
Generalizing to New Domains by Mapping Natural Language to Lifted
LTL

Eric Hsiung, Hiloni Mehta, Junchi Chu, Xinyu Liu, Roma Patel, Stefanie Tellex, George Konidaris

Abstract— Recent work on using natural language to specify
commands to robots has grounded that language to LTL.
However, mapping natural language task specifications to LTL
task specifications using language models require probability
distributions over finite vocabulary. Existing state-of-the-art
methods have extended this finite vocabulary to include unseen
terms from the input sequence to improve output general-
ization. However, novel out-of-vocabulary atomic propositions
cannot be generated using these methods. To overcome this,
we introduce an intermediate contextual query representation
which can be learned from single positive task specification
examples, associating a contextual query with an LTL template.
We demonstrate that this intermediate representation allows for
generalization over unseen object references, assuming accurate
groundings are available. We compare our method of mapping
natural language task specifications to intermediate contextual
queries against state-of-the-art CopyNet models capable of
translating natural language to LTL, by evaluating whether
correct LTL for manipulation and navigation task specifications
can be output, and show that our method outperforms the
CopyNet model on unseen object references. We demonstrate
that the grounded LTL our method outputs can be used
for planning in a simulated OO-MDP environment. Finally,
we discuss some common failure modes encountered when
translating natural language task specifications to grounded
LTL.

I. INTRODUCTION

Programming robots to accomplish tasks often requires
human experts to design robot controllers. Communicating
task specifications to a robot in natural language would be
preferable because non-expert humans could specify tasks to
robots as if speaking to another human. However, in order
for a robot to accomplish a task, the natural language task
specification must be grounded into a form the robot can
interpret. Recent work has focused on grounding natural
language commands to Linear Temporal Logic, or LTL [1],
which can be used as a reward function for a planner [2]–[5].

Current state of the art methods [4], [6]–[8] use Seq2Seq
[9] models to learn to ground natural language into LTL,
given training data that pairs natural language commands and
corresponding LTL formulae. These approaches have led to
substantial progress, but have two major drawbacks. First,
Seq2Seq models are trained on finite vocabularies that are
present either in the training set or have been determined
a priori. The output of these models can only contain
elements drawn from their vocabulary. Some techniques
[10] can extend the vocabulary to include out-of-vocabulary

The authors are with the Brown University Department of Com-
puter Science, 115 Waterman Street, Providence, RI 02912. Email:
{eric hsiung, hiloni mehta, junchi chu, xinyu liu, roma patel1, ste-
fanie tellex, george konidaris}@brown.edu

(OOV) words from the input sequence, effectively allowing
unseen words from the input sequence to be incorporated
directly into the output sequence, but these techniques cannot
generate words outside the extended vocabulary. As a con-
sequence, words outside the vocabulary or input sequence
cannot be generated. Second, these models always output
grounded LTL, so the learned models are linked to the
specific domains they were trained on. It would be desirable
for lifted LTL to be generated so that LTL task structures
can be transferred between environmental domains.

We address these two issues by introducing an intermedi-
ate representation that links a contextual query representation
with a templated LTL task representation, and we contribute
a method for associating the two representations to generalize
over unseen objects. As a result, LTL can be generalized over
objects by evaluating templated LTL on unseen objects. We
apply our method on simulated manipulation and navigation
domains to demonstrate improved generalization over unseen
objects compared with state-of-the-art natural language to
LTL Seq2Seq models.

II. BACKGROUND

In this work, we represent the environments in which
a task is executed using object-oriented MDP formalism,
and utilize LTL to represent temporal tasks. Grounding is
the association of symbols with objects or states in the
environment, and is used to connect language and atomic
propositions to objects and states in an OO-MDP.

A. Object-Oriented MDPs (OO-MDPs)

A Markov Decision Processs (MDP) is a tuple of states
S, actions A, transition function T capturing environment
dynamics, reward model R, and discount factor γ represented
as (S,A, T,R, γ), which can be used to model sequential
decision making in a environment. In an OO-MDP [11],
the MDP definition is extended to include object classes
which are defined by sets of attributes, and propositional
functions which operate on specific object states to return
Boolean values, often comparing the input object attributes.
Propositional functions are well-suited for generating atomic
propositions about the environment, and form a basis over
which lifted LTL can be expressed.

B. Linear Temporal Logic (LTL)

LTL is a modal temporal logic that follows a particular
grammatical syntax: φ ::= π |¬φ|φ∧ψ |φ∨ψ |Gφ|Fφ|φUψ,
where φ is the task specification, φ and ψ are LTL formulae;
atomic proposition π is drawn from a set Π of possible

propositions; F , G, U denote the finally, globally or always,
and until temporal operators; and ¬, ∧, ∨ represent logical
operators negation, and, and or. LTL can be used to represent
temporal tasks, and reflects the desired temporal evolution
of a set of atomic propositions. Furthermore, a LTL formula
can be represented as a Büchi automaton [12]. Pairing the
automaton states with MDP states results in a product state
which can be used to define a product MDP, over which
planning can be done once the product MDP is solved.

C. Grounding and Labeling Functions

In the context of an OO-MDP, a grounding function
[13] maps natural language nouns and adjectives to objects
and their attribute values in the environment, whereas a
labeling function can be considered the inverse of grounding:
mapping states or objects to a set of symbols. Atomic
propositions are associated with states, so a labeling function
L : S → 2Π maps states to the Boolean values for the set of
atomic propositions Π under consideration.

III. RELATED WORK

Prior work [4], [6], [7] uses supervised learning to train
Seq2Seq models to output grounded LTL task specifications
from natural language. Gopalan et al. [7] discussed chal-
lenges relating to such language model generalization, and
introduced and demonstrated the ability for Seq2Seq models
to ground natural language to geometric LTL, utilizing the
framework of grounding natural language to reward func-
tions introduced by MacGlashan et al. [14], where reward
functions task specifications were expressed as conjunctions
of propositional functions learned from demonstration. Berg
et al. [6] focused on the generalization problem of ground-
ing unseen language to LTL by applying CopyNet [10], a
Seq2Seq model with a copying mechanism, to copy out-of-
vocabulary words present in the input command to the output
LTL. The contribution improved LTL generation for cases
where the atomic propositions could be directly represented
by the natural language vocabulary. Oh et al. [4] intro-
duced more efficient planning methods for solving LTL task
specifications in MDPs using product state abstractions, and
demonstrated planning on navigation LTL task specifications
generated from Seq2Seq models.

Other work [8], [15], [16] has also considered grounding
natural language to LTL task specifications with improved
accuracy using example trajectories and human-feedback,
using formal verification and optimization methods. Patel et
al. [15] introduced a semi-supervised method for ground-
ing language to LTL via generative models and formal
verification, considering whether candidate LTL satisfies
trajectories. Wang et al. [16] introduced an algorithm for
learning LTL task specifications of arbitrary complexity from
human-feedback by a process of eliminating sub-optimal
trajectories. Danas et al. [8] contributed a three step process
for recovering from language grounding errors by performing
beam search within a Seq2Seq model to determine the top
most likely LTL formulae, differentiating trajectories via
maximal semantic differencing, and finally requesting human

feedback to clarify which trajectories match the desired task
specification.

A common theme all these works share is their focus
on the domain of grounding navigation natural language
task specifications to LTL task specifications, where the
atomic propositions can easily be drawn from existing natural
language vocabulary as in the case of Berg et al. [6]. The
exception to this was MacGlashan et al. [14], where the
focus was on representing atemporal task specifications.
Our work builds off of the work of Gopalan et al. [7],
MacGlashan et al. [14], and Berg et al. [6] in that we employ
propositional functions to generate atomic propositions. Our
contributions differ from prior work in that we consider lifted
LTL representations in order to generalize task specifications
over objects, and consider these representations for both
manipulation and navigation tasks.

IV. APPROACH

Current state of the art Seq2Seq models that translate
directly from natural language to LTL typically must account
for atomic propositions as part of the LTL output sequence
vocabulary [7]. For navigation tasks, nouns are typically
grounded to locations in the environment, so input nouns
can be directly used to represent the atomic propositions in
the output. The natural language command go to CVS and
then go to the park would map to F(CVS ∧ F(park)), where
atomic propositions CVS and park imply that the agent is at
the CVS location and park location respectively. For more
complex tasks, such as object manipulation, individual nouns
do not directly map to atomic propositions in the output.
Rather, combinations of nouns and their attributes correspond
to atomic propositions: make sure the light is on before
putting the ball in the small bucket would correspond with
F(light on ∧ F(ball in small bucket)), where the atomic
proposition ball in small bucket is dependent on attributes
of the ball and the small bucket.

The previous examples show that standard Seq2Seq mod-
els require compound atomic propositions to be part of
the output vocabulary. Since an environment could have
an arbitrary number of objects with arbitrary attributes, the
output vocabulary grows exponentially with the number of
objects and attributes. For Seq2Seq models to generalize
across objects, the output vocabulary must always be ex-
panded to ensure the target objects and attributes are part
of the vocabulary. In practice, this is impractical, since
Seq2Seq models must first be trained on a dataset using finite
vocabulary. In other words, a Seq2Seq model is trained on
a specific distribution of objects which correspond with its
output vocabulary, and these models can fail to generalize
on unknown objects and attributes outside the vocabulary.
CopyNet alleviates the issue of unseen words by copying
words from the input to the output, but this requires atomic
propositions to be drawn from existing natural language
vocabulary.

To resolve generalizing over objects, we propose learning
templated LTL to represent parameterized task classes via
one-shot learning from example task specifications. Task

Training Pipeline (a)

Process Mapping CQ Parameters to LTL Parameters

Process Generating an Instance of Grounded LTL
F(plate_is_observed & F(plate_in_basket & F(plate_in_basket

& agent_in_kitchen & F(plate_in_kitchen &
!plate_in_basket))))

Process Generating a Contextual Query Task Specification
“bring”(“plate”, “kitchen”)

Natural Language Task Specification
“bring the plate to the kitchen” CQ-LTL Algorithm Templated LTL

Evaluation Pipeline (b)

Process Generating a Contextual Query Task Specification
“bring”(“pillow”, “bedroom”)

Natural Language Task Specification
“bring the pillow to the bedroom” Instance LTLEvaluate CQ-LTL

Template Planning

High Level Example (c)

Intermediate

Contextual Query Task Specification
(a function signature: f(x,y,z))

Instance Grounded LTL
(grounded atomic propositions)

”ship” (“toy”, “blue”, “box”, ”room”, “green”)

F(toy_is_blue & toy_in_box & F(toy_in_box & box_in_room & room_is_green))

Lifted LTL
(propositional functions) F(ObjectIsColor(o, c) & ObjectInBox(o,b) & F(ObjectInBox(o,b) & ObjInRoom(b, r) & RoomIsColor(r, c)))

Templated LTL
(mapped grounded parameters)

CQ(p1,p2,p3,p4,p5) = F(ObjectIsColor(g(p1), g(p2)) & ObjectInBox(g(p1),g(p3)) & F(ObjectInBox(g(p1),g(p3)) & ObjInRoom(g(p3), g(p4))& RoomIsColor(g(p4), g(p5))))

Templated LTL -> Instance LTL
(evaluate a CQ task specification)

CQ(p1,p2,p3,p4,p5) = F(ObjectIsColor(g(p1), g(p2)) & ObjectInBox(g(p1),g(p3)) & F(ObjectInBox(g(p1),g(p3)) & ObjInRoom(g(p3), g(p4))& RoomIsColor(g(p4), g(p5))))

with (p1,p2,p3,p4,p5) = (“ball”, ”red”, ”box”, ”small room”, ”blue”) yields

F(ball_is_red & ball_in_box & F(ball_in_box & box_in_small_room & small_room_is_blue))

Inputs

Output

Evaluation

Fig. 1. The training and evaluation pipelines for CQ-LTL. (a) The training pipeline incorporates any two processes which can generate a contextual query
task specification and a corresponding instance of grounded LTL task specification from a natural language task specification. These serve as the inputs to
the CQ-LTL algorithm which outputs templated LTL. (b) The evaluation pipeline only requires the process for generating contextual query task specifications
from a natural language task specification, and outputs grounded LTL by evaluating the templated LTL with the contextual query task specification. The
instance of grounded LTL can subsequently be used for planning. (c) High level example indicating the transition from an instance of grounded LTL to
lifted LTL, and then association of contextual query parameters with propositional function parameters in the lifted LTL to achieve templated LTL. Finally,
for evaluation, the templated LTL is evaluated according to a contextual query task specification to generate grounded LTL.

specifications couple task parameters with a task description,
and can be represented in multiple ways. Our approach uses
contextual queries as an intermediate, functional represen-
tation of the set of task specifications belonging to a task
class. A contextual query is a human interpretable func-
tion signature f(x, y, z, ...) that is representative of a task
specification, where f is a human interpretable description
corresponding with a task class, such as “pick up objects”
and (x, y, z, ...) are human interpretable ordered parameters
of the task class. Since contextual queries represent task
classes, we can associate templated LTL with a contextual
query, much like a function body can be defined for a
function signature. If natural language object references can
be directly mapped to the relevant parameter positions in
a contextual query associated with templated LTL, then
evaluating the contextual query results in an instance of
grounded LTL, corresponding to the task specification.

We hypothesize that associating a contextual query with
templated LTL leads to better task generalization across
objects, and that accuracy improves with grounding accu-
racy. Specifically, we hypothesize that Seq2Seq models will
succeed on navigation tasks, and will not be performant
on manipulation tasks due to atomic propositions missing

from the output vocabulary. Contextual queries associated
with templated LTL alleviate this issue by accepting out-of-
vocabulary objects and outputting the corresponding out-of-
vocabulary atomic propositions. Thus, we expect contextual
queries with templated LTL to succeed on both navigation
and manipulation task specifications.

A. Task Specifications and Task Classes

A single task can be specified using various equivalent
representations. A task specification is way to describe or
represent a particular task. A task class is a collection of tasks
which can be grouped together according to some property.

Definition 1: A task specification τ = (T, P,R) is a
tuple of a task descriptor T , set of values P that specify
the parameterized task, and representation operator R that
operates on (T, P) to output a representation of the task
specification.

Definition 2: A task class T is a set of all task specifi-
cations τ that share equivalent task descriptors T . Different
representations of the same task specification belong to the
same task class.

Natural language is frequently used to specify tasks:
open the refrigerator and open the garage are both task

specifications which belong to the same task class, whereas
pick up a red apple is a task specification that belongs to a
different task class. A task specified in natural language has
an equivalent representation in LTL, as well as an equivalent
representation as a contextual query.

B. Contextual Queries

Definition 3: A contextual query C is the functional rep-
resentation of a task class T = {(Ti, Pi,R) : ∀i, Ti =
T, |Pi| = N} for a constant N ∈ N and task descriptor
T . Let TF be the subset of T where representation R is
a functional representation F . Let TR′ be the subset of T
where representation R is the representation R′. Then C
also is a representation transform C : TF → TR′ , such that
C(T, P, F) = T (∗P) = (T, P,R′), where T : (∪iPi)

N →
TR′ , and ∗P is a N−tuple that represents a specific ordering
of the elements of P .

In our model, we introduce CQ-LTL, which is a type
of contextual query that transforms functional task speci-
fications to LTL task specifications. The task descriptor T
is a human-specified function signature T (·), which is a
human interpretable description of the task class, and can be
considered to be a label for the task class. The parameters of
the function are ordered, and correspond to the parameters of
the task class. Because contextual queries are a representation
of a task class, equivalent representations can be associated
with the task class to complete the mapping. In our approach,
we associate lifted LTL with the contextual query, where
lifted LTL is the alternative representation of the task class.

C. Lifted LTL and Templated LTL

Our approach takes in instances of grounded LTL, which
are examples of grounded LTL task specifications consist-
ing of atomic propositions that ground to objects in the
environment. Given an instance of grounded LTL and a set
of propositional functions, we can derive lifted LTL, which
is LTL consisting of propositional functions. Propositional
functions themselves are functions of objects, so lifted LTL
is not resolvable until arguments are provided, as shown in
Fig. 1.

In order to provide values for the parameters in the lifted
LTL, we associate parameters in the contextual query with
parameters in the lifted LTL. This parameter association
allows lifted LTL to become templated LTL. Thus, when
the corresponding contextual query is evaluated with a new
set of arguments, these values are propagated according to
the mapping to the parameters in the propositional functions.
Evaluating the propositional functions on objects generates
atomic propositions. Thus templated LTL can be used to
generate grounded LTL via contextual query evaluation.

D. CQ-LTL Algorithm

We present a simple algorithm to derive templated LTL
from a pair of equivalent task specifications. The algorithm
takes two inputs: (1) a contextual query task specification,
and (2) the corresponding instance of grounded LTL task
specification. We assume that the environment is represented

by an underlying OO-MDP that has a set of propositional
functions defined over the set of objects in the OO-MDP.
We also assume a grounding function is available that maps
from the domain of the contextual query to the objects of
the OO-MDP.

The algorithm has 2 steps. First, the instance of grounded
LTL is converted to lifted LTL by substituting the atomic
propositions for the corresponding propositional functions.
Second, the mapping from contextual query parameters to
propositional function parameters is determined by matching
the groundings of the contextual query task specification
parameters to the propositional function parameters. The
process is illustrated in Fig. 1. To obtain valid parameter
mappings, the grounded inputs must be distinct from one
another, otherwise it is possible for two or more contextual
query parameters to map to the same propositional function
parameter, resulting in an invalid parameter mapping.

V. EXPERIMENTS

We implemented various pipelines to demonstrate the
utility of templated LTL, evaluating how well it generalizes
on seen and unseen objects, and compared it against the
CopyNet model that was part of our pipeline. We then
provided a demonstration of the evaluation pipeline from
natural language to planning under different environments
to illustrate how templated LTL can generalize between
domains across objects.

A. Experimental Domains

We demonstrated planning on navigation tasks and object
manipulation tasks in environments implemented as OO-
MDPs domains. The Toy domain is a taxi-like discrete state-
space domain that supports both object manipulation and
navigation tasks, and represents a robot gripper moving
around to pickup objects of different shapes and colors,
placing them into a box which can be re-positioned by the
gripper. Grid cells in the environment are represented by
squares with a color attribute. The size of the state space in
the Toy environment is upper bounded by N(N+1)(N+2)k,
where N is the number of grid cells, and k is the number
of toys in the environment.

1) Navigation: We considered three navigation LTL task
structures representing unconstrained waypoint navigation:

F(φ) | F(φ ∧ F(ψ)) | F(φ ∧ F(ψ ∧ F(ϕ))).

φ, ψ, and ϕ were drawn from atomic propositions repre-
senting the agent at particular locations, using the existing
natural language vocabulary for locations.

2) Manipulation: We considered four manipulation LTL
task structures—move to (task for robot to move to the men-
tioned object), pickup (task to pickup the mentioned object),
pickup colored (task to pickup an object with mentioned
attributes), and ship (task for putting the mentioned object in
a container and moving the container to the desired location).
For move to and pickup, the F(φ) LTL representation was
used, with φ representing whether the agent is at the object
location in the move to case, and whether the agent holds the

TABLE I
DATASET, TRAINING, AND EVALUATION DETAILS

Manipulation Navigation
Seen, S |S| = 4650, |VS | = 360 |S| = 8007, |VS | = 42

Unseen, U |U | = 1764, |VU | = 340 |U | = 378, |VU | = 23
Training T ⊂ S, |T | = 1920 T ⊂ S, |T | = 840

Validation 10% of T 10% of T
Task move to (150, 36) navigate one (51, 18)

Classes pickup (450, 108) navigate two (612, 72)
(|TS |, |TU |) pickup colored (2700, 648) navigate three (7344, 288)

ship (1350, 972)

CQ-CopyNet CQ-CopyNet+POS CQ-LTL-CopyNet CQ-LTL-CopyNet+POS LTL-CopyNet

0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Manipulation (Seen)

0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
Manipulation (Unseen)

0 50 100 150
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Navigation (Seen)

0 50 100 150
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Navigation (Unseen)

Fig. 2. Overall language model task specification accuracy for manipulation
and navigation tasks using seen and unseen vocabulary. Top Row: Manipu-
lation task accuracy. Bottom Row: Navigation task accuracy. Left Column:
Tasks specified with seen vocabulary. Right Column: Tasks specified with
unseen vocabulary. Legend: Models outputting contextual queries are dotted
with circles, and models outputting LTL are solid with diamonds.

object in the pickup case. For pickup colored, F(φ∧ψ) was
used, with φ representing the agent holding the object, and
ψ representing if the object possessed a matching attribute
value. Finally, for ship, F(φ ∧ F(φ ∧ ψ)) was used, with φ
representing if the object was in a specific container, and ψ
representing if the container was in the desired location.

B. Training Pipelines

In our experiments, we refer to models that output con-
textual queries as “CQ-CopyNet” and “CQ-CopyNet+POS”,
and models that output grounded LTL as “LTL-CopyNet”.

CQ-CopyNet + LTL-CopyNet We jointly trained two
CopyNet models, one translating from natural language to
contextual queries; the other translating from natural lan-
guage to LTL. For each domain, we created “seen” and
“unseen” datasets of examples S and U , generated from
templates populated with objects, attributes, and locations
from vocabularies VS and VU . The models were jointly
trained on T ⊂ S, and evaluated separately for accuracy on S
and U . Only positive examples from joint model evaluations
on S were used to derive templated LTL via the CQ-LTL
algorithm. Table I shows the manipulation and navigation
task class distributions in S and U .

CQ-CopyNet+POS + LTL-CopyNet For evaluation, we
used part-of-speech (POS) tagging with spaCy along with
CopyNet to simultaneously extract noun, adjective, and
proper noun contextual query parameters, and to perform task
classification of the input natural language task specification.
We assessed accuracy overall and across manipulation and
navigation task classes in S and U to assess domain trans-
fer and generalization over seen and unseen references to
objects.

C. Learning Templated LTL via CQ-LTL

In order to generate the inputs for the CQ-LTL algorithm,
we jointly evaluated the CQ-CopyNet with LTL-CopyNet
models, as well as the CQ-CopyNet+POS with LTL-CopyNet
models to obtain pairs of contextual query and LTL task
specifications. Only jointly accurate translations of the natu-
ral language task specifications were used to derive templated
LTL for task classes. The set of jointly accurate translations
was grouped by class to obtain task class accuracy and
confirm presence of positive examples in each task class.
Natural language examples with unique contextual query
parameters and corresponding LTL were identified in each
task class to pass on to the CQ-LTL algorithm to obtain the
templated LTL.

The LTL task specifications were transformed into their
syntax tree representations, leaf nodes corresponding to the
atomic propositions, and non-leaf nodes corresponding to
Boolean or temporal logic operators. Each atomic proposi-
tion was substituted according to the propositional function
and possible objects used to generate the atomic proposition.
Next, the association between the contextual query parame-
ters and the propositional function parameters was mapped
by parameter matching. The resulting templated LTL for each
task class was saved for evaluation on the same S and U
datasets as the LTL-CopyNet model.

D. Evaluation

We refer to our templated LTL models as “CQ-LTL-
CopyNet” and “CQ-LTL-CopyNet+POS”, depending on
whether POS was enabled. We evaluated the ability for
CQ-LTL-CopyNet and CQ-LTL-CopyNet+POS to generate
correct instances of grounded LTL on navigation and ma-
nipulation natural language queries in S and U by using
the contextual query outputs from CQ-CopyNet and CQ-
CopyNet+POS. We compared the LTL output by our models
to the outputs from LTL-CopyNet.

VI. RESULTS

Fig. 2 shows overall accuracy of the models on the S
and U datasets for manipulation and navigation tasks. Fig.
3 shows the accuracy for generating correct grounded LTL
across task classes specified in S and U . For navigation
tasks, where atomic propositions were represented directly
by natural language vocabulary, LTL-CopyNet was able to
generalize successfully due to the copying mechanism of
CopyNet. Our templated LTL models were also able to
successfully generate the correct grounded LTL. In the case

S-CQ-LTL-CopyNet S-CQ-LTL-CopyNet+POS S-LTL-CopyNet U-CQ-LTL-CopyNet U-CQ-LTL-CopyNet+POS U-LTL-CopyNet

0 50 100 150
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

move to

0 50 100 150
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

pickup

0 50 100 150
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

pickup colored

0 50 100 150
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

ship

0 50 100 150
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

navigate one

0 50 100 150
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

navigate two

0 50 100 150
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

navigate three

Fig. 3. Model accuracy on generating correct LTL task specifications broken down by task class, specified by seen vocabulary (model prefix S-) and
unseen vocabulary (model prefix U -). Accuracies for tasks from S are plotted with dotted lines. Accuracies for tasks from U are plotted with solid lines.

TABLE II
SAMPLE TASK PLANNING TIMES WITH VALUE ITERATION ON TOYS

Natural Language Task CQ Planning Toy Size
Put the cylinder in the box, ship 6m3.72s 4x1
then put the box in the bedroom
Pickup the sphere pickup 1m41.185s 4x1

of manipulation tasks, the results confirm our hypothesis
that LTL-CopyNet is unable to generate out-of-vocabulary
words to use as atomic propositions in the output LTL.
This is especially apparent on the unseen manipulation
dataset U . In comparison, our CQ-LTL-CopyNet and CQ-
LTL-CopyNet+POS models were able to achieve above 60%
accuracy on the manipulation tasks from U .

The task class breakdown in Fig. 3 shows which task
classes the models had difficulty generating correct grounded
LTL. On the seen dataset, the ship manipulation task was
the source of the majority of the failures, despite comprising
roughly 30% of S at 1350 out of 4650 examples. In the
unseen dataset, our templated LTL models primarily failed
on the pickup colored tasks, which can be attributed to
the failure cases in the CQ-CopyNet and CQ-CopyNet+POS
models.

Finally, the output grounded LTL was forwarded to a value
iteration planning module in the simulated Toys environment.
Sample planning times for which the output grounded LTL
was correct are shown in Table II in order to demonstrate
the full pipeline.

VII. DISCUSSION

We investigated cases in which the trained models failed
to produce to the correct output. Our observed failure cases
resulted from generating incorrect LTL atomic propositions
or from generating incorrect intermediate contextual query
inputs. We did not observe any failures attributed to incorrect
LTL structure or incorrect contextual query structure. In
fact, both CQ-CopyNet and LTL-CopyNet always output
the correct structures for contextual queries and LTL during
evaluation after 150 epochs of training.

In considering the generation of incorrect atomic propo-
sitions, the manipulation and navigation task specifications
were expressed with different types of atomic propositions.
For navigation, the atomic propositions were drawn solely
from natural language references to objects and locations.
Thus, as long as the models could predict the correct natural
language references to use for the atomic propositions, the
output LTL would be correct. However, for manipulation

tasks, the atomic propositions were generated as combina-
tions of natural language references to objects and their
attributes. The LTL-CopyNet model would not be able to
generate atomic propositions lying outside of the vocabulary
or input sentences.

CQ-LTL-CopyNet and CQ-LTL-CopyNet+POS suffered
from the failure modes of (1) incorrect contextual query
parameters, and (2) language grounding errors. Incorrectly
supplied contextual query parameters stem from the perfor-
mance of CQ-CopyNet and from the spaCy POS tagger.
While CQ-CopyNet always returned the correct task classi-
fication, it sometimes failed to return the correct parameters,
especially on unseen data, indicating an inaccuracy in the
copying mechanism. These incorrect parameters were alle-
viated by POS tagging. However, the spaCy POS tagging
models sometimes misclassified verbs, nouns, and adjectives,
resulting in the failure cases where an incorrect number
of contextual query parameters was specified. For instance,
sometimes “pickup” was misclassified as a noun when it was
used as a verb. Finally, even when correct parameters were
supplied, language grounding errors could still occur. In par-
ticular, the seen dataset contained the homonyms “orange”
and “bag”, where “orange” was simultaneously both a color
and a fruit, and “bag” was simultaneously a container for
objects as well as a receptacle for other containers. If these
terms were provided, the ambiguous groundings could result
in incompletely populated grounded LTL. This issue could be
ameliorated by having the grounding function also consider
part-of-speech as part of the grounding process.

VIII. CONCLUSION

We have introduced an intermediate task specification
representation combining contextual queries with templated
LTL, and provided an algorithm for associating a contextual
query with templated LTL from single positive examples.
Our experiments in a simulated OO-MDP environment indi-
cate that mapping from natural language to our intermediate
representation yields improved generalization over novel
objects compared to state-of-the-art NL to LTL Seq2Seq
models for cases where the atomic propositions cannot be
expressed by existing natural language vocabulary. We also
discuss errors common in generating correct grounded LTL.
Finally, we provided example planning demonstrations with
pipeline on example manipulation and navigation tasks.

REFERENCES

[1] A. Pnueli, “The temporal logic of programs,” in 18th Annual Sym-
posium on Foundations of Computer Science (sfcs 1977), 1977, pp.
46–57.

[2] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia,
“A learning based approach to control synthesis of markov decision
processes for linear temporal logic specifications,” in 53rd IEEE
Conference on Decision and Control, 2014, pp. 1091–1096.

[3] J. Fu and U. Topcu, “Probably approximately correct MDP learning
and control with temporal logic constraints,” in Robotics: Science and
Systems X, University of California, Berkeley, USA, July 12-16, 2014,
D. Fox, L. E. Kavraki, and H. Kurniawati, Eds., 2014. [Online].
Available: http://www.roboticsproceedings.org/rss10/p39.html

[4] Y. Oh, R. Patel, T. Nguyen, B. Huang, E. Pavlick, and
S. Tellex, “Planning with state abstractions for non-markovian task
specifications,” in Robotics: Science and Systems XV, University
of Freiburg, Freiburg im Breisgau, Germany, June 22-26, 2019,
A. Bicchi, H. Kress-Gazit, and S. Hutchinson, Eds., 2019. [Online].
Available: https://doi.org/10.15607/RSS.2019.XV.059

[5] A. Camacho, R. T. Icarte, T. Q. Klassen, R. Valenzano, and S. A.
McIlraith, “Ltl and beyond: Formal languages for reward function
specification in reinforcement learning,” in IJCAI, 2019.

[6] M. Berg, D. Bayazit, R. Mathew, A. Rotter-Aboyoun, E. Pavlick,
and S. Tellex, “Grounding language to landmarks in arbitrary
outdoor environments,” in 2020 IEEE International Conference on
Robotics and Automation, ICRA 2020, Paris, France, May 31 -
August 31, 2020. IEEE, 2020, pp. 208–215. [Online]. Available:
https://doi.org/10.1109/ICRA40945.2020.9197068

[7] N. Gopalan, D. Arumugam, L. L. S. Wong, and S. Tellex,
“Sequence-to-sequence language grounding of non-markovian task
specifications,” in Robotics: Science and Systems XIV, Carnegie
Mellon University, Pittsburgh, Pennsylvania, USA, June 26-30, 2018,
H. Kress-Gazit, S. S. Srinivasa, T. Howard, and N. Atanasov, Eds.,
2018. [Online]. Available: http://www.roboticsproceedings.org/rss14/
p67.html

[8] N. Danas, T. Nelson, C. Finkelstein, S. Krishnamurthi, and
S. Tellex, “Formal dialogue model for language grounding
error recovery,” 2019. [Online]. Available: https://h2r.cs.brown.
edu/wp-content/uploads/danas19errorrec.pdf

[9] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, Eds., 2014, pp. 3104–3112.
[Online]. Available: https://proceedings.neurips.cc/paper/2014/hash/
a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

[10] J. Gu, Z. Lu, H. Li, and V. O. K. Li, “Incorporating copying
mechanism in sequence-to-sequence learning,” in Proceedings of
the 54th Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume
1: Long Papers. The Association for Computer Linguistics, 2016.
[Online]. Available: https://doi.org/10.18653/v1/p16-1154

[11] C. Diuk, A. Cohen, and M. Littman, “An object-oriented representation
for efficient reinforcement learning,” in ICML ’08, 2008.

[12] J. R. Büchi, “On a decision method in restricted second order
arithmetic,” 1990.

[13] P. Vogt, A. C. Loula, R. Gudwin, and J. Queiroz, “Language evolution
and robotics: Issues on symbol grounding and language acquisition,”
2006.

[14] J. MacGlashan, M. Babes-Vroman, M. desJardins, M. L. Littman,
S. Muresan, S. Squire, S. Tellex, D. Arumugam, and L. Yang,
“Grounding english commands to reward functions,” in Robotics:
Science and Systems XI, Sapienza University of Rome, Rome, Italy,
July 13-17, 2015, L. E. Kavraki, D. Hsu, and J. Buchli, Eds.,
2015. [Online]. Available: http://www.roboticsproceedings.org/rss11/
p18.html

[15] R. Patel, E. Pavlick, and S. Tellex, “Grounding language to non-
markovian tasks with no supervision of task specifications,” in
Robotics: Science and Systems, 2020.

[16] G. Wang, C. Trimbach, J. K. Lee, M. K. Ho, and M. L.
Littman, “Teaching a robot tasks of arbitrary complexity via
human feedback,” in HRI ’20: ACM/IEEE International Conference
on Human-Robot Interaction, Cambridge, United Kingdom, March
23-26, 2020, T. Belpaeme, J. Young, H. Gunes, and L. D.

Riek, Eds. ACM, 2020, pp. 649–657. [Online]. Available:
https://doi.org/10.1145/3319502.3374824

