible to
make the search more informed, such as by incorporating state novelty into the heuristic.

B.3 Rubik’s Cube
The Rubik’s cube is a 3× 3× 3 cube with colored stickers on each outward-facing square (see Figure 4b). The puzzle begins
in a scrambled configuration, and the objective is to rotate the faces of the cube until all stickers on each face are the same
color. There are approximately 4.3× 1019 states, and the worst-case shortest solution requires 26 actions [Rokicki, 2014]. Our
simulator fixes a canonical orientation of the cube, and uses a 48-state-variable representation (for the positions of each colored
square, excluding the stationary center squares). The problem has 12 primitive actions (i.e. rotating each of the 6 faces by a
quarter-turn in either direction), and these actions are highly non-focused: each modifies 20 of the 48 state variables.

We set the number of learned macro-actions NM = 576 so that we could fairly compare the generated macro-actions against
our set of expert macro-actions. We learned macro-actions from a single starting state RM = 1, and set a simulation budget of
BM = 1,000,000 simulator queries. We also compared against 576 “random” macro-actions of the same lengths as the expert
macros (six distinct macro-actions plus their corresponding variations), which were regenerated for each random seed. We set
the search budget BS = 2,000,000 simulator queries.

We obtained starting states for Rubik’s cube from modified versions of the 100 hardest problems from Büchner [2018]. The
problems were specified as random sequences of primitive actions to be applied to a solved Rubik’s cube in order to generate the

(a) 15-Puzzle (b) Rubik’s Cube

Figure 4: Visualizations of the planning domains that use domain-specific simulators



starting state, as well as a corresponding SAS+ representation for each problem. The original Büchner problems incorporated 18
half-turn and quarter-turn action primitives, whereas our simulator uses only 12 quarter-turn action primitives. Our modification
removed the 6 half-turn actions from the SAS+ representation and converted problem specifications involving half-turns to their
equivalent quarter-turn-only specifications. The resulting problems consisted of between 12 and 29 primitive actions, with an
average of about 20. (We also tried generating starting states by scrambling the cube with uniform random actions for 60 steps,
with similar results.) The problems we use, and the procedure we use to generate randomly scrambled starting states, can be
found in the linked code repository.



C Updating the Simulator with Macros
PDDLGym
For the PDDLGym simulators, we build new macro-operators for the saved primitive-action sequences by:

1. Re-binding the original lifted parameters to new variables that capture any dependencies between subsequent actions. For
example, the sequence [PLACE ON(B,C), PLACE ON(A,B)], would result in two distinct parameters for objects A and
C, plus a third, shared parameter for object B that is reused by both primitives.

2. Combining the preconditions of subsequent primitive actions when they are not already met by the effects of previous
primitive actions. For example, if ACTION1 has precondition (A and B) and effect C, and ACTION2 has precondition
(C and D), this would result in the combined precondition (A and B and D).

3. Combining and simplifying the effects of the primitive actions to remove unnecessary negations. For example, if the
combined precondition so far is A, and if ACTION1 has effect (B and (not A)) and ACTION2 has effect (C and
A), this would result in a combined effect of (B and C), since A is already a precondition.

We present pseudocode in Algorithm 2, and the implementation and the resulting macro-augmented PDDL files can be found in
the code repository.

Note that while the desired number of macro-actions for all PDDLGym domains was set to NM = 8, we were only able to
find four unique macros for the doors domain.

Algorithm 2 Construct lifted macro for PDDLGym
Input:
actions, a sequence of grounded primitive actions
operators, map from names to lifted primitive operators
Output:
macro, a newly-constructed, lifted macro-operator

1: macro.params := ∅
2: macro.preconds := ∅
3: macro.effects := ∅
4: lifted := map from grounded to lifted variable names
5: for action in actions do
6: op := operators[action.name]
7: lifted.update({ v 7→ new variable name(), for v in action.variables if v not in lifted})
8: binding := {p 7→ lifted [v], for (p, v) in zip(op.params, action.variables)}
9: for p in op.params do

10: macro.params.add( binding[p] )
11: end for
12: for literal in bind literals(op.preconds, binding) do
13: if literal not in macro.effects and literal not in macro.preconds then
14: macro.preconds.add(literal )
15: end if
16: end for
17: cleanup contradictory effects(op.effects)

// Simplify any contradictory effects to just their positive part, e.g. ((not A) and A) becomes (A)
18: for literal in bind literals(op.effects, binding) do
19: if (¬literal ) in macro.effects then
20: macro.effects.remove(¬literal )
21: else
22: macro.effects.add(literal )
23: end if
24: end for
25: end for
26: return macro

Domain-Specific Simulators
For 15-puzzle and Rubik’s cube, both simulators use a position-based representation (i.e. the positions of each numbered tile or
blank space; the positions of each colored sticker excluding the stationary center stickers). Primitive actions are expressed as
permutations operations on the indices of the state variables.



To augment the simulator with macro-actions, we computed the overall permutation for each sequence of primitive actions,
and store the result (along with its precondition, if any) as a new permutation operation that the simulator can apply using the
same procedure it uses for primitive actions.

In the case of Rubik’s cube, none of the primitive actions have preconditions, so the resulting macros do not have preconditions
either. However, for 15-puzzle, primitive-action preconditions depend on the position of the blank space. Fortunately, since
we only construct macros for valid action sequences and since actions deterministically modify the position of the blank space,
as long as the initial precondition is satisfied, each action will automatically satisfy the precondition of the next action in the
sequence. Thus, when saving each 15-puzzle macro-action, we simply keep track of the blank-space location required to execute
its first primitive action, along with its overall permutation.

The code to generate the overall permutation of a 15-puzzle or Rubik’s cube macro-action can be found in the corresponding
module in the code repository.



D Expert Rubik’s Cube Macros
We use the following expert macro-actions (expressed in standard cube notation [Singmaster, 1981]):

• 3-corner swap (see Figure 3a): L′B LF ′ L′B′ LF
• 3-edge swap, middle: L′RU U R′ LF F
• 3-edge swap, face: RRU RU R′ U ′R′ U ′R′ U R′

• 2-corner rotate: RB′R′ U ′B′ U F U ′B U RBR′ F ′

• R-permutation: F F R′ F ′ U ′ F ′ U F RF ′ U U F U U F ′ U ′

• 2-edge flip: LR′ F LR′DLR′B LR′ U U LR′ F LR′DLR′B LR′

To generate the full set of 576 expert macro-actions, we consider 96 variations of each of the above sequences, including all 24
possible orientations, along with their inverse and mirror-flipped versions.

The learned 3-pair-swap macro in Figure 3b was not included with the expert macro-actions. We also provide its action
sequence for completeness.

• 3-pair-swap (see Figure 3b): F ′ LF ′ L′ F F RU ′R′ F ′ U F



E Reproducibility
E.1 Hyperparameter Selection
In the paper, and the preceding sections of the appendix, we describe the final hyperparameters used to run the experiments. We
arrived at these values by an informal hyperparameter search, and many hyperparameters never changed from their initial values.

PDDLGym Domains
For the PDDLGym domains, the simulation budget was set to 100K queries for compute reasons, as the PDDLGym simulator was
slower than the domain-specific simulators. The macro-learning budgets for the PDDLGym domains were set to be comparable
to the number of simulator queries needed to solve a single problem instance using greedy best-first search with the goal-count
heuristic and primitive actions. The number of PDDLGym macros was chosen to be uniform across the various domains.

We ran some informal experiments with different amounts of macros to ensure that the approach was not overly sensitive to
the number of macros, and found that there was no significant change in performance when adding more macros, as long as the
effect size remained low. We found that it was possible to tune the number of macros for each PDDLGym domain separately,
with improved results, but felt that leaving the number of macros fixed was a more principled evaluation of our approach.

15-Puzzle
The simulation budget for 15-puzzle was set to 500K queries, although this full simulation budget was not needed since every
problem was solved in fewer than that many generated states. The number of macros for 15-puzzle was set higher than for
PDDLGym, to compensate for the fact that the domain-specific simulator macros are tied to specific tiles, rather than lifted like
the PDDLGym macros. The numbers of random and focused macros were equal to each other, to ensure a fair comparison.

Rubik’s Cube
We increased the Rubik’s cube simulation budget to 2M queries to see whether the primitive-action planner could solve any
problems with more planning time. The macro-learning budget for Rubik’s cube was set to 1M queries to see if the total cost of
learning macros and planning was low enough to justify learning macros for a single problem instance. The numbers of focused
and random macros for Rubik’s cube were chosen to match the number of expert macro-actions, which was itself chosen so that
the expert macros could efficiently solve the Rubik’s cube.

E.2 Computational Resources
This paper included experiments that ran a cluster of Linux machines running either RedHat 7.7 or Debian 10, with varying
hardware specifications. However, a single seed for each of the experiments can run in 30 minutes (and usually significantly less)
on a MacBook Pro running macOS Mojave (10.14.6), with 2GHz i5 processor and 16GB RAM. No GPUs were used for any of
the experiments.

E.3 Random Seeds
Random seeds were used to generate the problem instances, macro-actions, and planning results. We have attempted to make
results as reproducible as possible by fixing random seeds. The commands listed in the README file should reproduce our
results exactly. As noted in the preceding sections of this appendix, we have also saved and included the generated problem
instances in the linked code repository, to allow for maximum portability.
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