
Learning Symbolic Representations for
Planning with Parameterized Skills

Barrett Ames1,3, Allison Thackston3, George Konidaris2

Abstract— A critical capability required for generally intel-
ligent robot behavior is the ability to sequence motor skills to
reach a goal. This requires a (typically abstract) representation
that supports goal-directed planning, which raises the question
of how to construct such a representation. Previous work
has addressed this question in the context of simple black-
box motor skills, which are insufficiently flexible to support
the wide range of behavior required of intelligent robots. We
now extend that work to include parametrized motor skills,
where a robot must both select an action to execute and also
decide how to parametrize it. We show how to construct a
representation suitable for planning with parametrized motor
skills, and specify conditions which are sufficient to separate the
selection of motor skills from the parametrization of those skills.
Our method results in a simple discrete abstract representation
for planning followed by a parameter selection process that
operates on a fixed plan. We first demonstrate learning this
representation in a virtual domain based on Angry Birds and
then learn an abstract symbolic representation for a robot
manipulation task.

I. INTRODUCTION

A defining characteristic of intelligent robots is the ability
to generate goal-oriented behavior for a wide variety of
tasks. One approach to generating such behavior is task-
level planning, whereby a robot reasons about sequences of
predefined motor skills to find a sequence that reaches a goal
with high probability. Task level planning is fast and capable
of considering relatively long planning horizons. However,
it depends on the availability of a composable set of motor
skills, and an abstract representation that supports efficiently
reasoning about composing the motor skills.

Previous work [15] has addressed the question of how to
construct abstract representations suitable for planning with
a given collection of motor skills, providing a principled
method for constructing representations that support the
operations necessary for probabilistic planning. However,
that work assumed that the motor skills are simple black-box
controllers. Due to the continuous nature of certain tasks,
such controllers are too inflexible to support the range of
dexterous behaviors required of intelligent robots that must
interact with a complex world.

Existing approaches for generating more flexible behavior
find either detailed low-level motion plans [16], which is
generally only feasible for short-horizon tasks or use higher-
level actions but still reason in detail [10], which performs

1Duke University Computer Science, cbames at cs.duke.edu
2Brown University Computer Science, gdk at cs.brown.edu
3Toyota Research Institute, allison.thackston at

tri.global

well but still requires complex planning to find medium-
horizon plans. We propose an alternative approach that plans
using more flexible parametrized motor skills [4] [13] [14]
[17] where the behavior of each high-level action is modified
by a real-valued parameter vector. Here, the robot must select
both the motor skill to execute at a particular time and
additionally select appropriate parameters for it.

We extend existing work on constructing abstract represen-
tations [15] to support parametrized motor skills and specify
conditions which separate the selection of motor skills from
the parametrization of those skills. This extension results
in a relatively simple discrete abstract representation for
planning, which is followed by a fixed parameter selection
process.

We demonstrate the effectiveness of our framework by first
learning a symbolic representation for a virtual domain based
on Angry Birds and then create a symbolic representation for
a robot manipulation task.

II. BACKGROUND

A. Parameterized Skills

A parameterized skill is a motor controller which takes as
input a parameter vector and generates behavior that varies
based on the parameter’s value. We describe the robot’s task
as a parametrized action Markov decision process (PAMDP)
[17], described by a tuple:

(S,A,R, T, γ) ,

where S ⊆ Rn is a set of states; A is a set of parameterized
skills (described next); R is a reward function (equivalently,
a cost function) describing the reward received for executing
a parametrized action in a particular state; T is a model of
the transition dynamics; and γ is a discount factor.

Following the options framework [23], each parameterized
skill is described by a tuple:

(πo,Θo, Io, βo) ,

where πo(a|s, θ) is a policy that returns the probability of
the agent executing action a in state s, given input parameter
θ; Θo ⊆ Rm is a range of acceptable policy parameter
vectors; Io is the set of states from which the motor skill
can be executed;1 and βo(s) is a termination condition, which
determines the probability with which the motor skill should
terminate in a given state s.

1Note that we assume that any parameter value θ ∈ Θo can be selected
for any state in Io; we leave removing this assumption to future work.

In a MDP, the agent aims to finds a policy, π, which
maps from states to a distribution over actions. In a PAMDP,
the agent must find a policy which maps from states to a
distribution over, (a, θ), where a is a parametrized action
and θ is its parametrization.

Masson et al. [17] introduced the use of parametrized
action Markov Decision Processes to include parameterized
skills in the reinforcement learning setting. They present a
reinforcement learning algorithm that learns separate policies
for selecting skills and skill parameters, given a state. This
method was successfully applied to a simulated robot soccer
domain but is unsuitable for use on physical robots as it
is model-free, and consequently requires a great deal of
experience to learn a good policy.

B. Planning with Motor Skills

If we are to construct a representation that enables a robot
to plan using a set of motor skills, it must support the
operations required to compute the probability with which a
plan succeeds, and the expected reward (equivalently, cost)
received should execution be successful. Prior work [15] has
shown that the agent must represent two important pieces
of information for each motor controller: the precondition,
Pre(o, s) = P (s ∈ Io), which estimates the probability that
a motor skill o can be run from state s, and the image
Im(o, Z), which returns a distribution over states, expressing
the probability of the agent entering state s′ after executing
motor skill o from a start state drawn from distribution Z.
Given these, the robot can compute the probability of a plan
succeeding by multiplying the probability of successfully
executing each action:

pi =

∫
Pre(oi, s)Zi(s)ds,

where Z0 is the start distribution and each Zi =
Im(oi−1, Zi−1). Similarly, we can compute the expected
reward of executing action oi from distribution Zi as ri =∫
R(s, oi)Zi(s)ds.
A symbol is an abstraction applied to preconditions and

images. Here we differentiate between two types of symbols.
A distributional symbol, σz , names a distribution, Z, over
states. Distributional symbols are used to estimate the state
distributions of images. A conditional symbol, σE , is the
name associated with a function P (C(s) = True) which
returns the probability that condition C holds true at state
s. Conditional symbols are probabilistic classifiers used
to approximate the probability that a state belongs to the
precondition of a skill.

A symbolic representation for motor skill planning can
be constructed by first creating a pair of symbols for each
skill. There is a minimum of at least one conditional symbol
to represent the skill’s precondition and one distributional
symbol to represent the skill’s image. These pairs of symbols
are used to compute every reachable pi and ri value as
defined above, and finally used to construct a forward model
for obtaining pi and ri using only the symbols themselves
(and not the classifiers and distributions that they name).

However, the ability to do so requires that there be only
finitely many such pi and ri values, which in turn means that
there can be only finitely many reachable image distributions.

This condition is not true in general, but it does hold for
some common types of motor skills. The most important one
is the subgoal skill, where a feedback motor controller drives
the state toward some subgoal set of states, and the feedback
process eliminates any dependency on the state from which
execution started. In that case we can replace any instance
of the image operator with an effect distribution which does
not depend on start state:

Im(o, Z) = Eff(o).

As a result, there are only finitely many reachable image
distributions—in fact, exactly as many as there are motor
controllers—this allows the construction of a finite represen-
tation.

Of course, in many real-life scenarios, the subgoal prop-
erty does not hold. In practice, we can often partition a
motor skill’s initiation set such that the subgoal property
approximately holds when execution only occurs from each
of the resulting partitions. In this case, we can build a finite
model by considering each partition a distinct motor skill.

III. BUILDING SYMBOLIC MODELS FOR PROBABILISTIC
PLANNING WITH PARAMETRIZED SKILLS

Due to the uncertain nature of robot sensing and action
we are interested in probabilistic planning. Probabilistic
planning is the process of creating a plan and evaluating
its probability of success. Formally, a plan is defined as a
sequence of actions intended to accomplish a goal from a
particular starting configuration. In order to perform proba-
bilistic planning with parameterized skills, we must extend
the previous definition to handle motor skill parameters and
thus define a plan as follows:

Definition 1. A plan p = {o1(θ1)....on(θn)} from a start
state distribution Z is a sequence of parameterized skills and
their parameters o ∈ O, θ ∈ Θo, to be executed from a state
drawn from Z.

This plan definition maintains the important aspects of
the previous definition. The plan is still a sequence of
actions and dependent on the start state distribution, however
each plan also includes the parameter for each action. It
is important to note that each motor skill has a bounded
range of parameters from which it can draw. For example,
o1 may accept a parameter value between 0 and 5, while
o2 may accept a parameter value between 25 and 100. The
start state distribution, Z, is required because without a start
state the probability of plan completion cannot be evaluated.
As before, the probability of plan completion is obtained by
computing the probability of successfully completing each
successive motor skill execution in the plan, and multiplying
these probabilities together.

Konidaris et al. [15] prove that the precondition and
image are necessary and sufficient for symbolic planning
of unparameterized motor skills. Here we assume that the

preconditions of parameterized motor skills have no depen-
dency on the parameter, and thus are the same as previously
defined. However, the image of a parameterized motor skill
is dependent on the parameter and must be redefined. We
therefore define the parameterized probabilistic image oper-
ator.

Definition 2.

Image(Z, o, θ) =

∫
S
P (s′|s, o, θ)Z(s)P (s ∈ Io)ds∫

S
Z(s)P (s ∈ Io)ds

= P (s′|o, θ).

The image is important for calculating the probability of
skill j being executable after skill i has completed. The
probability of the image of skill i overlapping with the
initiation set of skill j is the probability of skill intersection:

Definition 3.

Inter(oi, θi, oj , Z) =
∫
S

Image(Z, oi, θi)P (s ∈ Ioj)ds. (1)

These definitions allow us to now prove that the probabil-
ity of plan completion can be constructed from these parts.

Theorem 1. Given a PAMDP, a model of the probabilistic
precondition of each parameterized skill and the
parameterized probabilistic image, the probability of
completing a plan, (Z,p), can be determined.

Proof

Consider an arbitrary plan tuple (Z0, p), with plan
length n. The probability of successfully executing plan p
from starting distribution, Z0, is

n−1∏
j=0

Inter(oj , θj , oj+1, Zj)

∫
S

Z0P (s ∈ Io0)ds.

Where Zj+1 can be found via Zj+1 = Image(Zj , oj , θj), for
j ∈ {1...n}. �

Starting with a distribution of states, the agent can repeat-
edly apply the image operator to obtain the distribution of
states after taking an action. Using these images the agent can
determine the probability of execution of each parameterized
skill. It can then multiply all of these probabilities together
to obtain the probability of success of a plan. However, we
are interested in finding the best plan given the motor skills
available to the robot, not only the probability of success of
a particular plan. Thus we define the Skill Optimal Plan:

Definition 4.

arg max
θ0...θn

n−1∏
j=0

Inter(oj , θj , oj+1, Zj)

∫
S

Z0P (s ∈ Io0)ds.

(2)

This is the set of motor skill parameters which maximize
a given plan’s probability of success. In order to maximize
the probability of a plan’s success, the planner must se-
lect a sequence of skills and for each skill the parameter

which maximizes the probability of that skill. In Figure 1
the initiation classifier is represented on the left and the
parameterized image of the skill is the yellow ribbon on
the right. The planner must select a θ which results in
the maximum probability that the image of the skill is in
the initiation classifier of the next skill. By selecting the
maximum probability parameter setting the representation for
a skill optimal plan remains discrete, as we prove next.

Fig. 1: The yellow ribbon is the set of all image distributions.
The image varies with the value of θ along the red curve. The
goal is to select a range of θ such that the effect distribution
lies inside the precondition of the next action with highest
probability. Visually, this would be regions where the yellow
ribbon is contained by the blue precondition.

Theorem 2. Assuming that only the probability of a
successful plan execution is of interest and given n
parameterized motor skills, the number of symbols required
to represent a skill optimal plan is O(n2).

Proof

For each skill intersection the only parameter setting
which needs to be represented by a symbol is one which
maximizes the probability of skill intersection. All other
parameter settings will result in a lower probability and
thus can be ignored without impacting the planner’s ability
to find a skill optimal plan. This is because a skill optimal
plan must be constructed of skills with parameters tuned
to maximize the probability of the following skill. This
is a consequence of the multiplicative nature of our plan
definition. Lastly, there are n2 skill intersections, each with
one parameter setting which maximize the probability thus
a discrete representation with O(n2) symbols can represent
all necessary information.

�

Now that the number of symbols has been bounded, a
parameter must be selected. In practice we must search for
the θ which maximizes the probability of Inter(oj , θj , oi, Z)
for all o ∈ O. This is achieved by uniformly sampling over
the range of θ and estimating the intersection probability for
each sample. This approach will always incur some error
between the estimated max probability and the true max
probability, |m̃−m|. Next we bound this approximation error
when the intersection is assumed to be Lipschitz continuous.
In order for this assumption to be reasonable the perception

and dynamics of the robot need to be Lipschitz. Many
mobile manipulation platforms have dynamics which are
Lipschitz continuous. As for perception, in many cases the
environment being observed can be treated as Lipschitz by
linearly interpolating between any discontinuities.

Lemma 1. Given a Lipschitz continuous skill intersection,
with Lipschitz constant K, and the distance between
parameter sample values, ∆, and d the dimensionality of the
parameter space, the approximation error of the maximum
is
√
dK∆
2 .

Proof

First, uniformly sample the parameter space of θ by ∆. For
all of these points find the probability of intersection. Next,
define m̃ as the max taken over all of the skill intersection
samples and let m be the true max. The approximation error
is defined as |m̃−m|. Given an m̃, an m can be constructed
that does not change the selection of m̃ and maximizes the
approximation error. Starting at m̃ increase at a rate of K
for

√
d∆
2 while heading in the direction of a point that is√

d∆ away. At
√
d∆
2 change the rate to −K. At

√
d∆ from

its start point the function will be equal to m̃. The point√
d∆away is the furthest point on the hypercube that is

defined by ∆ spaced uniform sampling. Thus the furthest
m can be from m̃ is

√
d∆
2 .

�

Using this approximate max operator we now bound the
error of an approximate finite symbolic representation for
achieving the skill optimal plan.

Theorem 3. Given a finite number of parameterized motor
skills with Lipschitz continuous skill intersections, a finite
number of bounded parameters for each motor skill, and
the approximate max operator, the error of an approximate
finite symbolic representation is upper bounded by

√
dK∆n

2 ,
where n is the plan length.

Proof

This proof is excluded for brevity, but it is an induction
over the length of the plan.

The error due to the approximation grows as the plan
gets longer, and as the intersection becomes more sensitive
to the change in motor skill parameters. In addition, the
bound explains how ∆ is related to these two quantities. This
relationship shows that we can sample less (i.e. have a large
value for ∆) for cases where plans are short, or parameter
sensitivity is low.

Unfortunately, even in cases where ∆ can be large, cal-
culating the skill intersection in general is computationally
expensive. Konidaris et al. [15] use the subgoal property to
approximate the intersection. Here we generalize the subgoal
property to include parameter values, we propose the strong
parameterized subgoal property:

Definition 5.

Image(Z, o, θ) = Effectθl,θu(o)

∀θ, θl ≤ θ ≤ θu.

This property holds when the image and starting distribu-
tion are conditionally independent given the parameters of
the controller. If this property holds over the entire range
of θ, then the motor skill is not parameterized. In general,
this property is expected to only hold over segments of the
parameter space. When this property does hold, an effect
defined over a parameter range can approximate the image
in (1). In practice, this property may be overly restrictive, as
it requires the image and effect to be the same distribution.
Thus we introduce the weak parameterized subgoal property:

Definition 6.∫
s

Image(Zi, oi, θi)(s)P (s ∈ Ioj)ds =∫
s

Effectθl,θu(oi)(s)P (s ∈ Ioj)ds

∀θi, θl ≤ θi ≤ θu,∀oj ∈ O.

This ensures that the probability of executing any fol-
lowing action is necessarily the same, but does not require
that the two distributions are the same. Since the effect is
a set of images the number of intersections that must be
calculated is reduced. In addition, computationally friendly
distributions can be chosen as long as they satisfy the
subgoal property. The downside of using the effect is that
it may not represent the set of images well, unless the weak
parameterized subgoal property holds. Thus the combination
of Theorem 3 and the weak parameterized subgoal property
results in a discrete representation which supports efficient
planning and has bounded error from the optimal.

IV. EXPERIMENTS

We applied our framework to two different domains: a
virtual domain, which demonstrates the compression and ex-
pressiveness of the representation, and a robot manipulation
task, which demonstrates its performance under sparse and
noisy data.

A. Catapult Domain

The catapult domain is a model of the popular game,
Angry Birds (see Figure 4). In this instantiation, three walls
can be knocked down, and two obstacles that only fall when
their corresponding wall falls. The agent is provided with one
parameterized behavior, shootAtAngle(θ). The parameter,
θ, defines the firing angle of the catapult and the goal of the
agent is to knock down all the walls.

1) Data Collection: An agent uniformly at random selects
θ from 0 to 1.57 until 10,000 parameterized skill executions
have been collected. One consequence of the random agent is
that in some cases a wall can be perturbed without knocking
it over. These samples provide additional information about
how the agent can knock down a wall that is not in the
canonical start pose. The state space consists of the action

(a) Symbol 0 (b) Symbol 5 (c) Symbol 1 (d) Symbol 6

Fig. 2: Symbols used for constructing the operator in Figure 3. In a) there is a symbol defined over the X position of the
first wall, b) a symbol defined over the Y position and φ of the first wall, c) a symbol defined over the X position of the
first wall and has a different mean then (a), d) a symbol defined over the Y position and φ of the first wall, which has a
different mean than (b).

parameter used, θ, and the x,y, and φ of each wall before
and after the action. φ is the angle, from vertical, of a wall.

2) Symbol Creation: In order to prepare the data for sym-
bol creation, the data was clustered using DBSCAN [8, 19]
with an ε = 0.32 and the minimum number of samples set to
100. Using randomized logistic regression feature selection
was performed on each cluster. A feature was kept if it
appeared in more than 55% of 500 random re-samplings of
the training data. The precondition classifiers were trained
on the clustered data using only the selected features. The
classifiers used were Probabilistic KSVMs [5].2 The effect
distributions were modeled with conditional kernel density
estimators [18].

Each effect distribution is checked against the other effect
distributions using a 2-sample KolmogorovSmirnov-test to
ensure that the distributions are significantly different. If they
are not, their grounding sets are merged into a single symbol.

3) Operator Creation: The clustered data was used to
create a list of observed cluster transitions. Clusters which
occurred before an action require a conditional symbol. Clus-
ters which occurred after an action require a distributional
symbol. In this case because there is only one option, all of
the operators come from partitioning the initiation set of the
option. The probability of the operator follows the methods
outlined in Section III.

4) Planning: The learned operators are transformed into
the Probabilistic Planning Domain Description Language
(PPDDL) [25] so that off-the-shelf planners can be used.
During this transformation any operator with a probability
less than 0.25 was downgraded to impossible and removed.
The start state and goal are defined in PPDDL and the
problem is posed to the mini-gpt [2] planner, an off-the-
shelf MDP planner, with two heuristics applied, zero, and
min-min-lrtdp.

5) Results: Only 16 symbols were created for the virtual
domain. This is a significant reduction in representation size
over even a coarse discretization of the combined action
and state space.3 This symbolic space allows very efficient
planning, a plan for knocking down all of the walls can be
found in 4.5ms.

A common trade-off for increasing performance is to
decrease the expressiveness of a representation, however

2The radial basis kernel was used.
3For example, if each dimension had be discretized into 10 buckets, the

resulting matrix would have 1010 elements.

(:action a184
:precondition (and (symbol_0) (symbol_5))
:effect (probabilistic 0.96 (and
(symbol_1)(symbol_6)
(symbol_9)(symbol_13)
(not(symbol_2))(not(symbol_8))
(not(symbol_11))(not(symbol_0))
(not(symbol_10))(not(symbol_4))
(not(symbol_7))(not(symbol_15))
(not(symbol_12))(not(symbol_14))
(not(symbol_5))(not(symbol_3)))))

Fig. 3: A symbolic operator for knocking down wall 1.

for the learned symbols there is enough expressiveness to
accomplish multiple tasks. The symbols allow the planner to
handle not just narrowly defined start states, but any state
which is represented by the symbols. This is demonstrated
by Figure 4(a) where the initial start state has been sampled
from one of the symbols. Figures 4(b)-(d) demonstrate that
the planner is capable of planning from different start states.
Similarly, new goal states can be specified without requiring
a change in representation. In Figure 4(e) the goal has been
changed from knocking down the walls to moving the first
wall against the first obstacle. The planner is able to select
a θ which accomplishes this goal even under initial state
uncertainty.

A symbolic operator is shown in Figure 3. This is
one of the operators which knocks down the first wall. Its
preconditions require that the wall is in its canonical start
pose. Symbol 0 is a distribution defined over the X-position
of the first wall and is visible in Figure 2(a). Symbol 5 is in
Figure 2(b) and is a distribution defined over the y and φ of
the wall. Thus the precondition symbols are interpreted as
the first wall being upright and in a specific X-position. The
effects of the operator are listed after “:effect”. The form
“probabilistic 0.96” says that with probability p=0.96 the
following effects will be set. There are four symbols set to
true by this operator, two of which are over the state of the
second wall, and two of which are over the first wall. For
the sake of clarity we will ignore Symbols 13 and 9, and
focus on symbols 1 and 6 which describe the new state of
wall 1. Symbol 1 is Figure 2(c), thus the wall will have an
X-position before the first obstacle. Symbol 6 is Figure 2(d),
which shows the wall will be laying down. The rest of the
symbols become false because they conflict with one of the
positive symbols. For example, it is impossible for the wall

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4: These images depict the execution of two plans for two different goals from the same set of symbols. The first goal
is to knock down all the walls (a-d). a.) The transparent wood wall is the canonical start pose. The first wall’s position is
now sampled from a start state distribution. b.) Just after impact. c.) After impact. d.) All walls down. The second goal is
to move the first wall without knocking it down (e-g). e.) The translucent blue wall is the target location. f.) Moving the
wall g.) The wall has been successfully moved from its starting position to its new goal.

to be in the state described by (symbol 0, symbol 5) and the
state described by (symbol 1, symbol 6).

(a) (b)

(c) (d)

Fig. 5: The experimental setup: a.) the cupboard is closed
and unlocked, b.) the cupboard is open c.) the cup is in the
correct position, d.) the cup is blocking the button.

B. Robot Manipulation Task

In this experiment our mobile manipulator, Anathema, was
used to perform an idealized form of the “Make Coffee” task
(Figure 5). In this instance of the task, the coffee cup is in
a locked cabinet. The cabinet can be opened by rotating a
handle to a specific angle and pulling up on the handle. In
addition, the coffee cup must be placed in the coffee machine
within a specific angular range. If the cup is placed in
the coffee machine with handle inwards the cup completely
obscures the button (Figure 5(d)), preventing the robot from
pressing the button. Lastly, the goal is to have the cup in the
coffee machine while the button is pressed.4

Anathema has four behaviors that can be used for this task
PickP laceCup(θ), UnlockCabinet(φ), OpenCabinet()

4In order to avoid mixing liquids and robots, no coffee is actually made
in this task.

and PressButton(). PickP laceCup(θ), approaches the
cup, picks it up, and then places it in the coffee machine.
It accepts one parameter θ, which is the approach angle of
the hand relative to the cup. UnlockCabinet(φ) grasps the
cabinet handle, rotates it, and then lets go of the handle.
It also accepts one parameter, φ, which is the angle of
the handle relative to its starting position. OpenCabinet()
grasps the handle and attempts to pull it up. PressButton()
approaches the coffee machine from above and attempts to
press the coffee machine button.

1) Methods: The behaviors in this experiment use
MoveIt! [22], AprilTags [24], and the cmvision [3] blob
detector. The state space is the position of the cup in image
space, the area of the cup, the position of the button in
image space, the visible area of the button, the locations
of 4 AprilTags, and whether the coffee button is pressed. In
order to determine whether the button was pressed, the coffee
machine was outfit with a Raspberry Pi and a momentary
switch which turned on when the button was depressed. ROS
[21] was used to provide communication between all of the
various components.

2) Symbol Creation: For primitive skills, the state space
was clustered using DBSCAN with ε = 0.9 and a minimum
of 5 samples. For parameterized skills regression clustering
was used. Feature selection was performed by univariate
feature selection, the highest scoring four features, according
to ANOVA F-value, were kept. Conditional symbols were
modeled by SVMs with radial basis functions fit using grid
search. Distributional symbols were modeled by conditional
kernel density estimators. θ probability clustering was per-
formed using xgboost [6] with 100 trees and α = 1. Data
was collected by performing 34 trials of ButtonPress(), 44
trials of OpenCabinet(), 40 trials of PickP laceCup(θ), 54
trials of UnlockCabinet(φ), and 30 no-ops. Lastly, planning
with the symbols was performed using mini-gpt, with two
heuristics applied, zero, and min-min-lrtdp.

3) Results: An example of symbols created for this do-
main are illustrated in Figure 6. Symbol 8 is a distribution
over X and Y positions of the cup which were viable

(a) Symbol 7 (b) Symbol 8 (c) Symbol 9

Fig. 6: Symbols learned from robot execution for cup position. a.) Symbol 7 has a low probability of cup visibility. b.)
Symbol 8 is a distribution over cup pickup positions. c.) Symbol 9 is the PressButton() precondition distribution.

locations for pickup. This distribution is tight because the
hand went to the same position, regardless of actual cup
position. Thus if the cup was outside of this distribution
the gripper would completely miss it. Symbol 9 is the cup
position distribution from which PressButton() could be
executed and the goal state reached. The highest density
of positions is away from the button, which makes sense
because the button must be uncovered in order for it to be
pressed. Overall the symbols capture where the cup needs to
be for certain operators to take place.

Figure 7 and the included video demonstrate that
the robot is capable of using the constructed sym-
bols to create a plan which performs the desired task.
The plan was constructed in 0.22s and consisted of
four symbolic operators. They were, in order, a35376,
a18763, a19284, a5247. These symbolic operators
resolved to UnlockCabinet(66 − 72), OpenCabinet(),
PickP laceCup(−15 − 12), ButtonPress() with their pa-
rameters uniformly at random selected from the provided
ranges. In order to better understand how the symbols
are representing the state space, we will follow how the
cup position distribution changes throughout the plan. First,
a35376 requires that the environment be in a configuration
that could be sampled from symbol 7, i.e. that no cup is
visible. This action has no impact on cup position. Thus the
second action, a18763, also expects the environment to be
sampled from symbol 7. The result of a18763 is expected
to be a cup position that could be sampled from symbol 8.
Next, a19284 expects the cup to be sampled from symbol
8, and places the cup in a position that could be sampled
from symbol 9. This enables the last action, a5247, which
presses the button and completes the task. This symbolic plan
demonstrates that a continuous task can be accomplished
using parameterized behaviors that were parameterized ahead
of time via a discrete planner.

V. RELATED WORK

Others have addressed the issue of combining low level
actions and high level planning. Previous approaches can
be split into two main categories. The first category is
approaches which stitch together several configuration space
representations of tasks and attempt to find a motion plan
in this combined space [10][1]. Unfortunately, this may
create portions of the combined space which have volume
zero and thus are difficult to sample from but necessary

to pass through in order to complete the task. In addition,
these methods are not able to leverage advances in symbolic
planning. The other category uses abstractions of low level
actions to search for a solution by leveraging symbolic plan-
ners. Within this category there are methods which impose a
symbolic representation [7][12][20] and those that construct
a symbolic representation from data. Our work is most
closely related to the symbol creation methods. Gaudioso
et al. [9] use Answer Set Programming to create abstractions
but their approach is limited to discrete state and action
spaces. The closest to our work is Jetchev et al. [11] they
build a symbolic abstraction which maximizes reward for
a relational reinforcement learning problem. However, they
construct a predicate for each object, whereas our predicate
is applied to all of the feature data that is available, nor do
they address the complexity of parameterized motor skills.

VI. CONCLUSION

In this paper we explored a symbolic representation for
parameterized skill planning. First we proved that the prob-
ability of a plan can be calculated if it is constructed of
parameterized skills that obey the parameterized subgoal
property. Next we proved that a discrete representation can
always be used to achieve the skill optimal plan. Then the
compressive and expressive qualities of the representation
were explored in the Catapult domain. We showed that with
only 16 symbols the planner was able to solve the original
task and other related tasks. Finally, the performance of the
representation was evaluated on a robot manipulation task.
The planner was able to perform the task and approximate
the probability of the plan successfully. The presented rep-
resentation is a step towards flexible goal-directed abstract
planning for robots.

ACKNOWLEDGMENTS

The authors would like to thank Ron Parr for his thought-
ful and incisive discussions. This research was supported
in part by DARPA under agreement number D15AP00104
and by ONR under award N00014-17-1-2699. The U.S.
Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. The content is solely the responsibility of
the authors and does not necessarily represent the official
views of DARPA. Barrett Ames was supported by a NDSEG
Fellowship.

(a) (b) (c)

(d) (e) (f)

Fig. 7: Execution of the symbolic plan: a.) the environment at start, b.) unlocking the cabinet door, c.) opening the cabinet
door, d.) picking up the coffee cup, e.) placing the coffee cup, and f.) pressing the coffee machine button.

REFERENCES

[1] J. Barry, L. Kaelbling, and T. Lozano-Pérez. A Hierarchical
Approach to Manipulation with Diverse Actions. International
Conference on Robotics and Automation, 2013.

[2] B. Bonet and H. Geffner. MGPT: A probabilistic planner
based on heuristic search. Journal of Artificial Intelligence
Research, 2005.

[3] J. Bruce, T. Balch, and M. Veloso. Fast and Inexpensive Color
Image Segmentation for Interactive Robots. International
Conference on Intelligent Robots and Systems, 2000.

[4] B. Castro, D. Silva, G. Konidaris, and A. Barto. Active
Learning of Parameterized Skills. In International Conference
on Machine Learning, pages 1737–1745, 2014.

[5] C. Chang and C. Lin. LIBSVM: A Library for Support
Vector Machines. ACM Transactions on Intelligent Systems
and Technology, 2011.

[6] T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
2016.

[7] N. Dantam, Z. Kingston, S. Chaudhuri, and L. Kavraki.
An Incremental Constraint-Based Framework for Task and
Motion Planning. The International Journal of Robotics
Research, 2018.

[8] M. Daszykowski and B. Walczak. Density-Based Clustering
Methods. In Comprehensive Chemometrics. 2010.

[9] G. Gaudioso, M. Leonetti, and P. Stone. State Aggregation
through Reasoning in Answer Set Programming. IJCAI
Workshop on Autonomous Mobile Service Robots, 2016.

[10] K. Hauser and J. Latombe. Integrating task and PRM mo-
tion planning: Dealing with many infeasible motion planning
queries. International Conference on Automated Planning and
Scheduling, 2009.

[11] N. Jetchev, T. Lang, and M. Toussaint. Learning Grounded
Relational Symbols from Continuous Data for Abstract Rea-
soning. International Conference on Robotics and Automa-
tion, 2013.

[12] L Kaelbling and T Lozano-Pérez. Hierarchical task and
motion planning in the now. In IEEE International Conference
on Robotics and Automation, pages 1470–1477, 2011.

[13] L. Kaelbling and T. Lozano-Pérez. Learning composable
models of parameterized skills. In International Conference
on Robotics and Automation, Singapore, 2017.

[14] J. Kober and J. Peters. Policy Search for Motor Primitives in
Robotics. Machine Learning, 2011.

[15] G. Konidaris, L. Kaelbling, and T. Lozano-Perez. From Skills
to Symbols: Learning Symbolic Representations for Abstract

High-Level Planning. Journal of Artificial Intelligence Re-
search, 61:215–289, 2018.

[16] J. Kuffner and S. LaValle. RRT-connect: An efficient approach
to single-query path planning. In International Conference on
Robotics and Automation., 2000.

[17] W. Masson, P. Ranchod, and G. Konidaris. Reinforcement
Learning with Parameterized Actions. Association for the
Advancement of Artificial Intelligence, 2016.

[18] T. O’Brien, K. Kashinath, N. Cavanaugh, W. Collins, and
J. O’Brien. A fast and objective multidimensional kernel den-
sity estimation method: FastKDE. Computational Statistics
and Data Analysis, 2016.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, G. Louppe, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine Learning in Python. 2012.

[20] E. Plaku and G. Hager. Sampling-based Motion and Symbolic
Action Planning with Geometric and Differential Constraints.
International Conference on Robotics and Automation, 2010.

[21] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng. ROS: an open-source Robot
Operating System. International Conference on Robotics and
Automation, 2009.

[22] I. Sucan and S. Chitta. MoveIt! URL
http://moveit.ros.org.

[23] R. Sutton, D. Precup, and S Singh. Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement
learning. Artificial Intelligence, 112:181–211, 1999.

[24] J. Wang and E. Olson. AprilTag 2: Efficient and robust fiducial
detection. In International Conference on Intelligent Robots
and Systems, 2016.

[25] H. Younes and M. Littman. PPDDL1.0: An Extension to
PDDL for Expressing Planning Domains with Probabilistic
Effects. Techn. Rep. CMU-CS-04-162, 2004.

