
Robot Task Planning Under Local Observability

Max Merlin, Shane Parr, Neev Parikh, Sergio Orozco, Vedant Gupta, Eric Rosen, and George Konidaris

Abstract— Real-world robot task planning is intractable in
part due to partial observability. A common approach to
reducing complexity is introducing additional structure into
the decision process, such as mixed-observability, factored
states, or temporally-extended actions. We propose the locally
observable Markov decision process, a novel formulation that
models task-level planning where uncertainty pertains to object-
level attributes and where a robot has subroutines for seeking
and accurately observing objects. This models sensors that
are range-limited and line-of-sight—objects occluded or outside
sensor range are unobserved, but the attributes of objects that
fall within sensor view can be resolved via repeated observation.
Our model results in a three-stage planning process: first, the
robot plans using only observed objects; if that fails, it generates
a target object that, if observed, could result in a feasible plan;
finally, it attempts to locate and observe the target, replanning
after each newly observed object. By combining LOMDPs with
off-the-shelf Markov planners, we outperform state-of-the-art-
solvers for both object-oriented POMDP and MDP analogues
with the same task specification. We then apply the formulation
to successfully solve a task on a mobile robot.

I. INTRODUCTION

Robot task planning is characterized by pervasive partial
observability, sparse rewards, and long horizons, but planning
in the presence of generic environmental uncertainty is NP-
Hard [1], leading to scalability and performance problems
in practice [2]. More effective planning is possible using
structured models of partial observability [3, 4, 5], at the
cost of additional assumptions about its form. Fortunately,
those assumptions need not necessarily hold in the task
directly; instead, the robot control system can be structured
to include techniques (e.g., vision, SLAM [2], or inverse
kinematics) that result in a task-level planning problem
where they are reasonable. For example, the object-oriented
POMDP [5] models object-centric attributes; objects are not
directly present in pixel observations, but computer vision
can process the scene into a labeled set of objects, giving a
task-level model where the object-centric assumption holds.

We propose to abstract out the subproblem of sensing
uncertainty from a POMDP by introducing the locally ob-
servable Markov decision process (LOMDP), a decision pro-
cess that models object-level partial observability stemming

Department of Computer Science, Brown University, Providence, RI
02912, USA {max merlin, shane parr, sergio orozco,
vedant gupta, eric rosen}@brown.edu,
neev.v.parikh@gmail.com, and gdk@brown.edu. This
work was supported by NSF CAREER #1844960 to Konidaris, NSF
grant number #1955361, ONR grant number N00014-21-1-2200, ONR
PERISCOPE MURI N00014-17-1-2699, and NSF Fellowship #2022346540
to Parr. Partial funding for this work was provided by The Boston
Dynamics AI Institute (“The AI Institute”) and Echo Labs. Disclosure:
George Konidaris is the Chief Scientific Advisor of Realtime Robotics,
which develops motion planning software.

from line-of-sight, range-limited sensing. We make three core
modeling assumptions. First, task-level uncertainty pertains
to object-level attributes (including existence and location);
just as uncertainty for navigation is primarily to do with
space (and can therefore be resolved by SLAM [2]), so
uncertainty for manipulation is primarily to do with objects.
Second, that the robot has access to two sensing subroutines:
observe and find. Observe eliminates the uncertainty of an
object within sensor view, in practice using a closed-loop
subroutine that repeatedly generates views to reduce attribute
uncertainty below a threshold (after which we consider it
fully observed). Find searches for a given target object and
executes observe when a novel object is brought within sen-
sor range; the range- and line-of-sight assumptions guarantee
that it identifies at least one previously unobserved object
each time it is executed. Finally, we assume that interact-
ing with an object requires it to be within sensor range
before and after interaction; therefore, in a (static, single-
robot) LOMDP, an observed object is never subject to state
uncertainty again. Solving a task under these assumptions
requires the robot to observe every object used in its solution
plan, leading to a simple planning process: the robot uses a
Markov planner to solve the task using known objects; if that
fails, it generates a target object that, if observed, could lead
to a successful plan and attempts to locate and observe that
object; the process repeats when it observes a novel object.

We propose that these assumptions often hold at the task-
level, and that separating observation from planning, and
exploiting efficient Markov planners, can scale to realis-
tic tasks. To demonstrate this, we compare the LOMDP
framework to MDP and POMDP formulations in a chal-
lenging, combinatorially complex sandwich-making domain.
As the number of extraneous objects in the scene increases,
LOMDPs support efficient solutions while the alternatives
are slow or fail entirely. Finally, we apply LOMDPs to realize
efficient planning in a robot coffee-making task.

II. BACKGROUND AND RELATED WORK

A partially observable Markov decision process (or
POMDP) is a sequential decision-making task where an
agent must choose an action to execute at every timestep,
but where it cannot always observe the information necessary
to make that decision. Formally, a POMDP is defined as a
tuple (S,A,Ω,O,T,R,γ) , where S is a set of states, which
the agent cannot observe directly; A is a set of actions, one
of which it must choose to execute at each timestep; Ω

is an observation space; O(ω|s) is an observation function
giving the probability of observing ω ∈ Ω when in state s;
T (s′|s,a) is the transition function, describing the probability



that action a in state s causes a transition to state s′; R(s,a,s′)
is the reward received for transitioning from state s to s′

by executing a; and γ is a discount factor. The agent must
choose actions that maximize its expected discounted sum
of rewards, without observing the state s directly.

There are several approaches to adding structure to
Markov decision processes. In factored MDPs [3], the state
is composed of a vector of state variables (or factors), which
transition infrequently and independently of most other fac-
tors. Factored MDPs support efficient planning algorithms
that exploit this structure [6]. Object-oriented MDPs [7]
introduce even more structure by factoring state into a
collection of objects, each with their own state variables
and type; there is now a transition function for each type.
Object-oriented POMDPs [5] generalize this to the partially-
observable setting; LOMDPs extend OO-POMDPs.

We also draw inspiration from the mixed observability
MDP (MOMDP) [4], where the state is partitioned into
factors (state variables) that are fully observable and factors
that are partially observable. While MOMDPs capture some
of the modeling aspects we propose, each factor is always
either fully or partially observable and cannot change from
one to the other, whereas in LOMDPs objects transition from
unobserved to fully observed as they are sensed. By contrast,
[8] provides a structure to allow state variables to transition
from unknown to known. However, LOMDPs provides a
more extensible and accessible model rooted in POMDPs.

III. LOCALLY OBSERVABLE MDPS

The POMDP formulation can model general hidden state
variables and complex observation functions. That general-
ity comes with a severe complexity penalty; a promising
approach to efficient planning is to incorporate structural
assumptions specific to real-world robots. Consider a home
service robot tasked with making a cup of tea, which requires
fetching a cup, using a kettle to boil water, and obtaining and
combining specific ingredients (a teabag, sugar, and milk).
Here there are several uncertain state variables: the exact
location of the cup and the ingredients, whether the kettle
has sufficient water, whether that water has been boiled, and
whether the kettle is plugged in. Assuming that the robot
has mapped the kitchen using SLAM [2]—thereby resolving
uncertainty to do with the map—the remaining uncertainty
is all over object attributes. We propose that this object-level
uncertainty is primarily due to the robot’s sensor limitations,
and propose to model this using the Locally Observable
Markov Decision Process (or LOMDP), a subclass of OO-
POMDPs in which four assumptions hold:

1) Sensors are range limited: they return useful readings
when an object is within range, but are essentially
uninformative beyond that range. This condition is
necessary but insufficient for observability.

2) Sensors are line-of-sight: object attributes can only
be observed if unoccluded; occlusions may occur due
to the scene (e.g., a wall), another object, or even
the object itself (e.g., a microwave door being closed
occludes the variable describing its contents). This

Fig. 1. The locality function L(i,v). If the blue object (i) is at a particular
position inside of a cupboard (v) the observe subroutine succeeds when
the robot’s sensor is in the red shaded region.

condition is also necessary; satisfying both it and the
range condition is sufficient for useful sensor readings.

3) The robot is equipped with two subroutines:
observe, which adjusts the robots sensor(s) around
the region local to the robot, terminating once the local
objects are fully observed, and find, which searches
the entire domain for an object, running observe in
new locations until the desired object is found.

4) Manipulation requires observation, which holds
throughout the manipulation; also, objects are static
and no other agents modify the world. Hence, once
an object attribute has been observed, it remains so.

Taken together, these four modeling assumptions capture
the structure present in task-level robot planning. We for-
malize these assumptions into a structured OO-POMDP that
supports efficient planning. A LOMDP is a tuple:

(S,A,O,Ω,L,R,T,γ) ,

where S is the set of states, A is a set of actions, O is
an observation function, Ω is an observation space, L is a
locality function, R is a reward function, T is a transition
function, and γ is the discount factor. Most elements are
the same as the standard OO-POMDP, but one element—the
locality function L—is novel to LOMDPs.

As in an OO-POMDP, the state space S is factored into the
robot state Sr and the state of n objects: S = Sr×So1 × ...×
Son . Each object has its own state vector soi ∈ Soi , including
its pose; because pose plays a special role in LOMDPs, we
write the ith object’s pose as spose

oi , and the robot’s as spose
r .

Modeling the output of the observe subroutine, at each
timestep, the agent receives an observation where each object
is either accurately observed or not observed at all. The
observation space is therefore Ω = Sr × {So1 ∪ φ} × ...×
{Son ∪ φ}, where robot state is always observed, and each
object’s state is either accurately observed (ω[i] = soi , i.e.,
the correct state of object i) or has a null observation (φ ).

We next turn to the observation function, which in a
POMDP is of the form O(ω | s′,a), returning a probability
distribution over observations given a state and action. In
LOMDPs observations are deterministic, so it is unnecessary
to return a probability distribution. Instead, the observation
function deterministically maps a given state and action to
an observation: O : (s′,a)→ ω ∈Ω.

In addition to these standard POMDP elements, LOMDPs
have a new element, the locality function, which takes in a



object state and outputs the set of states from which that
object can be perfectly observed. The locality function can
be derived from the observation function: if the robot is in
the locality of a given object i, the observation it receives
for that object is (considered) its true state v. If the robot is
outside the locality of i, it observes φ (no observation). We
therefore define the locality L(i,v) of object i with state v:

L(i,v) = {s ∈ S | O(i) = soi ∧ (soi = v)} .

L(i,v) is the set of states from which object i can be observed
if it has state v. The global locality L(i) for object i, the set
of all states from which i is observable, is:

L(i) = {s ∈ S | O(i) = soi}=
⋃

v∈Soi

L(i,v).

The global locality function allows us to redefine the obser-
vation function in a more structured way:

O(i) =

{
soi if s ∈ L(i)
φ otherwise.

Because the observation function can be written as a
function of the locality function and vice versa, only one
need be defined for a given domain. Taken together, the
above definitions formalize assumption 3.

Additionally, the locality function must model the fact that
the robot’s sensors are range-limited—an object can only be
sensed when it is within sensor range. This results in the
following constraint on the locality function:

s ∈ L(i) =⇒ inrange(spose
r ,spose

oi ),

where inrange encodes the robot’s sensor range con-
straints. For example, a mobile robot with a fixed-height 360◦

vision sensor with maximum range r has range constraint:
inrange(p1, p2) = ∥p1− p2∥2 ≤ r, while a robot with a fan-
shaped sensor requires an additional orientation constraint.
Similar (though more complex) models apply for 3D sensors.
This sensor-specific condition encodes assumption 1.

The range condition is necessary for observability but not
sufficient. The observed object must also be line-of-sight,
and can be unobservable if the static scene or another object
occludes it; in the latter case the occluding object is observed
instead.1 This is modeled by the following constraint:

(s /∈ L(i))∧ inrange(spose
r ,spose

oi
) =⇒

(∃b s.t. occludes(sr,ob,oi)∧ s ∈ L(b))∨occludes(rs,scene,oi).

The occludes function depends on the sensor character-
istics and the geometry of the two objects, but a reasonable
approximation in practice is that occludes(r,b, t) holds if both
objects are in range (i.e., inrange(r,b) and inrange(r, t)), and
the lines between robot sensor r and the relevant points of
interest on target object t intercept the body of occluding
object b. We include the special-case scene object to cover
the case where an object is occluded by a static obstacle with

1Note that several objects may occlude object i; our model simply states
that at least one such occluding object is observed.

no state of its own; such obstacles are typically walls and
similar features present in the robot’s environmental map.
This encodes assumption 2.

For most physical sensors, the set of poses in which a
target object would be visible from a given robot pose spose

r is
compact. For example, a robot with a fan-shaped sensor can
observe an object located at any point inside the solid volume
of space covered by the fan. Portions of these regions can
be removed by an occluding object (or the scene), but since
the removed regions are also compact, they merely break
the visibility poses from any point into a set of compact
regions. Even if a target object is occluded on all sides,
the object can be observed as long as occluding objects
can be moved to some pose where it no longer occludes
the target. As a result, it is always possible for the robot
to generate a finite number of states to transition through
to observe any object with certainty. We instantiate this
search process as a find subroutine; there are already many
existing works on object search [9, 10, 11, 12]. Similarly,
existing work can instantiate the observe routine [13] by
repeatedly gathering observations to reach near-certainty in
object recognition and pose estimation.

The available action set A is determined by the actions
available to the robot; here LOMDPs impose two conditions.
Actions that modify object i can only be available in L(i), the
global locality of oi. This models assumption 4. (Of course,
they may have other preconditions restricting where they
can be executed.) Additionally, the robot has an observation
action f ind observe(i) that runs find for object i until any
new object is encountered, and then observes it, which can
be applied when soi is unknown. This models assumption 3.

A core aim of LOMDP planning is to manipulate the state
of the world, expressed as the state of its constituent objects,
to reach some goal state. We model a task reward function
as sum of two components: R(s,a,s′) = R(s′)−C(a), where
R(s′) rewards entering a terminal set of goal states G, and
C expresses the (state independent) cost of executing a
particular action. The goal, as expressed in G, will typically
specify desired configurations of only some objects present in
the environment, in which case the robot may reach the goal
without having interacted with, or even necessarily observed,
many of the objects in the environment.

Finally, we turn to the transition function T , which is
defined as usual in a POMDP, except that it expresses the
assumption that manipulation implies observation: any time
a state variable changes, the robot must have been able to
observe its value before and after the change:soi ̸= s′oi

=⇒
(O(i) = soi)∧ (O(i′) = s′oi

), for all objects i and actions a
where T (s′|s,a)> 0. This constraint encodes assumption 4.

IV. LOMDP PLANNING

The assumptions underlying the LOMDP model give rise
to two important properties. The first is that a robot can
always observe some new object using the find observe
subroutine, though it is possible the found object is not
the target of the search. The second is that an observed
object stays observed, and can therefore be treated as fully



observable for planning purposes. These properties suggest
that LOMDP solutions could be constructed from a sequence
of navigation actions that observe relevant objects, followed
by a (Markovian) planning process over those now com-
pletely observed objects. In fact, such a structure is necessary
for solving a LOMDP—any solution that uses an object
necessarily involves first observing it, which suggests the
planner shown in Algorithm 1, which has three subroutines:

Algorithm 1: Outline of a LOMDP Planner.

observed ←{sr}
unobserved ←{so1 , ...,son}
repeat

(solved, plan, info) ← MDP plan(observed, R)

if not solved then
target ← next target(R, info, unobserved)
obs ← find observe(target)
observed ← observed ∪ obs
unobserved ← unobserved \ obs

until solved

1) MDP plan(o, R) attempts to solve for goal R us-
ing only the collection of fully observed objects o
as input to a Markov planner. It returns a tuple of
three elements: a boolean indicating whether or not
a solution was found, the solution plan if found, and,
if not, optional diagnostic information indicating why.

2) next target(R, i, u) proposes an object to
attempt to observe next, selected from the list of
unobserved objects u using goal R and perhaps the
optional diagnostic information i from MDP plan.

3) find observe(t) attempts to observe object t by
navigating through its locales using find, and calling
observe when it encounters any previously unob-
served object (not necessarily t), then halting and
returning the newly observed object.

The key subroutine here is find observe(t), which
expands the set of observed objects available to the
MDP plan. Any off the shelf object search/active perception
algorithm [13] can be applied here. If the robot attempts
to observe t but is occluded by a previously unobserved
object, the occluding object is observed and the subroutine
returns it and halts. This early termination allows the robot
to potentially find a plan using an object it had not intended
to observe, and means that find observe need only ever
compute locales using known objects; since all occluders are
eventually observed, repeatedly calling the subroutine with
the same target will eventually result in its observation.

For clarity, the formulation above assumes that the robot
knows which objects are present in the environment, even
though their state and locations are unobserved. That is
unrealistic in many tasks, where the robot does not know
which, or how many, objects are present. Fortunately we can
simply replace the unobserved object list with a list of object
classes; each stands in for the hypothetical object instance
that the robot would find first, were it to search for an object
of that class. The robot can generate the locales to search for

each class without knowing that instance objects are present,
or how many there are. Observed instances are simply added
to the observed list as before, and a class is only deleted from
the unobserved list once it is certain that no instances remain.

V. EXPERIMENTS

We evaluate the potential for LOMDPs to improve plan-
ning in two deterministic domains: first, a simulated domain
where a LOMDP planner could be thoroughly empirically
compared to a state-of-the-art POMDP planner, and second,
a robot domain which demonstrates that LOMDP planning
can generate goal-directed behavior on a real robot. In both
experiments, we use an off-the-shelf PDDL planner as the
Markov planner because both domains are deterministic, but
a more general planner could be used for stochastic domains.

A. Simulation Experiments

We empirically evaluate the properties of LOMDP plan-
ning in the peanut butter and jelly (PBJ) domain, where a
robot in a kitchen must make a sandwich. Making the sand-
wich requires spreading peanut butter on bread, spreading
jelly on bread, and then putting the two halves together. In
order to perform each spread action, the jelly or peanut butter
must be on the table along with the bread and the knife.
However, all of these ingredients are distributed among a set
of closed cupboards and are unobserved at the start of the
task. To observe each object, the robot must be in front of
the cupboard that the object is in and that cupboard door
must be open. Additionally, obstacle objects are randomly
distributed within the cupboards; the cupboards are treated
as stacks, so the robot may need to take obstacles out of the
cupboard in a specific order to reach an object that it needs.

To solve this task as a LOMDP using Algorithm 1, only
the initially observed objects of the domain were encoded in
PDDL [14]. If the task was not solvable an unseen object
is selected as the next target. The robot then navigated
through unseen locales to attempt to find next target; for
each new target locale a new PDDL problem file was written
and solved with that locale given as its goal. Similarly,
each time new objects were observed the PDDL file was
updated to reflect that the observed state had expanded. This
was initially implemented by selecting the next target
and the next locale to search at random, which is clearly
naive yet still showed improvements over our baselines. We
later show how heuristics of which objects are relevant or
priors over where objects might be located can be utilized
to further improve planning. Once all the necessary objects
were observed the final plan to complete the task could
be found and executed. Each of these PDDL problem files
were solved using fast downward [15], a well-established
off-the-shelf planner. The use of PDDL is not necessary to
solve a LOMDP, but the ability to utilize off-the-shelf PDDL
solvers like fast downward in domains exhibiting partial
observability is one of its advantages.

To evaluate the benefits of our planner, we compared it
to the state-of-the-art object-oriented POMDP planner OO-
POMCP [5]. Like our planner, OO-POMCP exploits the



10 objects, 5 cupboards 15 objects, 10 cupboards

Avg Nodes Succ Avg Nodes Succ
Time (s) Expanded % Time (s) Expanded %

POMDP 265.673 ± 2.409 N/A 14.0 N/A N/A 0.0
MDP 8.312 ± 0.889 873880 100.0 163.691 ± 8.396 11649654 53.0
LOMDP 3.905 ± 0.352 375899 100.0 78.860 ± 7.917 5347269 93.0
LOMDP-H 2.680 ± 0.258 340473 100.0 51.220 ± 6.166 4934536 97.1
LOMDP-PR 2.979 ± 0.227 378616 100.0 60.215 ± 6.920 5884534 98.6
LOMDP-HPR 3.048 ± 0.322 290851 100.0 32.202 ± 4.224 2351858 95.0

TABLE I
SOLVING LARGER PBJ DOMAINS AS POMDPS, MDPS, AND LOMDPS (WITH SIMPLE OPTIMIZATIONS APPLIED), AVERAGED OVER 100 TRIALS.

Fig. 2. Solution time using POMDP, MDP, LOMDP, and LOMDP with
basic optimizations, with shaded standard error. Domain size is varied by
increasing the number of objects and the number of regions that would
facilitate information gain. Each solver was run for 100 iterations on each
parameter setting, capped at 5 minutes (dotted line).

object-centric nature of the domain; unlike our planner, it
does not exploit the structural nature of LOMDPs by using
an observe-plan loop. Finally, we included a baseline that
solved fully observable versions of the task by applying fast
downward to the complete PDDL domain descriptor.

We varied the domain by changing the number of cup-
boards and the number of additional obstacle objects that
could clutter the cabinets. These extra objects highlight an
interesting failure mode: POMDP solvers tend to try to
try to model the complete distribution of possible states
before uncertainty has been reduced; we found in practice
that POMCP scaled poorly in the number of obstacles and
was unable to find any reward, devolving to taking actions
seemingly at random. We evaluate each baseline for planning
time, while varying both the number of cupboards and the
number of obstacle objects. The results are shown in Figure
2, where each graph shows performance as the number of
obstacles is increased, for a fixed number of cupboards.

Our results show that OO-POMCP always performs the
worst by a significant margin and on our larger test cases
it failed to solve the task at all, reaching our experimental
timeout of five minutes. It generally converged to repeating

a sequence of actions that made no progress towards the
goal as the branching factor and task horizon exceeded its
ability to reach any reward. By contrast, the LOMDP planner
scales gracefully—despite its simple instantiation—solving
tasks with 10 cupboards and 15 objects in less than two
minutes. This is because it quickly decides it lacks sufficient
information to solve the task and looks in a cupboard to find
a new object, instead of expending computation modeling
every possible assignment of object to cupboard without
making progress on the task, which is OO-POMCP does.

Interestingly, as the number of cupboards scaled up we
found that the LOMDP model actually outperformed the
MDP with full information. We hypothesize that this is
because the LOMDP is providing a form of scoping [16]. In
a worst case run the LOMDP planner would observe every
object, after which it plans over exactly the same domain
description as the MDP. But as the amount of irrelevant
information in the domain grows, the agent can solve the task
without observing many useless objects, leaving the planning
process operating over a smaller domain and therefore more
efficiently. In Table I, we see that in the largest domain, all
LOMDP based methods succeed2 at rates greater than 90%,
where the POMDP and MDP based methods struggle at 0%
and around 50% respectively.

In Table I, we see that as the number of obstacles
increases, the heuristic for which objects are task relevant
(indicated by -H) improves both computation time and
decreases the total number of nodes expanded over selecting
an observation target at random. To model situations in
which objects were biased to be in some cupboards more
often than others, we also randomly generated categorical
prior distributions by sampling from a symmetric Dirichlet
distribution. When those priors are made available (indicated
by -PR), the amount of time required to solve the task goes
down, even though the total number of nodes expanded
remains comparable. When combining knowledge of prior
distributions with the heuristic for prioritizing important
objects (indicated by -HPR), we see a strong cumulative
improvement over the naive planner. This suggests that,
despite the large magnitude of improvement over both the
POMDP and MDP baselines, even further gains are possible
via informed implementations of next target and find.

2Success is measured as solving the task within five minutes.



Fig. 3. Upon reaching a new locale, the robot observes the water cup and
adds it to the MDP (left). With the water cup observed, Spot can plan to
pour the water into the coffee machine (right).

B. Robot Experiments

To show that a LOMDP planner can generate goal-directed
behavior on a real robot, we implemented LOMDP planning
for a coffee-making task on a Boston Dynamics Spot3. The
robot must find two cups with initially unknown positions,
one containing coffee grinds and one containing water, and
bring each one back to the coffee machine to pour its contents
into the appropriate receptacle of the machine. The robot
must then close the lid of the machine and press the button to
turn it on. An additional object was present and initialized to
an unobserved location; it could be interacted with similarly
to the other cups, but did not progress towards the goal.

Navigation between locales was aided by AR tags at
each location. Once the robot reached a locality it used
ResNet [17] to observe, using multiple matching outputs
to confirm object classification. This identified and localized
objects in the scene. The remaining skills for pouring and
interacting with the coffee machine were designed by hand.

A typical task execution proceeded as follows: At task
start the location of all three cups is unknown. The agent
tries to plan, but no ingredient cups have been observed, so
the task is impossible to solve. The robot now chooses to
observe the water cup, since observing it may help solve
the task, and plans to navigate to locale 1, which is one of
the tables. At locale 1 it observes the coffee cup, which it
adds to its list of known objects. However, the water cup
has not yet been observed so it now plans to navigate to
locale 2, where it observes the water cup. The robot now has
sufficient information to solve the task. No additional locales
are visited, so the extra cup remains unobserved. The robot
first brings the water over to the coffee machine and pours
it in, then returns to locale 1 to do the same for the coffee

3Video and further description can be found at
https://youtu.be/K90l3tYlg2U

grinds. Finally, it closes the lid of the machine and presses
the button to turn the machine on.

Our experiments demonstrate that Markov planners can
be made effective at solving challenging partially observable
tasks when used as a component of planning within the
LOMDP framework. We show that this technique scales in a
combinatorially complex symbolic domain, and demonstrate
that our approach can solve the challenging task of making
coffee from ingredients initially hidden from the robot.

VI. CONCLUSION

Efficiently dealing with state uncertainty is a core chal-
lenges in robotics [2]; however, the most common general
model of that uncertainty—the POMDP—does not admit
efficient solutions, despite two decades of effort since its
introduction [1]. LOMDPs are motivated by the hypothesis
that the key to efficient planning is not more sophisticated
planners, but a more structured model—that by carefully
modeling the characteristics of real robots we can formulate
a model sufficiently general to be widely useful but specific
enough to be efficiently solvable. LOMDPs model the limited
sensor range and line-of-sight nature of real robot sensors,
while making the additional assumption that observable
objects can be sensed accurately. This structure enables a
robot to plan to observe objects of interest, after which those
objects are treated as observed and input to a Markov planner.

A useful comparison here is to SLAM [2], which exploits
a structured model of sensors and space to efficiently localize
(turning a POMDP into an MDP) and map unknown space
(learning a model of that MDP, thereby enabling planning).
SLAM is now so effective that off-the-shelf implementations
are included with most mobile robots [18, 19, 20]. We
propose that, just as SLAM deals with uncertainty about
space (the central type of uncertainty for navigation), a
similarly specialized model is required for uncertainty about
object state (which we hypothesize is the central type of
uncertainty for manipulation). Similarly, just as SLAM builds
an envelope of mapped space around the robot that is suitable
for use by a navigation planner, so should the robot build
a collection of observed objects that are suitable for input
to a manipulation planner; and just as a core question
for task-based SLAM is which region of space to explore
next [21], a core question for manipulation planning under
uncertainty should be which object to observe next. The
LOMDP formalism was designed to meet these criteria.

Our results show that a simple planner that exploits the
properties of a LOMDP—most importantly, decomposing
planning into searching for unobserved objects and task
planning using only observed objects—can solve problems
much larger than would be feasible using a generic POMDP
planner. This promising result is strongly suggestive of the
potential of structured models of uncertainty; in future work,
we plan to design more efficient planners with the goal of
realizing a planner as efficient under object state uncertainty
as SLAM approaches are under spatial uncertainty.



REFERENCES

[1] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra,
“Planning and acting in partially observable stochastic
domains,” Artificial Intelligence, vol. 101, no. 1-2, pp.
99–134, 1998.

[2] S. Thrun, W. Burgard, and D. Fox, Probabilistic
Robotics. Cambridge, Mass.: MIT Press, 2005.

[3] C. Boutilier, R. Dearden, and M. Goldszmidt, “Exploit-
ing structure in policy construction,” in Proceedings
of the Fourteenth International Joint Conference on
Artificial Intelligence, 1995, pp. 1104–1113.

[4] S. C. Ong, S. W. Png, D. Hsu, and W. S. Lee, “Plan-
ning under uncertainty for robotic tasks with mixed
observability,” The International Journal of Robotics
Research, vol. 29, no. 8, pp. 1053–1068, 2010.

[5] A. Wandzel, Y. Oh, M. Fishman, N. Kumar, W. L.
LS, and S. Tellex, “Multi-object search using object-
oriented POMDPs,” in Proceedings of the 2019 IEEE
International Conference on Robotics and Automation,
2019, pp. 7194–7200.

[6] D. Koller and R. Parr, “Policy iteration for factored
MDPs,” in Proceedings of the Sixteenth Conference on
Uncertainty in Artificial Intelligence, 2000, pp. 326–
334.

[7] C. Diuk, A. Cohen, and M. Littman, “An object-
oriented representation for efficient reinforcement
learning,” in Proceedings of the 25th International
Conference on Machine Learning, 2008, pp. 240–247.

[8] R. P. Petrick and F. Bacchus, “Extending the
knowledge-based approach to planning with incomplete
information and sensing,” in International Conference
on Automated Planning and Scheduling, 2004.

[9] A. Aydemir, M. Göbelbecker, A. Pronobis, K. Sjöö, and
P. Jensfelt, “Plan-based object search and exploration
using semantic spatial knowledge in the real world.” in
Proceedings of the 5th European Conference on Mobile
Robots.

[10] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta,
L. Fei-Fei, and A. Farhadi, “Target-driven visual navi-
gation in indoor scenes using deep reinforcement learn-
ing,” in Proceedings of the 2017 IEEE International
Conference on Robotics and Automation, 2017, pp.
3357–3364.

[11] B. Mayo, T. Hazan, and A. Tal, “Visual navigation
with spatial attention,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, 2021, pp. 16 898–16 907.

[12] K. Zheng, R. Chitnis, Y. Sung, G. Konidaris,
and S. Tellex, “Towards optimal correlational object
search,” in Proceedings of the 2022 IEEE International
Conference on Robotics and Automation, 2022, pp.
7313–7319.

[13] R. Zeng, Y. Wen, W. Zhao, and Y.-J. Liu, “View
planning in robot active vision: A survey of systems,
algorithms, and applications,” Computational Visual
Media, vol. 6, pp. 225–245, 2020.

[14] D. McDermott, M. Ghallab, A. Howe, C. Knoblock,
A. Ram, M. Veloso, D. Weld, and D. Wilkins,
“PDDL—the planning domain definition language,”
Yale Center for Computational Vision and Control,
Tech. Rep. CVC TR98003/DCS TR1165, 1998.

[15] M. Helmert, “The fast downward planning system,”
Journal of Artificial Intelligence Research, vol. 26, pp.
191–246, 2006.

[16] N. Kumar, M. Fishman, N. Danas, S. Tellex,
M. Littman, and G. Konidaris, “Task scoping for ef-
ficient planning in open worlds (student abstract),”
in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 10, 2020, pp. 13 845–13 846.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[18] S. Macenski and I. Jambrecic, “SLAM toolbox: SLAM
for the dynamic world,” Journal of Open Source Soft-
ware, vol. 6, no. 6, p. 2783, 2021.

[19] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time
loop closure in 2D LIDAR SLAM,” in Proceedings of
the 2016 IEEE International Conference on Robotics
and Automation, 2016, p. 1271–1278.

[20] G. Grisetti, C. Stachniss, and W. Burgard, “Improved
techniques for grid mapping with Rao-Blackwellized
particle filters,” IEEE Transactions on Robotics, vol. 23,
pp. 34–46, 2007.

[21] G. Stein, C. Bradley, and N. Roy, “Learning over
subgoals for efficient navigation of structured, unknown
environments,” in Proceedings of the Conference on
Robot Learning, 2018.


