
Verifiably Following Complex Robot Instructions with Foundation Models

Benedict Quartey†∗, Eric Rosen∗, Stefanie Tellex, George Konidaris
Department of Computer Science, Brown University

Abstract— When instructing robots, users want to flexibly
express constraints, refer to arbitrary landmarks, and verify
robot behavior, while robots must disambiguate instructions
into specifications and ground instruction referents in the real
world. To address this problem, we propose Language Instruc-
tion grounding for Motion Planning (LIMP), an approach that
enables robots to verifiably follow complex, open-ended in-
structions in real-world environments without prebuilt semantic
maps. LIMP constructs a symbolic instruction representation
that reveals the robot’s alignment with an instructor’s intended
motives and affords the synthesis of correct-by-construction
robot behaviors. We conduct a large-scale evaluation of LIMP
on 150 instructions across five real-world environments, demon-
strating its versatility and ease of deployment in diverse,
unstructured domains. LIMP performs comparably to state-
of-the-art baselines on standard open-vocabulary tasks and
additionally achieves a 79% success rate on complex spatiotem-
poral instructions, significantly outperforming baselines that
only reach 38%. 1

I. INTRODUCTION

ROBOTS need a rich understanding of natural language
to be instructable by non-experts in unstructured en-

vironments. People, on the other hand, need to be able to
verify that a robot has understood a given instruction and
will act appropriately. Achieving these objectives, however,
is challenging as natural language instructions often feature
ambiguous phrasing, intricate spatiotemporal constraints, and
unique referents. To illustrate, consider the instruction shown
in Figure 1: “Bring the green plush toy to the white-
board in front of it, watch out for the robot in front of
the toy”. Solving such a task requires a robot to ground
open-vocabulary referents, follow temporal constraints, and
disambiguate objects using spatial descriptions. Foundation
models [1], [2] offer a path to achieving such complex
long-horizon goals; however, existing approaches for robot
instruction following have largely focused on navigation [3],
[4], [5], [6], [7]. These methods, broadly classified under
object goal navigation [8], enable navigation to instances of
an object category but are limited in their ability to localize
spatial references and disambiguate object instances based
on descriptive language. Other works [9], [10], [11] extend
instruction following to mobile manipulation but are limited
to tasks with simple temporal constraints expressed in unam-
biguous language. Moreover, existing efforts typically rely
on Large Language Models (LLMs) as complete planners,
bypassing intermediate symbolic representations that could

∗Equal Contribution
†Corresponding Author (Email: benedict quartey@brown.edu)
1See supplementary materials and demo videos at robotlimp.github.io

Fig. 1: Our approach executing the instruction “Bring the green plush toy
to the whiteboard in front of it, watch out for the robot in front of the toy”.
The robot dynamically detects and grounds open-vocabulary referents with
spatial constraints to construct an instruction-specific semantic map, then
synthesizes a task and motion plan to solve the task. In this example, the
robot navigates from its start location (yellow, A), to the green plush toy
(green, B), executes a pick skill then navigates to the whiteboard (blue,
C), and executes a place skill. Note that the robot has no prior semantic
knowledge of the environment.

provide verification of correctness before execution. Alterna-
tive approaches leveraging code-writing LLMs [5], [6], [12]
are susceptible to errors in generated code, which may lead
to unsafe robot behaviors. Mapping natural language to spec-
ification languages like temporal logic [13] provides a robust
framework for language disambiguation, handling complex
temporal constraints, and behavior verification. However,
prior works along this line require prebuilt semantic maps
with discrete sets of prespecified referents/landmarks from
which instructions can be constructed [7], [14], [15].

We propose Language Instruction grounding for Motion
Planning (LIMP), a method that leverages foundation models



and temporal logics to dynamically generate instruction-
conditioned semantic maps that enable robots to construct
verifiable controllers for following navigation and mobile
manipulation instructions with open vocabulary referents and
complex spatiotemporal constraints. In a novel environment,
LIMP constructs a 3D map via SLAM, then uses LLMs to
translate complex natural language instructions into temporal
logic specifications with a novel composable syntax for
referent disambiguation. Instruction referents are detected
and grounded using vision-language models (VLMs) and
spatial reasoning. Finally, a task and motion plan is syn-
thesized to guide the robot through the required subgoals,
as shown in Figure 1. In summary, we make the follow-
ing contributions: (1) A modular framework that translates
expressive natural language instructions into temporal logic,
grounds instruction referents, and executes commands via
Task and Motion Planning (TAMP). (2) A spatial grounding
method for detecting and localizing open vocabulary objects
with spatial constraints in 3D metric maps. (3) A TAMP
algorithm that localizes regions of interest (goal/avoidance
zones) and synthesizes constraint-satisfying motion plans for
long-horizon tasks.

II. BACKGROUND AND RELATED WORKS

We briefly highlight the most relevant works in vi-
sual scene understanding [10], natural language instruction
following [7], [16], and task and motion planning [17],
and provide a comprehensive review in our supplementary
materials. NLMap [10] grounds open-vocabulary language
queries to spatial locations using pre-trained VLMs. While
effective for describing individual objects, it cannot handle
instructions involving complex constraints between multiple
objects due to the lack of object relationship modeling. LIMP
addresses this with a novel spatial grounding module that
resolves spatial relationships and leverages task and motion
planners to satisfy these constraints. Lang2LTL [7] is a multi-
stage, LLM-based approach that uses entity extraction and
replacement to translate language instructions into temporal
logic. Its extension [16] incorporates VLMs and semantic
information (via text embeddings) to ground referents. These
works require prebuilt semantic maps/databases describing
landmarks to ground symbols, whereas our approach dy-
namically generates landmarks based on open-vocabulary
instructions. Action-Oriented Semantic Maps (AOSMs) [17]
augment semantic maps with models indicating where robots
can perform manipulation skills, integrating with TAMP
solvers for mobile manipulation. LIMP similarly provides a
TAMP-compatible spatial representation but supports open-
vocabulary tasks, whereas AOSMs remain constrained to a
fixed set of goals once generated.

A. Linear Temporal Logic

LIMP translates natural language instructions into tem-
poral logic specifications for verifiable task and motion
planning. While compatible with various specification lan-
guages and planning frameworks, we choose Linear Tem-
poral Logic (LTL) [18] for its proven expressivity in repre-

senting complex robot mission requirements [19]. LTL de-
fines temporal properties using atomic propositions, logical
operators—negation (¬), conjunction (∧), disjunction (∨),
implication (→)—and temporal operators: next (X ), until
(U), globally (G), and finally (F). Despite its expressivity,
LTL has been underutilized due to the expert knowledge
required to construct specifications, however recent works
have seen significant success directly translating natural
language into LTL [7], [20], [14], [21], [22], [23].

Behavior Verification: Expressing instructions as temporal
logic specifications allows us to verify the correctness of gen-
erated plans a priori. However, instead of explicit verification
methods such as model checking, we leverage insights from
prior works [24] and directly use specifications to synthesize
plans that are correct-by-construction [25], [26].

III. PROBLEM DEFINITION

Given a natural language instruction l, our goal is to syn-
thesize and sequence navigation and manipulation behaviors
to produce a policy that satisfies the temporal and spatial
constraints in l. Spatial constraints determine task success
based on the sequence of robot poses traversed during
execution; temporal constraints determine the sequencing of
these spatial constraints as a function of task progression.
We assume a robot with an RGB-D camera has already
navigated a space, capturing images and camera poses. From
this data, we build a metric map m (e.g., point cloud,
3D voxel grid) of the environment, defining the space of
possible SE(3) poses P and enabling robot localization
(i.e., estimating probot ∈ P ). Unlike previous work leveraging
temporal logic [7], we do not assume access to a semantic
map with prespecified object locations or predicates. Instead,
we leverage two foundation models: a task-agnostic vision-
language model σ that, given an image and text, provides
bounding boxes or segmentations based on the text; and an
auto-regressive large language model ψ that samples likely
language tokens based on a history of tokens.

Navigation: Navigation is formalized as an object-goal ori-
ented continuous path planning problem, where the goal is to
generate paths to a goal pose set Pgoals ⊂ P while staying
in feasible regions (Pfeasible ⊂ P ) and avoiding infeasible
regions (Pinfeasible = PC

feasible). Infeasible regions include
environment obstacles as well as dynamically determined
semantic regions that violate constraints in the instruction l.

Manipulation: We formalize manipulation behaviours as
options [27] parameterized by objects. Consider an object
parameter θ that parameterizes an option Oθ = (Iθ, πθ, βθ),
the initiation set, policy, and termination condition are func-
tions of both the robot pose P and θ. The initiation set
Iθ denotes the global reference frame robot positions and
object-centric attributes––such as object size––that determine
if the option policy πθ can be executed on the object θ.
To execute a manipulation skill on an object, an object-goal
navigation behavior must first be executed to bring the robot
into proximity with the object. We assume access to a library
of these manipulation skills and demonstrate our approach



Fig. 2: [A] LIMP translates natural language instructions into temporal logic expressions, where open-vocabulary referents are applied to predicates that
correspond to robot skills––note the context-aware resolution of the phrase “blue one” to the referent “blue sofa”. [B] Vision-language models detect
referents, while spatial reasoning disambiguates referent instances to generate a 3D semantic map that localizes instruction-specific referents. [C] Finally,
the temporal logic expression is compiled into a finite-state automaton, which a task and motion planner uses with dynamically-generated task progression
semantic maps to progressively identify goals and constraints in the environment, and generate a plan that satisfies the high-level task specification.

on multi-object goal navigation and open-vocabulary mobile
pick-and-place [9], [28].

IV. LANGUAGE INSTRUCTION GROUNDING FOR MOTION
PLANNING

LIMP interprets expressive natural language instructions
to generate instruction-conditioned semantic maps, enabling
robots to verifiably solve long-horizon tasks with complex
spatiotemporal constraints (Figure 2). We briefly describe our
modular approach in this section and present comprehensive
implementations details in our supplementary materials.

A. Language Instruction Module

In this module, we leverage a large language model ψ to
translate a natural language instruction l into a linear tem-
poral logic specification φl with a novel composable syntax
for referent disambiguation. We achieve this through a two-
stage in-context learning strategy. The first stage prompts
ψ to translate l into a conventional LTL formula ϕl where
propositions refer to open-vocabulary objects. The second
stage takes l and ϕl as input and prompts ψ to generate a
new formula φl with predicate functions corresponding to
parameterized robot skills.

We define three predicate functions—near, pick, and
release—for the primitive navigation and manipulation skills
required for multi-object goal navigation and mobile pick-
and-place. Predicate functions in φl are parameterized by
Composable Referent Descriptors (CRDs), our novel propo-
sitional expressions representing specific referent instances
by chaining comparators that encode descriptive spatial in-
formation. For example, the instruction “the yellow cabinet
above the fridge that is next to the stove” can be represented
with the CRD:

yellow cabinet :: isabove(fridge :: isnextto(stove)). (1)

This specifies that there is a fridge next to a stove, and
the desired yellow cabinet is above that fridge. CRDs are
constructed from a set of 3D spatial comparators [29] defined
in our prompting strategy.

Fig. 3: An instruction is first translated into a conventional LTL formula ϕl

that loosely captures the desired temporal occurrence of referent objects,
then into our LTL syntax φl with predicate functions that temporally chain
required robot skills parameterized by composable referent descriptors.

Unlike recent works [9], [11], our approach does not
require specific phrasing or keywords and can handle instruc-
tions with arbitrary complexity and ambiguity. The LLM ψ
directly samples the entire LTL formula φl with predicate
functions parameterized by CRDs using appropriate spatial
comparators based on the instruction’s context. Figure 3
illustrates the result of our two-stage prompting strategy.

LLM Verification: Verifying the LTL formula φl sampled
from the LLM is crucial as errors in referent extraction and
temporal task structure affects instruction following accuracy.
Our symbol verification node (Figure 2) leverages LTL prop-
erties to provide high-level human-in-the-loop verification of
extracted instruction referents and temporal task structure.
Recent work [30] provides ISO 61508 [31] safety guarantees
in robot task execution by translating safety constraints from
natural language to LTL formulas, which are verified by
human experts and used to enforce robot behavior. Similarly,
we rely on human verification to ensure the translated for-
mula φl is correct. Our symbol verification node implements
an interactive dialog system that presents users with the
extracted referent CRDs and implied task structure, and
reprompts the LLM based on user corrections to obtain new
formulas. Unlike prior work [30], we eliminate the need for
experts by directly translating the task structure—encoded in
the LTL formulas’s equivalent automaton—back into English



Fig. 4: [A] Our spatial grounding module leverages a VLM to detect all referent occurrences from prior observations of the environment. [B] An initial
semantic map with all detected referent instances is generated by backprojecting pixels in segmented referent masks unto the 3D map. [C] Each referent’s
spatial comparators is resolved with respect to the origin coordinate frame of reference. [D] Failing instances are filtered out to obtain a Referent Semantic
Map (RSM) that localizes the exact referent instances described in the instruction.

statements via a simple deterministic translation scheme. In
our experiments (Tables I and II), we find that even without
human verification and reprompting, the initial formulas
sampled by our language understanding module impressively
encode the correct referents and temporal task structure.

B. Spatial Grounding Module

This module detects and localizes specific object instances
referenced in an instruction. From the translated LTL formu-
las, we extract composable referent descriptors (CRDs) and
use vision-language models OWL-ViT [32] and SAM [33] to
detect and segment all referent occurrences from the robot’s
prior observations of the environment. We backproject pixels
in these segmentation masks onto our 3D map, creating an
initial semantic map of all instruction object instances. From
the example in Figure 3, occurrences of green plush toy,
whiteboard, and robot are detected, segmented, and back-
projected onto the map (Figure 4[a&b]).

To obtain the specific object instances described in the
instruction, we resolve the 3D spatial comparators in each
referent’s CRD––recall that CRDs are propositional expres-
sions and can be evaluated as true or false. We define eight
spatial comparators (isbetween, isabove, isbelow, isleftof,
isrightof, isnextto, isinfrontof, isbehind) to reason about
spatial relationships based on backprojected 3D positions.
Since all backprojected positions are relative to an origin
coordinate system, our spatial comparators are resolved from
the perspective of this origin position as shown in Figure
4[c]. This type of relative frame of reference (FoR) when
describing spatial relationships between objects, in contrast
to an absolute or intrinsic FoR, is dominant in English [34],
and is a logical choice for our work.

Using the 3D position of each referent’s center mask pixel
as its representative position, we resolve a given referent
with a spatial description by applying the appropriate spatial
comparator to all detected pairs of the desired referent and

comparison landmark objects. This filtering process yields a
Referent Semantic Map (RSM) that localizes specific object
instances described in the instruction as shown in Figure
4[d].
VLM Verification: Potential misclassifications from object
detector VLMs is the main source of error in this module.
We do not address interactively correcting VLM misclassi-
fications as that is out of the scope of this work, but we
provide 3D visualization tools that enable users to visually
inspect and verify that constructed referent semantic maps
correctly localize referents.

C. Task and Motion Planning Module
Finally, our TAMP module synthesizes and sequences

navigation and manipulation behaviors to produce a plan that
satisfies the temporal and spatial constraints expressed in the
given instruction.
Progressive Motion Planner (PMP): Our TAMP algorithm
compiles the LTL formula with parameterized robot skills
into an equivalent finite-state automaton (Figure 5[a]) to gen-
erate a verifiably correct task and motion plan. A path from
the initial to the accepting state in this automaton is a high-
level task plan that interleaves navigation and manipulation
objectives required to satisfy the instruction. We select such
a path with a simple strategy that incrementally selects the
next progression state until the accepting state is reached,
ensuring the plan obeys all temporal subgoal objectives. As
shown in Figure 5[a], automaton states are connected by
transition edges representing the logical expressions required
for transitions. For each transition, our algorithm executes the
necessary low-level behaviors: for manipulation subgoals, it
executes the appropriate parameterized skill; for navigation
subgoals, it dynamically generates Task Progression Seman-
tic Maps (TPSMs) to localize goal and constraint regions and
performs continuous path planning using the Fast Marching
Tree algorithm (FMT∗) [35].



Fig. 5: [A] A given instruction translated into our LTL syntax φl can be compiled into an equivalent finite-state automaton that captures the temporal
constraints of the task. A path through this automaton is selected with a strategy that incrementally picks the next progression state from the initial state
to the accepting state. The robot then executes the manipulation options and navigation behaviors dictated by this high-level task plan. [B] To execute
navigation objectives our approach generates a task progression semantic map (TPSM) that augments the environment with state transition constraints,
localizing goal (yellow) and avoidance (red) regions. Generated TPSMs are converted into 2D obstacle maps for constraint-aware continuous path planning.

Task Progression Semantic Maps (TPSM): A TPSM
augments a 3D scene with navigation constraints specified by
logical state transition expressions, enabling goal-directed,
constraint-aware navigation. Regions of interest in a TPSM
are defined using a nearness threshold specifying proximity
to an object. This threshold can be set globally or included
in the language instruction module’s prompting strategy,
allowing an LLM to infer its value based on the instruction.
Like our spatial grounding module, TPSMs are agnostic
to temporal logic representations and can be used with
various planning approaches for semantic constraint-aware
motion planning. We primarily evaluate our approach on a
ground mobile robot, hence we transform 3D TPSMs into
2D geometric obstacle maps, where constraint regions are
treated as obstacles (Figure 5[b]). However, our approach is
robot-agnostic and supports direct planning in 3D TPSMs
for appropriate embodiments like drones.

V. EVALUATION

Our evaluations test the hypothesis that translating natural
language instructions into LTL expressions and dynamically
generating semantic maps enables robots to accurately in-
terpret and execute instructions in large-scale environments
without prior training. We focus on three key questions: (1)
Can our language instruction module interpret complex, am-
biguous instructions? (2) Can our spatial grounding module
resolve specific object instances described in instructions?
(3) Can our TAMP algorithm generate constraint-satisfying
plans?

To answer these questions, we compare LIMP with two
baselines: an LLM task planner (NLMap-Saycan [10]) and
an LLM code-writing planner (Code-as-Policies [12]), repre-
senting state-of-the-art approaches for language-conditioned,
open-ended robot task execution. Both baselines use the same
LLM (GPT-4-0613), prompting structure, and in-context
learning examples as our language instruction module. In

Code-as-Policies, in-context examples are converted into
language model-generated program (LMP) snippets [12].
To ensure competitive performance, we integrate our CRD
syntax, spatial grounding module, and low-level robot control
into these baselines, allowing them to query object positions,
use our FMT∗ path planner, and execute manipulation skills.

We also evaluate ablations of our two-stage language
instruction module due to its importance in instruction fol-
lowing. In our full approach, the first stage prompts an LLM
to generate a conventional LTL formula ϕl from instruction l
by dynamically selecting relevant in-context examples from
a standard dataset [14] based on cosine similarity. Our
first ablation selects in-context examples randomly; and the
second ablation skips this stage entirely, directly sampling
our LTL syntax with parameterized robot skills φl from l.

We conduct a large-scale evaluation across five real-world
environments on a diverse task set of 150 instructions from
multiple prior works [10], [11], [7]. This task set consists of
24 tasks with fine-grained object descriptions (NLMD), 25
tasks with complex language (NLMC), 25 tasks with simple
structured phrasing (OKRB), 37 tasks with complex temporal
structures (CT) and 39 tasks with descriptive spatial con-
straints and temporal structures (CST). Below are examples
from each task category illustrating the variety in complexity:

1 NLMD: Put the brown multigrain chip bag in the woven
basket

2 NLMC: I like fruits, can you put something I would like on
the yellow sofa for me

3 OKRB: Move the soda can to the box
4 CT: Visit the purple door elevator, then go to the front

desk and then go to the kitchen table, in addition
you can never go to the elevator once you have seen
the front desk

5 CST: I have a white cabinet, a green toy, a bookshelf and
a red chair around here somewhere. Take the second
item I mentioned from between the first item and the
third. Bring it the cabinet but avoid the last item
at all costs.

To evaluate instruction understanding, we introduce per-
formance metrics: referent resolution accuracy, avoidance



TABLE I: Performance comparison of one-shot instruction understanding and spatial resolution.

Approach
Referent Resolution

Accuracy
(Average WER) ↓

Avoidance Constraint Resolution
Accuracy

(Average WER) ↓

Spatial Relationship Resolution
Accuracy

(Average WER) ↓

NLMap-Saycan 0.09 0.12 0.05
Code-as-Policies 0.22 0.24 0.06
Limp Single Stage Prompting 0.09 0.11 0.05
Limp Two Stage Prompting [Random Embedding] 0.08 0.11 0.03
Limp Two Stage Prompting [Similar Embedding] 0.07 0.04 0.03

TABLE II: Performance comparison of one-shot temporal alignment and plan success rate.

Approach Temporal Alignment Accuracy
(% of instructions) ↑

Planning Success Rate
(% of instructions) ↑

NLMD NLMC OKRB CT CST NLMD NLMC OKRB CT CST

NLMap-Saycan 88% 96% 100% 32% 41% 75% 96% 100% 35% 38%
Code-as-Policies 58% 68% 100% 35% 38% 46% 68% 100% 38% 38%
Limp Single Stage Prompting 79% 64% 100% 68% 74% 63% 60% 100% 62% 62%
Limp Two Stage Prompting [Random Embedding] 83% 68% 100% 76% 85% 79% 68% 100% 57% 72%
Limp Two Stage Prompting [Similar Embedding] 88% 80% 100% 76% 92% 79% 76% 100% 65% 79%

constraint resolution accuracy, and spatial relationship
resolution accuracy. These metrics utilize the word error
rate (WER), widely used in speech recognition to quantify
the difference between a reference and a hypothesis tran-
scription by computing the minimal number of substitutions,
deletions, and insertions needed to transform the hypothesis
into the reference. WER is calculated as WER = S+D+I

N ,
where S is substitutions, D deletions, I insertions, and N is
the total number of words in the reference. In our work:

• Referent resolution accuracy compares extracted ref-
erents in the generated LTL formula to ground truth
referents.

• Avoidance constraint resolution accuracy compares
referents to avoid in the LTL formula (denoted by the
unary negation operator) against ground truth avoidance
referents.

• Spatial relationship resolution accuracy compares
generated Composable Referent Descriptors (CRDs) in
the LTL specification with ground truth CRD expres-
sions.

We also define temporal alignment accuracy and
planning success rate. A plan is temporally aligned if the
sequence of subgoals matches the instructor’s intention,
and successful if it satisfies all spatial and temporal
constraints specified in the instruction. Achieving a high
plan success rate is challenging, requiring accurate referent
and avoidance constraint resolution, spatial grounding, and
temporal alignment. We report average word error rates for
each baseline in Table I and the percentage of successful
and temporally accurate plans in Table II.

VI. DISCUSSION

Beyond the verification benefits of symbolic planning,
LIMP outperforms baselines in most task sets, notably in
complex temporal planning and constraint avoidance. While
NLMap-Saycan and Code-as-Policies effectively generate
sequential subgoals, they struggle with strict temporal
constraints—for example, avoiding a specific referent while

approaching another. Our approach ensures each robot step
adheres to constraints while achieving subgoals, explaining
LIMP’s superior performance on CT and CST tasks. As
shown in Table II, LIMP underperforms only against
NLMap-Saycan in the NLMC task category. This task set,
introduced in the same paper as the baseline [10] (which out-
performs LIMP), includes instructions with implicit details
such as: “I like fruits, can you put something I would like on
the yellow sofa for me.” NLMap-Saycan is better suited to
infer and generate plans with possible fruit options, whereas
our few-shot LTL translation process is not designed for this.

VII. LIMITATIONS AND CONCLUSION

Although LIMP is capable of interpreting non-finite
instructions into LTL formulas, our planner is currently lim-
ited to processing co-safe formulas, which handle only finite
sequences. The accuracy of spatial grounding relies on the
performance of vision-language models (VLMs) for object
recognition meaning any shortcomings in these systems can
negatively impact results. Additionally, LIMP assumes a
static environment between mapping and execution, making
it not responsive to dynamic changes—an area we aim to
address with future work on editable scene representations.
Our Progressive Motion Planning algorithm is complete but
does not guarantee optimality; however, our framework can
be used with existing TAMP planners to enhance efficiency.

Foundation models hold significant promise for advancing
the next generation of autonomous robots. Our results
suggest that combining these models—LLMs for language
and VLMs for vision—with established methods for safety,
explainability, and verifiable behavior synthesis can lead to
more reliable and capable robotic systems.

ACKNOWLEDGEMENT

This work was supported by the Office of Naval Research
(ONR) under REPRISM MURI N000142412603 and
ONR #N00014-22-1-2592, as well as the National Science
Foundation (NSF) via grant #1955361. Partial funding was
also provided by The Robotics and AI Institute.



REFERENCES

[1] Y. Hu, Q. Xie, V. Jain, J. Francis, J. Patrikar, N. Keetha, S. Kim,
Y. Xie, T. Zhang, H.-S. Fang, S. Zhao, S. Omidshafiei, D.-K. Kim,
A.-a. Agha-mohammadi, K. Sycara, M. Johnson-Roberson, D. Batra,
X. Wang, S. Scherer, C. Wang, Z. Kira, F. Xia, and Y. Bisk,
“Toward General-Purpose Robots via Foundation Models: A Survey
and Meta-Analysis,” Oct. 2024, arXiv:2312.08782 [cs]. [Online].
Available: http://arxiv.org/abs/2312.08782

[2] R. Firoozi, J. Tucker, S. Tian, A. Majumdar, J. Sun, W. Liu,
Y. Zhu, S. Song, A. Kapoor, K. Hausman, B. Ichter, D. Driess,
J. Wu, C. Lu, and M. Schwager, “Foundation models in
robotics: Applications, challenges, and the future,” The International
Journal of Robotics Research, p. 02783649241281508, Sept. 2024,
publisher: SAGE Publications Ltd STM. [Online]. Available:
https://doi.org/10.1177/02783649241281508

[3] S. Y. Gadre, M. Wortsman, G. Ilharco, L. Schmidt, and S. Song,
“CoWs on Pasture: Baselines and Benchmarks for Language-Driven
Zero-Shot Object Navigation,” in 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, June
2023, pp. 23 171–23 181. [Online]. Available: https://ieeexplore.ieee.
org/document/10203853/

[4] D. Shah, B. Osiński, B. Ichter, and S. Levine, “LM-Nav: Robotic
Navigation with Large Pre-Trained Models of Language, Vision,
and Action,” in Proceedings of The 6th Conference on Robot
Learning. PMLR, Mar. 2023, pp. 492–504, iSSN: 2640-3498.
[Online]. Available: https://proceedings.mlr.press/v205/shah23b.html

[5] C. Huang, O. Mees, A. Zeng, and W. Burgard, “Visual Language
Maps for Robot Navigation,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA), May 2023, pp. 10 608–10 615.
[Online]. Available: https://ieeexplore.ieee.org/document/10160969

[6] ——, “Audio Visual Language Maps for Robot Navigation,” in Exper-
imental Robotics, M. H. Ang Jr and O. Khatib, Eds. Cham: Springer
Nature Switzerland, 2024, pp. 105–117.

[7] J. X. Liu, Z. Yang, I. Idrees, S. Liang, B. Schornstein,
S. Tellex, and A. Shah, “Grounding Complex Natural Language
Commands for Temporal Tasks in Unseen Environments,” in
Proceedings of The 7th Conference on Robot Learning. PMLR,
Dec. 2023, pp. 1084–1110, iSSN: 2640-3498. [Online]. Available:
https://proceedings.mlr.press/v229/liu23d.html

[8] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta,
V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva,
and A. R. Zamir, “On Evaluation of Embodied Navigation
Agents,” July 2018, arXiv:1807.06757 [cs]. [Online]. Available:
http://arxiv.org/abs/1807.06757

[9] S. Yenamandra, A. Ramachandran, K. Yadav, A. S. Wang, M. Khanna,
T. Gervet, T.-Y. Yang, V. Jain, A. Clegg, J. M. Turner, Z. Kira,
M. Savva, A. X. Chang, D. S. Chaplot, D. Batra, R. Mottaghi, Y. Bisk,
and C. Paxton, “HomeRobot: Open-Vocabulary Mobile Manipulation,”
in Proceedings of The 7th Conference on Robot Learning. PMLR,
Dec. 2023, pp. 1975–2011, iSSN: 2640-3498. [Online]. Available:
https://proceedings.mlr.press/v229/yenamandra23a.html

[10] B. Chen, F. Xia, B. Ichter, K. Rao, K. Gopalakrishnan, M. S.
Ryoo, A. Stone, and D. Kappler, “Open-vocabulary Queryable
Scene Representations for Real World Planning,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA), May
2023, pp. 11 509–11 522. [Online]. Available: https://ieeexplore.ieee.
org/document/10161534

[11] P. Liu, Y. Orru, J. Vakil, C. Paxton, N. Shafiullah, and L. Pinto,
“Demonstrating OK-Robot: What Really Matters in Integrating Open-
Knowledge Models for Robotics,” in Robotics: Science and Systems.
Robotics: Science and Systems Foundation, July 2024. [Online].
Available: http://www.roboticsproceedings.org/rss20/p091.pdf

[12] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as Policies: Language Model Programs for
Embodied Control,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA), May 2023, pp. 9493–9500.
[Online]. Available: https://ieeexplore.ieee.org/document/10160591

[13] E. A. Emerson, “Temporal and Modal Logic,” in Handbook
of Theoretical Computer Science, Volume B: Formal Models
and Semantics, J. v. Leeuwen, Ed. Elsevier and MIT Press,
1990, pp. 995–1072. [Online]. Available: https://doi.org/10.1016/
b978-0-444-88074-1.50021-4

[14] J. Pan, G. Chou, and D. Berenson, “Data-Efficient Learning of
Natural Language to Linear Temporal Logic Translators for Robot
Task Specification,” in 2023 IEEE International Conference on

Robotics and Automation (ICRA), May 2023, pp. 11 554–11 561.
[Online]. Available: https://ieeexplore.ieee.org/document/10161125

[15] B. Quartey, A. Shah, and G. Konidaris, “Exploiting Contextual
Structure to Generate Useful Auxiliary Tasks,” in NeurIPS 2023
Workshop on Generalization in Planning, vol. abs/2303.05038, 2023,
arXiv: 2303.05038. [Online]. Available: https://doi.org/10.48550/
arXiv.2303.05038

[16] J. X. Liu, A. Shah, G. Konidaris, S. Tellex, and D. Paulius,
“Lang2LTL-2: Grounding Spatiotemporal Navigation Commands
Using Large Language and Vision-Language Models,” in 2024
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Oct. 2024, pp. 2325–2332, iSSN: 2153-0866. [Online].
Available: https://ieeexplore.ieee.org/document/10802696

[17] E. Rosen, S. James, S. Orozco, V. Gupta, M. Merlin, S. Tellex,
and G. Konidaris, “Synthesizing Navigation Abstractions for
Planning with Portable Manipulation Skills,” in Proceedings of
The 7th Conference on Robot Learning. PMLR, Dec. 2023,
pp. 2278–2287, iSSN: 2640-3498. [Online]. Available: https:
//proceedings.mlr.press/v229/rosen23a.html

[18] A. Pnueli, “The temporal logic of programs,” in 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977),
Oct. 1977, pp. 46–57, iSSN: 0272-5428. [Online]. Available:
https://ieeexplore.ieee.org/document/4567924

[19] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger,
“ Specification Patterns for Robotic Missions ,” IEEE Transactions
on Software Engineering, vol. 47, no. 10, pp. 2208–2224, Oct. 2021.
[Online]. Available: https://doi.ieeecomputersociety.org/10.1109/TSE.
2019.2945329

[20] M. Berg, D. Bayazit, R. Mathew, A. Rotter-Aboyoun, E. Pavlick, and
S. Tellex, “Grounding Language to Landmarks in Arbitrary Outdoor
Environments,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), May 2020, pp. 208–215, iSSN: 2577-087X.
[Online]. Available: https://ieeexplore.ieee.org/document/9197068

[21] M. Cosler, C. Hahn, D. Mendoza, F. Schmitt, and C. Trippel, “nl2spec:
Interactively Translating Unstructured Natural Language to Temporal
Logics with Large Language Models,” in Computer Aided Verification,
C. Enea and A. Lal, Eds. Cham: Springer Nature Switzerland, 2023,
pp. 383–396.

[22] F. Fuggitti and T. Chakraborti, “NL2LTL – a Python Package for
Converting Natural Language (NL) Instructions to Linear Temporal
Logic (LTL) Formulas,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 37, no. 13, pp. 16 428–16 430, 2023,
number: 13. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/
article/view/27068

[23] Y. Chen, R. Gandhi, Y. Zhang, and C. Fan, “NL2TL: Transforming
Natural Languages to Temporal Logics using Large Language
Models,” in Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, H. Bouamor, J. Pino,
and K. Bali, Eds. Singapore: Association for Computational
Linguistics, Dec. 2023, pp. 15 880–15 903. [Online]. Available:
https://aclanthology.org/2023.emnlp-main.985/

[24] M. Y. Vardi, “An automata-theoretic approach to linear temporal
logic,” in Logics for Concurrency: Structure versus Automata,
F. Moller and G. Birtwistle, Eds. Berlin, Heidelberg: Springer,
1996, pp. 238–266. [Online]. Available: https://doi.org/10.1007/
3-540-60915-6 6

[25] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-Logic-
Based Reactive Mission and Motion Planning,” IEEE Transactions
on Robotics, vol. 25, no. 6, pp. 1370–1381, Dec. 2009, conference
Name: IEEE Transactions on Robotics. [Online]. Available: https:
//ieeexplore.ieee.org/document/5238617

[26] M. Colledanchise, R. M. Murray, and P. Ögren, “Synthesis
of correct-by-construction behavior trees,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Sept. 2017, pp. 6039–6046, iSSN: 2153-0866. [Online]. Available:
https://ieeexplore.ieee.org/document/8206502

[27] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement
learning,” Artificial Intelligence, vol. 112, no. 1, pp. 181–211, Aug.
1999. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0004370299000521

[28] N. Yokoyama, A. Clegg, J. Truong, E. Undersander, T.-Y. Yang,
S. Arnaud, S. Ha, D. Batra, and A. Rai, “ASC: Adaptive Skill
Coordination for Robotic Mobile Manipulation,” IEEE Robotics and
Automation Letters, vol. 9, no. 1, pp. 779–786, Jan. 2024, conference



Name: IEEE Robotics and Automation Letters. [Online]. Available:
https://ieeexplore.ieee.org/document/10328058

[29] K. Jatavallabhula, A. Kuwajerwala, Q. Gu, M. Omama, G. Iyer,
S. Saryazdi, T. Chen, A. Maalouf, S. Li, N. Keetha, A. Tewari,
J. Tenenbaum, C. Melo, M. Krishna, L. Paull, F. Shkurti, and
A. Torralba, “ConceptFusion: Open-set multimodal 3D mapping,”
in Robotics: Science and Systems XIX. Robotics: Science and
Systems Foundation, July 2023. [Online]. Available: http://www.
roboticsproceedings.org/rss19/p066.pdf

[30] Z. Yang, S. S. Raman, A. Shah, and S. Tellex, “Plug in
the Safety Chip: Enforcing Constraints for LLM-driven Robot
Agents,” in 2024 IEEE International Conference on Robotics
and Automation (ICRA), May 2024, pp. 14 435–14 442. [Online].
Available: https://ieeexplore.ieee.org/document/10611447

[31] I. E. Commission et al., “Functional safety of electrical/electronic/pro-
grammable electronic safety related systems,” IEC 61508, 2000.

[32] M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn,
A. Dosovitskiy, A. Mahendran, A. Arnab, M. Dehghani, Z. Shen,
X. Wang, X. Zhai, T. Kipf, and N. Houlsby, “Simple Open-Vocabulary
Object Detection,” in Computer Vision – ECCV 2022, S. Avidan,
G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, Eds. Cham:
Springer Nature Switzerland, 2022, pp. 728–755.

[33] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and
R. Girshick, “Segment Anything,” in 2023 IEEE/CVF International
Conference on Computer Vision (ICCV), Oct. 2023, pp. 3992–4003,
iSSN: 2380-7504. [Online]. Available: https://ieeexplore.ieee.org/
document/10378323

[34] A. Majid, M. Bowerman, S. Kita, D. B. M. Haun, and S. C.
Levinson, “Can language restructure cognition? The case for space,”
Trends in Cognitive Sciences, vol. 8, no. 3, pp. 108–114, Mar. 2004.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1364661304000208

[35] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast
marching tree: A fast marching sampling-based method for optimal
motion planning in many dimensions,” The International Journal
of Robotics Research, vol. 34, no. 7, pp. 883–921, June 2015,
publisher: SAGE Publications Ltd STM. [Online]. Available:
https://doi.org/10.1177/0278364915577958


