Constructing Symbolic Representations for High-Level Planning

George Konidaris, Leslie Pack Kaelbling and Tomas Lozano-Perez
MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge MA 02139 USA
{gdk, Ipk, tlp} @csail.mit.edu

Abstract

We consider the problem of constructing a symbolic
description of a continuous, low-level environment for
use in planning. We show that symbols that can repre-
sent the preconditions and effects of an agent’s actions
are both necessary and sufficient for high-level plan-
ning. This eliminates the symbol design problem when
a representation must be constructed in advance, and
in principle enables an agent to autonomously learn its
own symbolic representations. The resulting representa-
tion can be converted into PDDL, a canonical high-level
planning representation that enables very fast planning.

Introduction

A core challenge of artificial intelligence is creating intelli-
gent agents that can perform high-level learning and plan-
ning, while ultimately performing control using low-level
sensors and actuators. Hierarchical reinforcement learning
approaches (Barto and Mahadevan 2003) attempt to ad-
dress this problem by providing a framework for learning
and planning using temporally abstract high-level actions.
One motivation behind such approaches is that an agent
that has learned a set of high-level actions should be able
to plan using them to quickly solve new problems, without
further learning. However, planning directly in such high-
dimensional, continuous state spaces remains difficult.

By contrast, high-level planning techniques (Ghallab,
Nau, and Traverso 2004) are able to solve very large prob-
lems in reasonable time. These techniques perform planning
using pre-specified symbolic state descriptors, and opera-
tors that describe the effects of actions on those descrip-
tors. Although these methods are usually used for planning
in discrete state spaces, they have been combined with low-
level motion planners or closed-loop controllers to construct
robot systems that combine high-level planning with low-
level control (Nilsson 1984; Malcolm and Smithers 1990;
Cambon, Alami, and Gravot 2009; Choi and Amir 2009;
Dornhege et al. 2009; Wolfe, Marthi, and Russell 2010;
Kaelbling and Lozano-Pérez 2011). Here, a symbolic state
at the high level refers to (and abstracts over) an infinite set
of low-level states. However, in all of these cases the robot’s
symbolic representation was specified by its designers.

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We consider the problem of constructing a symbolic rep-
resentation suitable for evaluating plans composed of se-
quences of actions in a continuous, low-level environment.
We can create such a representation by reasoning about po-
tential propositional symbols via the sets of states they ref-
erence. We show that propositional symbols describing low-
level representations of the preconditions and effects of each
action are both sufficient and necessary for high-level plan-
ning, and discuss two classes of actions for which the ap-
propriate symbols can be concisely described. We show that
these representations can be used as a symbol algebra suit-
able for high-level planning, and describe a method for con-
verting the resulting representation into PDDL (McDermott
et al. 1998), a canonical high-level planning representation.

Our primary contribution is establishing a close relation-
ship between an agent’s actions and the symbols required to
plan to use them: the agent’s environment and actions com-
pletely determine the symbolic representation required for
planning. This removes a critical design problem when con-
structing agents that combine high-level planning with low-
level control; moreover, it in principle enables an agent to
construct its own symbolic representation through learning.

Background and Setting
Semi-Markov Decision Processes

We assume that the low-level sensor and actuator space of
the agent can be described as a fully observable, continuous-
state semi-Markov decision process (SMDP), described by
atuple M = (S,0,R,P,~), where S C R" is the n-
dimensional continuous state space; O(s) returns a finite
set of temporally extended actions, or options (Sutton, Pre-
cup, and Singh 1999), available in state s € S; R(s', t|s, 0)
is the reward received when executing action o € O(s) at
state s € S, and arriving in state s’ € S after ¢ time steps;
P(s',t|s,0) is a PDF describing the probability of arriving
in state s’ € S, ¢ time steps after executing action o € O(s)
in state s € S; and v € (0, 1] is a discount factor.

An option o consists of three components: an option pol-
icy, T,, which is executed when the option is invoked; an
initiation set, I, = {s|o € O(s)}, which describes the states
in which the option may be executed; and a termination con-
dition, B,(s) — [0,1], which describes the probability that
an option will terminate upon reaching state s. The combi-

nation of reward model, R(s’,t|s,0), and transition model,
P(s',t|s, 0), for an option o is known as an option model.

An agent that possesses option models for all of its op-
tions is capable of sample-based planning (Sutton, Precup,
and Singh 1999; Kocsis and Szepesvari 2006), although do-
ing so in large, continuous state spaces is very difficult.

High-Level Planning

High-level planning operates using symbolic states and op-
erators. The simplest formalism is the set-theoretic repre-
sentation (Ghallab, Nau, and Traverso 2004). Here, a plan-
ning domain is described by a set of propositions P =
{p1,...,pn} and a set of operators A = {ay,...,am}. In
a continuous problem, each proposition holds in an infinite
number of low-level states; a high-level state is obtained by
assigning a truth value to every p; € P.

Each operator «y; is described by a tuple «; =
(precond,, effect;", effect;), where precond; C 7P lists all
propositions that must be true in a state for the operator to
be applicable at that state, and positive and negative effects,
effect;r C P and effect; C P, list the propositions set to
true or false, respectively, as a result of applying the oper-
ator. All other propositions retain their values. A planning
problem is obtained by augmenting the domain description
with a start state, so, and a set of goal states, .S,.

A more common formulation is the classical representa-
tion (Ghallab, Nau, and Traverso 2004), which uses a rela-
tional representation to more compactly describe the plan-
ning domain. For simplicity, we adopt the set-theoretic rep-
resentation and leave parametrizing it to future work.

Problems in both formulations are typically described us-
ing the Planning and Domain Definition Language or PDDL
(McDermott et al. 1998), which serves as the input format
for most general-purpose planners. Although such methods
have been widely applied—even in continuous problems—
with few exceptions the set of propositions and their seman-
tics must be supplied by a human designer.

Symbols and Plans

Given an SMDP, our goal is to build an abstract representa-
tion of the task for use in high-level planning. In this section
we define a propositional symbol as a zest that is true in some
set of states. We then define a plan as a sequence of option
executions from a set of start states, and the plan space as
the set of all possible plans. This allows us to reason about
the symbols required to evaluate the feasibility of any plan
in the plan space. We begin with a working definition of the
notion of a symbol:

Definition 1. A propositional symbol oz is the name asso-
ciated with a test Tz, and the corresponding set of states
Z={s €S|1z(s) = 1}.

Symbol o7 is a name for a proposition, specified by both a
test (or classifier) 7 defined over the state space, and an as-
sociated set Z C S for which the test returns true. The set of
states Z is referred to as the symbol’s grounding, and spec-
ifies the symbol’s semantics. A symbol’s grounding can be
represented in two different ways: an extensional represen-
tation that lists the states in which the proposition holds—

impossible in our case, since our low-level state space is
continuous—and an intensional representation, a classifier
that determines membership in that set of states. The classi-
fier allows us to express the set of states compactly, and also
to learn a representation of them (if necessary). These rep-
resentations both refer to the same set of states (and there-
fore are in some sense equivalent) but we can perform task-
based planning by manipulating and reasoning about inten-
sional grounding representations—we compute the results
of logical operations on symbols by computing the resulting
grounded classifier. This process is depicted in Figure 1.

symbol 01 N 02 = 03

@ -0

Figure 1: A logical operation on two symbols, along with
the corresponding grounding sets.

grounding
classifier

We therefore require the grounding classifiers to support
the ability to efficiently compute the following operations:
1) the union of two classifiers (equivalently, the or of two
symbols); 2) the intersection of two classifiers (equivalently,
the and of two symbols); 3) the complement of a classi-
fier (equivalently, the not of a symbol); 4) whether or not
a classifier refers to the empty set. (This allows us evalu-
ate the subset operator: A C B iff -A N B is empty; con-
sequently, we can test implication.) The first three of these
operations take classifiers as inputs and return a classifier
representing the result of a logical operation. This defines
a symbol algebra (a concrete boolean algebra) that allows
us to construct classifiers representing the results of boolean
operations applied to our symbols. Classifiers that support
these operations include, for example, decision trees (which
we use throughout this paper for ease of visualization) and
boolean ensembles of linear classifiers.

We next define the plan space of a domain. For simplicity,
we aim to find a sequence of actions guaranteed to reach a
goal state, without reference to cost.

Definition 2. A plan p = {o1,...,0p,} from a state set
Z C S is a sequence of options 0; € O, 1 < i < p,,
to be executed from some state in Z. A plan is feasible
when the probability of being able to execute it is 1, i.e.,
BS = {s1,..,8;} such that sy € Z, o; € O(s;) and
P(s;41]8i,0:) > 0,Vi < j, and 0; ¢ O(s;) for any j < p,.
Definition 3. The plan space for an SMDP is the set of all
tuples (Z, p), where Z C S is a set of states (equivalently, a
start symbol) in the SMDP, and p is a plan.

For convenience, we treat the agent’s goal set g—itself
a propositional symbol—as an option o, with I, = g,
B4(s) =1,Vs, and a null policy.
Definition 4. A plan tuple is satisficing for goal g if it is
feasible, and its final action is goal option og.

The role of a symbolic representation is to determine
whether any given plan tuple (Z, p) is satisficing for goal

g, which we can achieve by testing whether it is feasible
(since then determining whether it is satisficing follows triv-
ially). In the following section, we define a set of proposi-
tional symbols (via their groundings) and show that they are
sufficient to test feasibility in any SMDP.

Symbols for Propositional Planning

To test the feasibility of a plan, we begin with a set of possi-
ble start states, and repeatedly compute the set of states that
can be reached by each option, checking in turn that the re-
sulting set is a subset of the initiation set of the following
option. We must therefore construct abstract representations
for the initiation set of each option, and that enable us to
compute the set of states an agent may find itself in as a
result of executing an option from some start set of states.
We begin by defining a class of symbols that represent the
initiation set of an option:

Definition S. The precondition of option o is the symbol re-
ferring to its initiation set: Pre(o) = o7,

We now define a symbolic operator that computes the con-
sequences of taking an action in a set of states:

Definition 6. Given an option o and a set of states X C S,
we define the image of o from X as: Im(X,0) = {s'|3s €
X, P(s'|s,0) > 0}.

The image operator Im(X, 0) computes the set of states
that might result from executing o from some state in X.

Theorem 1. Given an SMDP, the ability to represent the
preconditions of each option and to compute the image op-
erator is sufficient for determining whether any plan tuple
(Z,p) is feasible.

Proof. Consider an arbitrary plan tuple (Z,p), with plan
length n. We set zp = Z and repeatedly compute z;,; =
Im(z;,p;), for j € {1,...,n}. The plan tuple is feasible iff
2 QPre(piH),W S {O,...,n— 1} 0

Since the feasibility test in the above proof is bicondi-
tional, any other feasibility test must express exactly those
conditions for each pair of successive options in a plan. In
some SMDPs, we may be able to execute a different test that
evaluates to the same value everywhere (e.g., if every option
flips a set of bits indicating which options can be run next),
but we can employ an adversarial argument to construct an
SMDP in which any other test is incorrect. Representing the
image operator and precondition sets are therefore also nec-
essary for abstract planning. We call the symbols required to
name an option’s initiation set and express its image opera-
tor that option’s characterizing symbols.

The ability to perform symbolic planning thus hinges on
the ability to symbolically represent the image operator.
However, doing this for an arbitrary option can be arbitrar-
ily hard. Consider an option that maps each state in its ini-
tiation set to a single (but arbitrary and unique) state in .S.
In this case we can do no better than expressing Im(Z, 0) as
a union of uncountably infinitely many singleton symbols.
Fortunately, however, we can concisely represent the image
operator for at least two classes of options in common use.

Subgoal Options

One common type of option—especially prevalent in re-
search on skill discovery methods—is the subgoal option
(Precup 2000). Such an option reaches a set of states (re-
ferred to as its subgoal) before terminating, and the state
it terminates in can be considered independent of the state
from which it is executed. This results in a particularly sim-
ple way to express the image operator.

Definition 7. The effect set of subgoal option o is the sym-
bol representing the set of all states that an agent can pos-
sibly find itself in after executing o: Eff(o) = {s'|3s €
S,t, P(s',t|s,0) > 0}.

For a subgoal option, Im(Z, 0) = Eff(0),VZ C S. This is
a strong condition, but we may in practice be able to treat
many options as subgoal options even when they do not
strictly meet it. This greatly simplifies our representational
requirements at the cost of artificially enlarging the image
(which is a subset of Eff(0) for any given starting set).

A common generalization of a subgoal option is the par-
titioned subgoal option. Here, the option’s initiation set can
be partitioned into two or more subsets, such that the option
behaves as a subgoal option from each subset. For example,
an option that we might describe as walk through the door
you are facing; if there are a small number of such doors,
then the agent can be considered to execute a separate sub-
goal option when standing in front of each. In such cases, we
must explicitly represent each partition of the initiation set
separately; the image operator is then the union of the effect
sets of each applicable partitioned option.

Unfortunately, subgoal options severely restrict the poten-
tial goals an agent may plan for: all feasible goals must be
a superset of one of the effect sets. However, they do lead
to a particularly simple planning mechanism. Since a subset
test between the precondition of one option and the effects
set of another is the only type of expression that need ever
be evaluated, we can test all such subsets in time O(n?) for
O(n) characterizing sets, and build a directed plan graph G
with a vertex for each characterizing set, and an edge present
between vertices ¢ and j iff Eff(o;) C Pre(o;). A plan tuple
(p, Z) where p = {01, ..., 0p, } is feasible iff Z C I,,, and a
path from o; to o, exists in G.

For an option to be useful in a plan graph, its effects
set should form a subset of the initiation set of any op-
tions the agent may wish to execute after it. The options
should therefore ideally have been constructed so that their
termination conditions lie inside the initiation sets for po-
tential successor options. This is the principle underlying
pre-image backchaining (Lozano-Perez, Mason, and Taylor
1984; Burridge, Rizzi, and Koditschek 1999), the LQR-Tree
(Tedrake 2009) feedback motion planner, and the skill chain-
ing (Konidaris and Barto 2009b) skill acquisition method.

Abstract Subgoal Options

A more general type of option—implicitly assumed by
all STRIPS-style planners—is the abstract subgoal option,
where execution sets some of the variables in the low-level
state vector to a particular set of values, and leaves others
unchanged. (As above, we may generalize abstract subgoal

options to partitioned abstract subgoal options.) The sub-
goal is said to be abstract because it is satisfied for any value
of the unchanged variables. For example, an option to grasp
an object might terminate when that grasp is achieved; the
room the robot is in and the position of its other hand are
irrelevant and unaffected.

Without loss of generality, we can write the low-level state
vector s € S given o as s = [a, b, where a is the part of the
vector that changes when executing o (0’s mask), and b is the
remainder. We now define the following operator:

Definition 8. Given an option o and a set of states Z C
S, we define the projection of Z with respect to o (denoted
Project(Z,0)) as: Project(Z,0) = {[a,b]|3d’,[a’,b] € Z}.

Projection expands the set of states named by Z by re-
moving the restrictions on the value of the changeable por-
tion of the state descriptor. This operator cannot be ex-
pressed using set operations, and must instead be obtained
by directly altering the relevant classifier.

Eff(o)

y
Qj \ Project(Z,0)
Z
% .\%

X X
Abstract
Subgoal

Im(Z,0)

Figure 2: Im(Z, o) for abstract subgoal option o can be ex-
pressed as the intersection of the projection operator and o’s
effects set. Here, o has a subgoal in z, leaving y unchanged.

The image operator for an abstract subgoal option can be
computed as Im(Z, 0) = Project(Z, 0) N Eff(0) (see Figure
2). We can thus plan using only the precondition and effects
symbols for each option.

Constructing a PDDL Domain Description

So far we have described a system where planning is per-
formed using symbol algebra operations over grounding
classifiers. We may wish to go even further, and construct
a symbolic representation that allows us to plan without ref-
erence to any grounding representations at all.

A reasonable target is converting a symbol algebra into
a set-theoretic domain specification expressed using PDDL.
This results in a once-off conversion cost, after which the
complexity of planning is no worse than ordinary high-level
planning, and is independent of the low-level SMDP.

A set-theoretic domain specification uses a set of propo-
sitional symbols P = {p1, ..., p,} (each with an associated
grounding classifier G(p;)), and a state P is obtained by as-
signing a truth value P.(4) to every p; € P. Each state P;
must map to some grounded set of states; we denote that set
of states by G(P;). A scheme for representing the domain
using STRIPS-like operators and propositions must commit
to a method for determining the grounding for any given P,
so that we can reason about the correctness of symbolic con-
structions, even though that grounding is never used during

planning. We use the following grounding scheme:
G(Pr) = NierG(pi), 1 = {i[P:(i) = 1}.

The grounding classifier of state P, is the intersection of the
grounding classifiers corresponding to the propositions true
in that state. One can consider the propositions set to true
as “on”, in the sense that they are included in the grounding
intersection, and those set to false as “off”, and not included.

The key property of a deterministic high-level domain de-
scription is that the operator descriptions and propositional
symbols are sufficient for planning—we can perform plan-
ning using only the truth value of the propositional sym-
bols, without reference to their grounding classifiers. This
requires us to determine whether or not an option o; can be
executed at Py, and if so to determine a successor state Py 1,
solely by examining the elements of P;.

Our method is based on the properties of abstract subgoal
options: that only a subset of state variables are affected by
executing each option; that the resulting effects set is inter-
sected with the previous set of states after the those variables
have been projected out; and that the remaining state vari-
ables are unaffected. Broadly, we identify a set of factors—
non-overlapping sets of low-level variables that could be
changed simultaneously by an option execution—and then
use the option effects sets to generate a set of symbols corre-
sponding to any reachable grounding of each set of factors.
Finally, we use this set of symbols to produce an operator
description for each option.

Defining Factors Given a low-level state representation
s = [s1, ..., Sn], we define a mapping from each low-level
state variable to the set of options capable of changing its
value: modifies(s;) = {o;|i € mask(o;),0; € O}. We next
partition s into factors, f1, ..., fm, each of which is a set of
state variables that maps to the same unique set of options.
An example of this process is shown in Figure 3.

mask(oy) 2_1 Factor State Variables Options
2
S5 fi S1, 2 01
mask(0,) S, §2 S3 01, 02
5_5 3 S4 02
Se fa S5 02, 03
mask(o3) 5_7 fs S6, ST 03

(@ (b)

Figure 3: An example 7-variable low-level state vector, with
three option masks (a). This is partitioned into 5 factors (b).

We denote the set of options modifying the variables in
factor f; as options(f;), and similarly the set of factors con-
taining state variables that are modified by option o; as
factors(oj). In a slight abuse of notation, we also denote the
factors containing variables used in the grounding classifier
for symbol o, as factors(oy).

Building the Symbol Set Executing option o; projects the
factors it changes out of the current state descriptor, which is
then intersected with its effect set Eff(o;). Future execution
of any option o; where factors(o;) N factors(o;) # 0 will

project the overlapping factors out of Eff(o;). We therefore
require a propositional symbol for each option effects set
with all combinations of factors projected out. However, we
can represent the effect of projecting out a factor compactly
if it obeys the following independence property:

Definition 9. Factor fs is independent in effect set Eff{0;) iff
Eff(o;) = Project(Eff(0;), fs) N Project(Eff{0;), factors(o;) \
fs)-

If fs is independent in Eff(o;), we can break Eff(o;)
into the two components Project(Eff(o;), fs) and
Project(Eff(o;), factors(o;) \ fs) and create a separate
proposition for each. We repeat this for each independent
factor, each time using the more general effect set we obtain
by projecting out previous independent factors.

Let Eff.(0;) denote the effect set that remains after
projecting out all independent factors from Eff(o;), and
factors,.(0;) denote the remaining factors. We will require
a separate proposition for Eff,.(o;) with each possible subset
of factors,.(0;) projected out. Therefore, we construct a vo-
cabulary P containing the following propositional symbols:

1. For each option o; and factor f, independent in Eff(o;),
create a symbol for Project(Eff(o;), factors(o;) \ fs).

2. For each set of factors f,. C factors,.(0;), create a symbol
for Project(Eff,.(0;), fr).

We discard duplicate propositions (which have the same
grounding set as an existing proposition), and propositions
which correspond to the entire state space (as these have
no effect on the grounding intersection). We now show that
these symbols are sufficient for symbolically describing a
problem by using them to construct a sound operator de-
scription for each option.

Constructing Operator Descriptions Executing operator
o0; results in the following effects:

1. All symbols for each component of Eff(o;) that depends
on a factor independent in Eff(0;), and an additional sym-
bol for Eff,.(0;) if necessary, are set to true.

2. All symbols o; C Pre(o;) such that factors(c;) C
factors(o;) are set to false.

3. All currently true symbols o; C Pre(o;), where
fi; = factors(c;) N factors(o;) # (but factors(c;) €
factors(o;), are set to false. For each such o, the symbol
Project(o;, fi;) is set to true.

Recall that we compute the image of an abstract subgoal
option o; from an existing set of states Z using the equation
Im(Z, 0;) = Project(Z, 0;) N Eff(0;). The first effect in the
above list corresponds to the second component of the im-
age equation, and can be considered the primary effect of the
option. The remaining two types of effects model the pro-
jection component of the image equation. The second type
of effects removes propositions defined entirely using vari-
ables within mask(o;), and whose effects are thus eliminated
by the projection operator. The third effects type models the
side-effects of the option, where an existing classifier has
the variables affected by the projection (those in mask(o;))
projected out. This is depicted in Figure 4.

At time ¢, the following symbols
are true:

£
{ %
f3 04

Ts|Jos

{
{E

01, 02, and g3.

After executing the option, the

02 following symbols are true:

03, 04, 05, and067
O3

where g = Proj(o1, f2). o1 and
o2 are no longer true.

propositions true at time t
N
suonisodoud 1090 uondo

Figure 4: An example effect computation. At time ¢, o1, 02,
and o3 are true. The option’s effect set is represented by o4
and independent factor o5. After execution, o3 remains true
because its factors lie outside of the option mask, while o4
is set to false because its factors are covered by the mask.
The factors used by o7 are only partially covered, so it is
set to false and o = Proj(oy, f2) is set to true. o4 and o35
correspond go the option’s direct effects and are set to true.

Theorem 2. Given abstract state descriptor Py, option o;
such that G(Py) C Pre(o;), and Py11 as computed above:

G(Prs1) = Im(G(Pr), 05).
Proof. Recall our grounding semantics:
G(Pe) = Nie1G(pi), I = {i|P.(i) =1},
and the definition of the image operator:
Im(G(P:), 0;) = Project(G(P:), 0;) NEff(o;).

Substituting, we see that:

Im(Q(Pt), Oj) = Project(ﬂielg(pi), Oj) N Eff(Oj)

= NierProject(G(p;), 0;) N Eff(0;).

We can split I into three sets: I,,, which contains indices
for symbols whose factors do not overlap with o;; I,., which
contains symbols whose factors are a subset of mask(o;);
and [,, the remaining symbols whose factors overlap. Pro-

jecting out mask(o;) leaves the symbols in I, unchanged,
and replaces those in I, with the universal set, so:

Im(G(P:), 05) = Nier, G(pi) Nier, Project(G(p:), 05) NEff(0;).

For each ¢+ € I,, we can by construction find a k£ such that
G(pr) = Project(G(pi),0;). Let K be the set of such in-
dices. Then we can write:

Im(g(Pt),oj) = ﬂigug(p,;) Nkek g(pk) n Eff(Oj).

The first term on the right hand side of the above equality
corresponds to the propositions left alone by the operator ap-
plication; the second term to the third type of effects propo-
sitions; the third term to the first type of effects propositions;
and I,. to the second type of (removed) effects propositions.
These are exactly the effects enumerated by our operator
model, so Im(G(P;),0;) = G(Pit1). O

Finally, we must compute the operator preconditions,
which express the conditions under which the option can
be executed. To do so, we consider the preimage Pre(o;)

for each option o;, and the factors is is defined over,
factors(Pre(o;)). Our operator effects model ensures that no
two symbols defined over the same factor can be true simul-
taneously. We can therefore enumerate all possible “assign-
ments” of factors to symbols, compute the resulting ground-
ing classifier, and determine whether it is a subset of Pre(o;).
If so, the option can be executed, and we can output an op-
erator description with the appropriate preconditions and ef-
fects. We omit the proof that the generated preconditions are
correct, since it follows directly from the definition.

Note that the third type of effects (expressing the op-
tion’s side effects) depends on propositions other than those
used to evaluate the option’s preimage. We can express these
cases either by creating a separate operator description for
each possible assignment of relevant propositions, or more
compactly via PDDL’s support for conditional effects.

Since the procedure for constructing operator descrip-
tions given in this section uses only propositions enumerated
above, it follows that P is sufficient for describing the sys-
tem. It also follows that the number of reachable symbols in
a symbol algebra based on abstract subgoal options is finite.

Computing the factors requires time in O(n|F||O|),
where F', the set of factors, has at most n elements (where
n is the dimension of the original low-level state space).
Enumerating the symbol set requires time in O(|O||F|c)
for the independent factors and O(|O|2!¥l¢) for the depen-
dent factors in the worst case, where each symbol alge-
bra operation is O(c). This results in a symbol set of size
|P| = O(Fr+2P), where F indicates the number of sym-
bols resulting from independent factors, and Fp the number
of factors referred to by dependent effects sets. Computing
the operator effects is in time O(|P||O|), and the precondi-
tions in time O(|O||P|¥1) in the worst case.

Although the resulting algorithm will output a correct
PDDL model for any symbol algebra with abstract sub-
goals, it has a potentially disastrous worst-case complexity,
and the resulting model can be exponentially larger than the
O(|O|) source symbol algebra. We expect that conversion
will be most useful in problems where the number of factors
is small compared to the number of original state variables
(IF] < n), most or all of the effects sets are independent
in all factors (Fp < Fy), many symbols repeat (small |P]),
and most precondition computations either fail early or suc-
ceed with a small number of factors. These properties are
typically necessary for a domain to have a compact PDDL
model in general.

Planning in the Continuous Playroom

In the continuous playroom domain (Konidaris and Barto
2009a), an agent with three effectors (an eye, a hand, and a
marker) is placed in a room with five objects (a light switch,
a bell, a ball, and red and green buttons) and a monkey; the
room also has a light (initially off) and music (also initially
off). The agent is given options that allow it to move a spec-
ified effector over a specified object (always executable, re-
sulting in the effector coming to rest uniformly at random
within 0.05 units of the object in either direction), plus an
“interact” option for each object (for a total of 20 options).

The effectors and objects are arranged randomly at the start
of every episode; one arrangement is depicted in Figure 5.

] [
- Cuv

{my

0
e T

Figure 5: An instance of the continuous playroom domain.

Interacting with the buttons or the bell requires the light to
be on, and the agent’s hand and eye to be placed over (within
0.05 units in either direction) the relevant object. The ball
and the light switch are brightly colored and can be seen in
the dark, so they do not require the light to be on. Interacting
with the green button turns the music on; the red button turns
it off. Interacting with the light switch turns the lights on or
off. Finally, if the agent’s marker is on the bell and it inter-
acts with the ball, the ball is thrown at the bell and makes a
noise. If this happens when the lights are off and the music is
on, the monkey cries out, and the episode ends. The agent’s
state representation consists of 33 continuous state variables
describing the x and y distance between each effector and
each object, the light level (0 when the light is off, and drop-
ping off from 1 with the squared distance from the center of
the room when the light is on), the music volume (selected
at random from the range [0.3, 1.0] when the green button is
pressed), and whether the monkey has cried out.

We first construct the appropriate symbolic descriptions
for the continuous playroom by hand, following the theory
developed above. First, we partition the option initiation sets
to obtain partitioned abstract subgoal options; we then con-
struct models of the relevant masks and effects sets. For ex-
ample, Figure 6 shows the two characterizing sets for mov-
ing the eye over the ball. The light level perceived by the
agent changes with eye movement if the light is on and re-
mains unchanged if it is not, so we partition the initiation set
based on the existing light level.

Converting these symbolic descriptions to PDDL was
completed in approximately 0.4 seconds. This resulted in
6 factors, three containing variables describing the distance
between an effector and all of the objects, and one each for
the music, the lights, and the monkey’s cry. The factors and
the symbol algebra operator descriptors generated 20 unique
symbol groundings—all effects sets resulted in independent
factor assignments. An example operator description with its
symbol groundings is shown in Figure 7.

We tested planning on three goals, each starting from the
set of all states where the monkey is not crying out and
the lights and music are off. We implemented a breadth-
first symbol algebra planner in Java, and also used the au-
tomatically generated PDDL description as input to the FF
planner (Hoffmann and Nebel 2001). Timing results, given
in Table 1, show that both systems can solve the resulting
search problem very quickly, though FF (a modern heuristic

LightLevel < 0.0 LightLevel > 0.0

false | true false | true

false true false true

(a) (b)

ball-eye.x > 0.05

false true

ball-eye.x < —0.05 false

false true

false true
false true

ball-eye.y > 0.05 false

false true

ball-eye.y < —0.05 false ball-eye.y < —0.05 false

false | true false true

ball-eye.y > 0.05 false

false true

true false LightLevel > 0.0 false
false | true
false true
(© (d)

Figure 6: The two characterizing sets of the option for mov-
ing the eye over the ball. The precondition classifier of the
first characterizing set (a) includes states where the light is
off. Its effect mask does not include LightLevel, and its
effects set (c) indicates that the relationship between the
eye and the ball is set to a specific range. The precondi-
tion classifier for the second characterizing set (b) includes
only states where the light is on. Its effects mask includes
the LightLevel variable, which its effect set (d) indicates
could change to any positive value after option execution, as
the position of the eye affects the amount of light received.

planner) can solve it roughly a thousand times faster than a
naive planner using a symbol algebra. The resulting plans
are guaranteed to reach the goal for any domain configura-
tion where the start symbol holds. We know of no existing
sample-based SMDP planner with similar guarantees.

Symbol Algebra (BFS) PDDL (FF)
Goal Depth Visited Time (s) Visited Time (s)
Lights On 3 199 1.35 4 0.00199
Music On 6 362 2.12 9 0.00230
Monkey Cry 13 667 3.15 30 0.00277

Table 1: The time required, and number of nodes visited, for
the example planning problems. Results were obtained on a
2.5Ghz Intel Core i5 processor and 8GB of RAM.

To demonstrate symbol acquisition from experience, we
gathered 5, 000 positive and negative examples' of each op-
tion’s precondition and effects set by repeatedly creating a
new instance of the playroom domain, determine which op-
tions could be executed at each state, and then sequentially
executing options at random. For the effects set, we used
option termination states as positive examples and states en-
countered during option execution but before termination as
negative examples. We used the WEKA toolkit (Hall et al.

!This number was chosen arbitrarily and does not reflect the
difficulty of learning the relevant sets.

ball-eye.x > 0.05

ball-eye.x < —0.05 false

greenbutton-eye.x > —0.05

(raction interact_greenbutton LightLevel > 0.0

false true

:parameters ()

:precondition (and (symboll) false LightLevel < 1.0
(Symbolz) false | true
(symbol3)) false true

reffect (and (symboll7)
(not (symboll8))))

(a) Generated Operator (b) symboll

greenbutton-hand.x > —0.05

false true false true

false greenbutton-eye.x < 0.05 false greenbutton-hand.x < 0.05

false true false true

false greenbutton-eye.y > —0.05 false greenbutton-hand.y > —0.05

false true false true
false greenbutton-eye.y < 0.05 false greenbutton-hand.y < 0.05
false | true false | true
false true false true

(c) symbol2 (d) symbol3

MusicLevel > 0.3 MusicLevel = 0.0

false true false | true

false MusicLevel < 1.0 false true

false | true

false true

(e) symboll7 (f) symbol118

Figure 7: The automatically generated PDDL descriptor for
interacting with the green button (a) with the groundings
of the automatically generated symbols it mentions (b—f).
The operator symbolically expresses the precondition that
the light is on and the hand and eye are over the green but-
ton, and that, as a result of executing the operator, the music
is on, and the music is no longer off.

2009) C4.5 decision tree (Quinlan 1993) for symbol learn-
ing. A representative learned precondition classifier for in-
teracting with the green button is given in Figure 8.

A close look at the numerical values in Figure 8 suggests
that, in practice, a learned set-based representation will al-
ways be approximate due to sampling, even in deterministic
domains with no observation noise. Thus, while our formal-
ism allows an agent to learn its own symbolic representa-
tion in principle, its use in practice will require a generaliza-
tion of our symbol definition to probability distributions that
account for the uncertainty inherent in learning. Addition-
ally, it is unrealistic to hope for plans that are guaranteed to
succeed—consequently future work will generalize the no-
tion of feasibility to the probability of plan success.

Related Work

Several systems have learned symbolic models of the pre-
conditions and effects of pre-existing controllers for later
use in planning (Drescher 1991; Schmill, Oates, and Co-
hen 2000; DZeroski, De Raedt, and Driessens 2001; Pasula,
Zettlemoyer, and Kaelbling 2007; Amir and Chang 2008;
Kruger et al. 2011; Lang, Toussaint, and Kersting 2012;
Mourdo et al. 2012). In all of these cases, the high-level

LightLevel < 0.442074

false | true

[
greenbutton-hand.x < 0.045947 false

false true

false greenbutton-hand.x < —0.049717

false | true

[
greenbutton-eye.y < 0.044895 false
false true
false greenbutton-eye.y < —0.046457
false true
greenbutton-eye.x < —0.065143 false

false true

greenbutton-eye.x < 0.045934 false
false

| true

[1
greenbutton-eye.x < 0.076355 greenbutton-hand.y < 0.044822

false | true false ‘ true
[1
false true greenbutton-hand.y < 0.118371 greenbutton-hand.y < —0.044822
false | e false e
false true true greenbutton-hand.y < —0.120975

false | true

true false

Figure 8: The decision tree representing the learned initia-
tion set symbol for interacting with the green button. It ap-
proximately expresses the set of states we might label the
hand and eye are over the green button, and the light is on.

symbolic vocabulary used to learn the model were given;
our work shows how to construct it.

We know of very few systems where a high-level, abstract
state space is formed using low-level descriptions of actions.
The most closely related work is that of Jetchev, Lang, and
Toussaint (2013), which uses the same operational definition
of a symbol as we do. Their method finds relational, proba-
bilistic STRIPS operators by searching for symbol ground-
ings that maximize a metric balancing transition predictabil-
ity with model size. They are able to find small numbers of
symbols in real-world data, but are hampered by the large
search space. We completely avoid this search by directly
deriving the necessary symbol groundings from the actions.

Huber (2000) describes an approach where the state of the
system is described by the (discrete) state of a set of con-
trollers. For example, if a robot has three controllers, each
one of which can be in one of four states (cannot run, can
run, running, completed), then we can form a discrete state
space made up of three attributes, each of which can take
on four possible values. Hart (2009) used this formulation
to learn hierarchical manipulation schemas. This approach
was one of the first to construct a symbolic description us-
ing motor controller properties. However, the resulting sym-
bolic description only fulfills our requirements when all of
the low-level states in which a controller can converge are
equivalent. When that is not the case—for example, when a
grasp can converge in two different configurations, only one
of which enables a subsequent controller to execute—it may
incorrectly evaluate the feasibility of a plan.

Modayil and Kuipers (2008) show that a robot can learn
to distinguish objects in its environment via unsupervised
learning, and then use a learned model of the motion of the
object given an action to perform high-level planning. How-
ever, the learned models are still in the original state space.
Later work by Mugan and Kuipers (2012) use qualitative
distinctions to discretize a continuous state space to acquire

a discrete model for planning. Discretization is based on the
ability to predict the outcome of action execution.

Other approaches to MDP abstraction have focused on
discretizing large continuous MDPs into abstract discrete
MDPs (Munos and Moore 1999) or minimizing the size of a
discrete MDP model (Dean and Givan 1997).

Discussion and Conclusions

An important implication of the ideas presented here is that
actions must play a central role in determining the repre-
sentational requirements of an intelligent agent: a suitable
symbolic description of a domain depends on the actions
available to the agent. Figure 9 shows two examples of the
same robot navigating the same room but requiring different
representations because it uses different navigation options.

29
L_’%\-T;l & .J

(b)

Figure 9: a) A robot navigating a room using options that
move it to the centroid of each wall. Its effect sets (gray)
might be described as AtLeftWall, AtRightWall, etc. b) The
same robot using wall-following options. Its effect sets could
be described as LowerLeftCorner, LowerRightCorner, etc.

The combination of high-level planning and low-level
control—first employed in Shakey (Nilsson 1984)—is crit-
ical to achieving intelligent behavior in embodied agents.
However, such systems are very difficult to design because
of the immense effort required to construct and interface
matching high-level reasoning and low-level control compo-
nents. We have established a relationship between an agent’s
actions and the symbolic representation required to plan us-
ing them—a relationship so close that the agent’s environ-
ment and actions completely determine an appropriate sym-
bolic representation, thus both removing a critical obsta-
cle to designing such systems, and enabling agents to au-
tonomously construct their own symbolic representations.

Acknowledgements

We thank Greg Lewis, Siddharth Srivastava, and LIS for in-
sightful conversations. GDK was supported in part by an
MIT Intelligence Initiative Fellowship. This work was sup-
ported in part by the NSF under Grant No. 1117325. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation. We also gratefully acknowledge support from
ONR MURI grant N00014-09-1-1051, from AFOSR grant
FA2386-10-1-4135 and from the Singapore Ministry of Edu-
cation under a grant to the Singapore-MIT International De-
sign Center.

References

Amir, E., and Chang, A. 2008. Learning partially observable deter-
ministic action models. Journal of Artificial Intelligence Research
33:349-402.

Barto, A., and Mahadevan, S. 2003. Recent advances in hierar-
chical reinforcement learning. Discrete Event Dynamic Systems
13:41-77.

Burridge, R.; Rizzi, A.; and Koditschek, D. 1999. Sequential com-
position of dynamically dextrous robot behaviors. International
Journal of Robotics Research 18(6):534-555.

Cambon, S.; Alami, R.; and Gravot, F. 2009. A hybrid approach
to intricate motion, manipulation and task planning. International
Journal of Robotics Research 28(1):104—126.

Choi, J., and Amir, E. 2009. Combining planning and motion
planning. In Proceedings of the IEEE International Conference on
Robotics and Automation, 4374—4380.

Dean, T., and Givan, R. 1997. Model minimization in Markov
decision processes. In In Proceedings of the Fourteenth National
Conference on Artificial Intelligence, 106-111.

Dornhege, C.; Gissler, M.; Teschner, M.; and Nebel, B. 2009. Inte-
grating symbolic and geometric planning for mobile manipulation.
In IEEE International Workshop on Safety, Security and Rescue
Robotics.

Drescher, G. 1991. Made-Up Minds: A Constructivist Approach to
Artificial Intelligence. MIT Press.

Dzeroski, S.; De Raedt, L.; and Driessens, K. 2001. Relational
reinforcement learning. Machine learning 43(1):7-52.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated planning:
theory and practice. Morgan Kaufmann.

Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.;
and Witten, I. 2009. The WEKA data mining software: An update.
SIGKDD Explorations 11(1):10-18.

Hart, S. 2009. The Development of Hierarchical Knowledge in
Robot Systems. Ph.D. Dissertation, University of Massachusetts
Amberst.

Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:253-302.

Huber, M. 2000. A hybrid architecture for hierarchical reinforce-
ment learning. In Proceedings of the 2000 IEEE International Con-
ference on Robotics and Automation, 3290-3295.

Jetchev, N.; Lang, T.; and Toussaint, M. 2013. Learning grounded
relational symbols from continuous data for abstract reasoning. In
Proceedings of the 2013 ICRA Workshop on Autonomous Learning.

Kaelbling, L., and Lozano-Pérez, T. 2011. Hierarchical planning
in the Now. In Proceedings of the IEEE Conference on Robotics
and Automation.

Kocsis, L., and Szepesvari, C. 2006. Bandit based Monte-Carlo
planning. In Proceedings of the 17th European Conference on Ma-
chine Learning, 282-293.

Konidaris, G., and Barto, A. 2009a. Efficient skill learning using
abstraction selection. In Proceedings of the Twenty First Interna-
tional Joint Conference on Artificial Intelligence.

Konidaris, G., and Barto, A. 2009b. Skill discovery in continuous
reinforcement learning domains using skill chaining. In Advances
in Neural Information Processing Systems 22, 1015-1023.
Kruger, N.; Geib, C.; Piater, J.; Petrick, R.; Steedman, M.;
Worgdétter, F.; Ude, A.; Asfour, T.; Kraft, D.; Omrcéen, D.; Agos-
tini, A.; and Dillmann, R. 2011. Object-action complexes:

Grounded abstractions of sensory-motor processes. Robotics and
Autonomous Systems 59:740-757.

Lang, T.; Toussaint, M.; and Kersting, K. 2012. Exploration in re-
lational domains for model-based reinforcement learning. Journal
of Machine Learning Research 13:3691-3734.

Lozano-Perez, T.; Mason, M.; and Taylor, R. 1984. Automatic
synthesis of fine-motion strategies for robots. International Journal
of Robotics Research 3(1):3-24.

Malcolm, C., and Smithers, T. 1990. Symbol grounding via a
hybrid architecture in an autonomous assembly system. Robotics
and Autonomous Systems 6(1-2):123-144.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.;
Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL—the planning
domain definition language. Technical Report CVC TR98003/DCS
TR1165, Yale Center for Computational Vision and Control.

Modayil, J., and Kuipers, B. 2008. The initial development of
object knowledge by a learning robot. Robotics and Autonomous
Systems 56(11):879-890.

Mourio, K.; Zettlemoyer, L.; Patrick, R.; and Steedman, M. 2012.
Learning STRIPS operators from noisy and incomplete observa-
tions. In Proceedings of Conference on Uncertainty in Articial In-
telligence.

Mugan, J., and Kuipers, B. 2012. Autonomous learning of high-
level states and actions in continuous environments. [EEE Trans-
actions on Autonomous Mental Development 4(1):70-86.

Munos, R., and Moore, A. 1999. Variable resolution discretiza-
tion for high-accuracy solutions of optimal control problems. In
Proceedings of the Sixteenth International Joint Conference on Ar-
tificial Intelligence, 1348—1355.

Nilsson, N. 1984. Shakey the robot. Technical report, SRI Interna-
tional.

Pasula, H.; Zettlemoyer, L.; and Kaelbling, L. 2007. Learning
symbolic models of stochastic domains. Journal of Artificial Intel-
ligence Research 29:309-352.

Precup, D. 2000. Temporal Abstraction in Reinforcement Learning.
Ph.D. Dissertation, Department of Computer Science, University
of Massachusetts Ambherst.

Quinlan, J. 1993. C4.5: programs for machine learning, volume 1.
Morgan Kaufmann.

Schmill, M.; Oates, T.; and Cohen, P. 2000. Learning planning
operators in real-world, partially observable environments. In Pro-
ceedings of the Fifth International Conference on Artificial Intelli-
gence Planning and Scheduling, 245-253.

Sutton, R.; Precup, D.; and Singh, S. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforce-
ment learning. Artificial Intelligence 112(1-2):181-211.

Tedrake, R. 2009. LQR-Trees: Feedback motion planning on
sparse randomized trees. In Proceedings of Robotics: Science and
Systems, 18-24.

Wolfe, J.; Marthi, B.; and Russell, S. J. 2010. Combined Task
and Motion Planning for Mobile Manipulation. In International
Conference on Automated Planning and Scheduling.

