Constructing Abstraction Hierarchies Using a Skill-Symbol Loop

George Konidaris
Departments of Computer Science and Electrical & Computer Engineering
Duke University, Durham NC 27708
gdk@cs.duke.edu

Abstract

We describe a framework for build-
ing abstraction hierarchies whereby an
agent alternates skill- and representation-
construction phases to construct a se-
quence of increasingly abstract Markov
decision processes. Our formulation
builds on recent results showing that the
appropriate abstract representation of a
problem is specified by the agent’s skills.
We describe how such a hierarchy can be
used for fast planning, and illustrate the
construction of an appropriate hierarchy
for the Taxi domain.

1 Introduction

One of the core challenges of artificial intelligence is that
of linking abstract decision-making to low-level, real-world
action and perception. Hierarchical reinforcement learning
methods [Barto and Mahadevan, 2003] approach this prob-
lem through the use of high-level temporally extended macro-
actions, or skills, which can significantly decrease planning
times [Sutton et al., 1999]. Skill acquisition (or skill discov-
ery) algorithms (recently surveyed by Hengst [2012]) aim to
discover appropriate high-level skills autonomously. How-
ever, in most hierarchical reinforcement learning research the
state space does not change once skills have been acquired.
An agent that has acquired high-level skills must still plan
in its original low-level state space—a potentially very dif-
ficult task when that space is high-dimensional and contin-
uous. Although some of the earliest formalizations of hi-
erarchical reinforcement learning [Parr and Russell, 1997,
Dietterich, 2000] featured hierarchies where both the set of
available actions and the state space changed with the level of
the hierarchy, there has been almost no work on automating
the representational aspects of such hierarchies.

Recently, Konidaris er al. [2014] considered the question
of how to construct a symbolic representation suitable for
planning in high-dimensional continuous domains, given a
set of high-level skills. The key result of that work was that
the appropriate abstract representation of the problem was di-
rectly determined by characteristics of the skills available to

the agent—the skills determine the representation, and adding
new high-level skills must result in a new representation.

We show that these two processes can be combined into a
skill-symbol loop: the agent acquires a set of high-level skills,
then constructs the appropriate representation for planning
using them, resulting in a new problem in which the agent can
again perform skill acquisition. Repeating this process leads
to an abstraction hierarchy where both the available skills and
the state space become more abstract at each level of the hier-
archy. We describe the properties of the resulting abstraction
hierarchies and demonstrate the construction and use of one
such hierarchy in the Taxi domain.

2 Background

Reinforcement learning problems are typically formalized as
Markov decision processes or MDPs, represented by a tu-
ple M = (S, A, R, P,7), where S is a set of states, A is
a set of actions, R(s,a,s’) is the reward the agent receives
when executing action « in state s and transitioning to state
s', P(s'|s,a) is the probability of the agent finding itself in
state s’ having executed action a in state s, and v € (0, 1] is
a discount factor [Sutton and Barto, 1998].

We are interested in the multi-task reinforcement learning
setting where, rather than solving a single MDP, the agent is
tasked with solving several problems drawn from some task
distribution. Each individual problem is obtained by adding
a set of start and goal states to a base MDP that specifies the
state and action spaces and background reward function. The
agent’s task is to minimize the average time required to solve
new problems drawn from this distribution.

2.1 Hierarchical Reinforcement Learning

Hierarchical reinforcement learning [Barto and Mahadevan,
2003] is a framework for learning and planning using higher-
level actions built out of the primitive actions available to the
agent. Although other formalizations exist—mostly notably
the MAX-Q [Dietterich, 2000] and Hierarchy of Abstract Ma-
chines [Parr and Russell, 1997] approaches—we adopt the
options framework [Sutton et al., 1999], which models tem-
porally abstract macro-actions as options.

An option o consists of three components: an option policy,
T, Which is executed when the option is invoked; an initia-
tion set, which describes the states in which the option may be
executed; and a termination condition, ,(s) — [0, 1], which

describes the probability that an option will terminate upon
reaching state s.

An MDP where primitive actions are replaced by a set of
possibly temporally-extended options (some of which could
simply execute a single primitive action) is known as a
semi Markov decision process (or SMDP), which general-
izes MDPs to handle action executions that may take more
than one time step. An SMDP is described by a tuple M =
(S,0, R, P,~), where S is a set of states; O is a set of op-
tions; R(s’, T|s, 0) is the reward received when executing op-
tion o € O(s) at state s € S, and arriving in state s’ € S after
T time steps; P(s’, T|s, o) is a PDF describing the probability
of arriving in state s’ € .S, 7 time steps after executing option
o € O(s) in state s € S; and v € (0, 1] is a discount factor,
as before.

The problem of deciding which options an agent should ac-
quire is known as the skill discovery problem. A skill discov-
ery algorithm must, through experience (and perhaps addi-
tional advice or domain knowledge), acquire new options by
specifying their initiation set, ,,, and termination condition,
Bo. The option policy is usually specified indirectly via an
option reward function, R,,, which is used to learn 7,. Each
new skill is added to the set of options available to the agent
with the aim of either solving the original or subsequent tasks
more efficiently. Our framework is agnostic to the specific
skill discovery method used (many exist).

Very few approaches combine temporal abstraction with
state abstraction to construct a hierarchy. For example, Mehta
et al. [2008] is able to recover a MaxQ hierarchy from
demonstration trajectories, but assumes a factored, discrete
state space. The most common approach [Hengst, 2002;
Jonsson and Barto, 2005; Vigorito and Barto, 2010; Mugan
and Kuipers, 2012] assumes a factored (but possibly continu-
ous) state MDP, finds a ranking of state factors from “lowest-
level” to “highest-level”, and successively constructs options
to change each state factor; these algorithms differ primarily
in the method used to order the state factors. The resulting
options are hierarchical in the sense that the options for mod-
ifying higher-level state variables can execute those for mod-
ifying lower-level state variables. However, the agent has ac-
cess to all options at the same time, and at the same level,
when learning to solve the task. Similarly, state abstraction is
generally limited to finding option-specific state abstractions
for learning each option policy (typically using only state fac-
tors at a lower-level than the factor the option is constructed
to modify).

2.2 Representation Acquisition

While skill acquisition allows an agent to construct higher-
level actions, it alone is insufficient for constructing truly use-
ful abstraction hierarchies because the agent must still plan in
the original state space, no matter how abstract its actions be-
come. A complementary approach is taken by recent work
on representation acquisition [Konidaris et al., 2014], which
considers the question of constructing a symbolic description
of an SMDP suitable for high-level planning. Key to this is
the definition of a symbol as a name referring to a set of states:

Definition 1. A propositional symbol oz is the name of
a test Ty, and corresponding set of states Z = {s €

S ‘ T, Z(S) = 1}

The test, or grounding classifier, is a compact represen-
tation of a (potentially uncountably infinite) set of states in
which the classifier returns true (the grounding set). Logi-
cal operations (e.g., and) using the resulting symbolic names
have the semantic meaning of set operations (e.g., M) over
the grounding sets, which allows us to reason about which
symbols (and corresponding grounding classifiers) an agent
should construct in order to be able to determine the feasibil-
ity of high-level plans composed of sequences of options. We
use the grounding operator G to obtain the grounding set of
a symbol or symbolic expression; for example, G(oz) = Z,
G(oa and o) = A N B. For convenience we also define G
over collections of symbols; for a set of symbols A, we define
Q(A) = Uig(ai),Vai € A.

Konidaris et al. [2014] showed that defining a symbol for
each option’s initiation set and the symbols necessary to com-
pute its image (the set of states the agent might be in after ex-
ecuting the option from some set of starting states) are neces-
sary and sufficient for planning using that set of options. The
feasibility of a plan is evaluated by computing each succes-
sive option’s image, and then testing whether it is a subset of
the next option’s initiation set. Unfortunately, computing the
image of an option is intractable in the general case. However,
the definition of the image for at least two common classes of
options is both natural and computationally very simple.

The first is the subgoal option: the option reaches some set
of states and terminates, and the state it terminates in can be
considered independent of the state execution began in. In
this case we can create a symbol for that set (called the effect
set—the set of all possible states the option may terminate
in), and use it directly as the option’s image. We thus obtain a
symbolic vocabulary that contains 2n symbols for n options
(a symbol for each option’s initiation and effect sets) and is
provably sufficient for planning. Building a forward model
using this vocabulary leads to a plan graph representation: a
graph with n nodes, and an edge from node ¢ to node j if
option j’s initiation set is a superset of option ¢’s effect set.
Planning amounts to finding a path in the plan graph; once
this graph has been computed, the grounding classifiers can
be discarded.

The second class of options are abstract subgoal options:
the low-level state is factored into a vector of state variables,
and executing each option sets some variables to a subgoal
(again, independently of the starting state) while leaving oth-
ers unchanged. In this case the image operator can be com-
puted using the intersection of the effect set (as in the subgoal
option case) and a modified starting state classifier (where the
variables that are changed by the option are projected out).
The resulting symbols are again necessary and sufficient for
planning, and constructing a forward model using them re-
sults in a STRIPS-like factored representation which can be
automatically converted to PDDL [McDermott et al., 1998].
After conversion the grounding classifiers can be discarded,
and the PDDL model used as input to an off-the-shelf task
planner.

Representation acquisition as described above constructs
an MDP from a low-level SMDP. The low-level SMDP may
be stochastic and have continuous states and continuous prim-

itive actions (though the set of options must be discrete),
but the constructed abstract MDP is discrete and determin-
istic. This occurs because the abstract MDP is constructed
for the purposes of finding plans that are guaranteed to suc-
ceed. This approach has recently been generalized to enable
the agent to instead compute the probability that a plan suc-
ceeds [Konidaris et al., 20151, which results in a stochastic
(but still discrete) abstract MDP; we leave the construction of
probabilistic hierarchies to future work.

3 Constructing Abstraction Hierarchies

The results outlined above show that the two fundamental as-
pects of hierarchy—skills and representations—can be tightly
coupled: skill acquisition drives representational abstraction.
An agent that has performed skill acquisition in an MDP to
obtain higher-level skills can automatically determine a new
abstract state representation suitable for planning in the re-
sulting SMDP. We now show that these two processes can be
alternated to construct an abstraction hierarchy.

We assume the following setting: an agent is faced with
some base MDP M, and aims to construct an abstraction
hierarchy that enables efficient planning for new problems
posed in M, each of which is specified by a start and goal
state set. M may be continuous-state and even continuous-
action, and the options defined in it may be stochastic, but all
subsequent levels of the hierarchy will be constructed to be
discrete-state, discrete-action, and deterministic. We adopt
the following definition of an abstraction hierarchy:

Definition 2. An n-level hierarchy on base MDP M, =
(So, Ao, Ro, Po,v0) is a collection of MDPs M; =
(Si, Aiy Riy, Piyvyi), i € {1,...,n}, such that each action set
Aj, 0 < j < n, is a set of options defined over M;_; (i.e.,
Mj_1+ = (ijl, Aj, ijl, ijl) is an SMDP).

Here, M;_;+ is the SMDP created by adding options to
M _1 but leaving the state space unchanged.

This captures the core assumption behind hierarchical re-
inforcement learning: hierarchies are built through macro-
actions. Note that this formulation retains the downward re-
finement property from classical hierarchical planning [Bac-
chus and Yang, 1991]—meaning that a plan at level j can be
refined to a plan at level j — 1 without backtracking to level
J or higher—because a policy at any level is also a (not nec-
essarily Markovian [Sutton et al., 1999]) policy at any level
lower, including M. However, while Definition 2 links the
action set of each MDP to the action set of its predecessor
in the hierarchy, it says nothing about how to link their state
spaces. To do so, we must in addition determine how to con-
struct a new state space .S, transition probability function P;,
and reward function R;.!

Fortunately, this is exactly what representation acquisition
provides: a method for constructing a new symbolic represen-
tation suitable for planning in M;_,+ using the options in A;.
This provides a new state space S;, which, combined with
A;, specifies P;. The only remaining component is the re-
ward function. A representation construction algorithm based
on sets [Konidaris er al., 2014]—such as we adopt here—is

"We generally set ; = 1 fori > 0.

insufficient for reasoning about expected rewards, which re-
quires a formulation based on distributions [Konidaris et al.,
2015]. For simplicity, we can remain consistent and simply
set the reward to a uniform transition penalty of —1; alterna-
tively, we can adopt just one aspect of the distribution-based
representation and set R; to the empirical mean of the re-
wards obtained when executing each option.

Thus, we have all the components required to build level
j of the hierarchy from level j — 1. This procedure can be
repeated in a skill-symbol loop—alternating skill acquisition
and representation acquisition phases—to construct an ab-
straction hierarchy. It is important to note that there are no
degrees of freedom or design choices in the representation
acquisition phase of the skill-symbol loop; the algorithmic
questions reside solely in determining which skills to acquire
at each level.

This construction results in a specific relationship between
MDPs in a hierarchy: every state at level j refers to a set of
states at level j — 1.2 A grounding in M, can therefore be
computed for any state at level j in the hierarchy by apply-
ing the grounding operator j times. If we denote this “final
grounding” operator as Gy, then Vj, s; € S;,3Zy C Sy such
that g()(Sj) = 7.

We now illustrate the construction of an abstraction hi-
erarchy via an example—a very simple task that must be
solved by a complex agent. Consider a robot in a room
with two boxes, one containing an apple (Figure 1a). The
robot must occasionally move the apple from one box to the
other. Directly accomplishing this involves solving a high-
dimensional motion planning problem, so instead the robot
is given five motor skills: move-gripper-abovel and move-
gripper-above?2 use motion planning to move the robot’s grip-
per above each box; pregrasp controls the gripper so that it
cages the apple, and is only executable from above it; grasp
can be executed following pregrasp, and runs a gradient-
descent based controller to achieve wrench-closure on the ap-
ple; and release drops the apple. These form A, the actions
in the first level of the hierarchy, and since they are abstract
subgoal options (though release must be split into two cases,
one for each box) the robot automatically constructs a fac-
tored state space (see Figure 1b) that specifies M;.> This en-
ables abstract planning—the state space is independent of the
complexity of the robot, although S; contains some low-level
details (e.g., pregrasped).

Next, the robot detects (perhaps by applying a skill dis-
covery algorithm in M) that pregrasp is always followed by
grasp, and therefore replaces these actions with grab-apple,
which together with the remaining skills in A; forms A,.
This results in a smaller MDP, M5 (Figure 1c), which is a
good abstract model of the task. The robot then creates a
skill that picks up the apple in whichever box it is in, and

Note that S, 1 is not necessarily a partition of S;—the ground-
ing sets of two states in S;11 may overlap.

3The careful reader will notice that there are only 6 symbols,
when we were expecting 5 X 2 = 10. This is because in some
cases the precondition set of one option is equal to the effect set of
another (e.g., pregrasped is both the effect set of pregrasp action
and the precondition of grasp) and because some effect sets are the
complement of each other (e.g., the effect sets of release and grasp.)

Sl :
above-box-1 x
above-box-2 x
pregrasped X
grasped X
apple-in-box-1 x
apple-in-box-2

(b)

SQ : Sg :

grabbed x apple-in-box-1 X
above-box-1 x apple-in-box-2
above-box-2 x

apple-in-box-1 X

apple-in-box-2

© (d)

Figure 1: A robot must move an apple between two boxes (a). Given a set of motor primitives it can form a discrete, factored
state space (b). Subsequent applications of skill acquisition result in successively more abstract state spaces (c and d).

moves it over the other box (perhaps by applying a skill dis-
covery algorithm to Ms). A3 now consists of just a single ac-
tion, swap-apple, requiring just two propositions to define Ss:
apple-in-box-1, and apple-in-box-2 (Figure 1d). The abstrac-
tion hierarchy has abstracted away the details of the robot (in
all its complexity) and exposed the (almost trivial) underlying
task structure.

4 Planning Using an Abstraction Hierarchy

Once an agent has constructed an abstraction hierarchy, it
must be able to use it to rapidly find plans for new problems.
We formalize this process as the agent posing a plan query to
the hierarchy, which should then be used to generate a plan
for solving the problem described by the query. We adopt the
following definition of a plan query:

Definition 3. A plan query is a tuple (B, G), where B C S
is the set of base MDP states from which execution may begin,
and G C Sy (the goal) is the set of base MDP states in which
the agent wishes to find itself following execution.

The critical question is at which level of the hierarchy plan-
ning should take place. We first define a useful predicate,
planmatch, which determines whether an agent should at-
tempt to plan at level j (see Figure 2):

Definition 4. A pair of abstract state sets b and g match
a plan query (B, G) (denoted planmatch(b, g, B, G)) when
B C Go(b) and Go(g) C G.

Theorem 1. A plan can be found to solve plan query (B, G)
at level j iff 3b, g C S; such that planmatch(b, g, B, G), and
there is a feasible plan in M; from every state in b to some
state in g.

Proof. The MDP at level j is constructed such that a plan
p starting from any state in G(b) (and hence also Gy(b)) is
guaranteed to leave the agent in a state in G(g) (and hence
also Go(g)) iff p is a plan in MDP M from b to g [Konidaris
et al.,2014].

Plan p is additionally valid from B to G iff B C Gy(b)
(the start state at level j refers to a set that includes all query
start states) and Gy (g) C G (the query goal includes all states
referred to by the goal at level j). O

Note that b and g may not be unique, even within a single
level: because S; is not necessarily a partition of S;_1, there
may be multiple states, or sets of states, at each level whose
final groundings are included by G or include B; a solution

|
Go(b) B G Go(9)

Figure 2: The conditions under which a plan at MDP M
answers a plan query with start state set B and goal state set
G in the base MDP Mj. A pair of state sets b,g C S; are
required such that B C Gy(b), Go(g) C G, and a plan exists
in M; from every state in b to some state in g.

from any such b to any such g is sufficient. For efficient plan-
ning it is better for b to be a small set to reduce the number
of start states while remaining large enough to subsume B;
if b = S then answering the plan query requires a complete
policy for M}, rather than a plan. However, finding a minimal
subset is computationally difficult. One approach is to build
the maximal candidate set b = {s|Go(s) N B # 0,s € S;}.
This is a superset of any start match, and a suitable one ex-
ists at this level if and only if B C UgepGo(s). Similarly, g
should be maximally large (and so easy to reach) while re-
maining small enough so that its grounding set lies within G.
At each level j, we can therefore collect all states that ground
out to subsets of G: g = {s|Go(s) C G,s € S;}. These
approximations result in a unique pair of sets of states at each
level—at the cost of potentially including unnecessary states
in each set— and can be computed in time linear in |S;|.

It follows from the state abstraction properties of the hier-
archy that a planmatch at level j implies the existence of a
planmatch at all levels below j.

Theorem 2. Given a hierarchy of state spaces {So, ...,
constructed as above and plan query (B,G), if 3b,g C S;
such that planmatch(b, g, B, G), for some j,n > j >

then 3, g’ C Sy such that planmatch(b',¢', B,G), Vk €

{0,....5 — 1}

Proof. We first consider & = j — 1. Let ¥ = G(b), and
¢" = G(g). Both are, by definition, sets of states in S;_;.

By definition of the final grounding operator, Gy (b) = Go (V)
and Go(g) = Go(¢'). and hence B C Go(b') and Go(g') C G.
This process can be repeated to reach any k£ < j. 0

Any plan query therefore has a unique highest level j con-
taining a planmatch. This leads directly to Algorithm 1,
which starts looking for a planmatch at the highest level of
the hierarchy and proceeds downwards; it is sound and com-
plete by Theorem 1.

Input: MDP hierarchy { My, ..., M, }, query (B, G).
forje {n,...,0} do
for Vb, g C S; s.t. planmatch(b, g, B, G) do
m < findplan(Mj}, b, g)
if 7 # null then
| return (M;,)
end
end
end
return null
Algorithm 1: A simple hierarchical planning algorithm.

The complexity of Algorithm 1 depends on its two compo-
nent algorithms: one used to find a planmatch, and another
to attempt to find a plan (possibly with multiple start states
and goals). We denote the complexity of these algorithms
as matching cost m(|.S|) (linear using the approach described
above) and planning cost p(|.S|), for a problem with | S| states,
respectively. The complexity of finding a plan at level [,
where the first match is found at level k& > [, is given by
Bk, 1, M) = S70_ 4y m(Sal)+ 2o [m(1Ss]) + p(1Ss)]
for a hierarchy M with n levels. The first term corresponds
to the search for the level with the first planmatch; the second
term for the repeated planning at levels that contain a match
but not a plan (a planmatch does not necessarily mean a plan
exists at that level—merely that one could).

5 Discussion

The formula for A highlights the fact that hierarchies make
some problems easier to solve and others harder: in the
worst case, a problem that should take p(|Sp|) time—
one only solvable via the base MDP—could instead take
Yoo [m(|Sal) + p(|Ss|)] time. A key question is therefore
how to balance the depth of the hierarchy, the rate at which
the state space size diminishes as the level increases, which
specific skills to discover at each level, and how to control
false positive plan matches, to reduce planning time.

Recent work has highlighted the idea that skill discovery
algorithms should aim to reduce average planning or learning
time across a target distribution of tasks [Simsek and Barto,
2008; Solway et al., 2014]. Following this logic, a hierar-
chy M for some distribution over task set 7" should be con-
structed so as to minimize [h(k(t),l(t), M)P(t)dt, where
k and [now both depend on each task ¢. Minimizing this
quantity over the entire distribution seems infeasible; an ac-
ceptable substitute may be to assume that the tasks the agent
has already experienced are drawn from the same distribution

as those it will experience in the future, and to construct the
hierarchy that minimizes h averaged over past tasks.

The form of h suggests two important principles which
may aid the more direct design of skill acquisition algorithms.
One is that deeper hierarchies are not necessarily better; each
level adds potential planning and matching costs, and must be
justified by a rapidly diminishing state space size and a high
likelihood of solving tasks at that level. Second, false positive
plan matches—when a pair of states that match the query is
found at some level at which a plan cannot be found—incur a
significant time penalty. The hierarchy should therefore ide-
ally be constructed so that every likely goal state at each level
is reachable from every likely start state at that level.

An agent that generates its own goals—as a completely au-
tonomous agent would—could do so by selecting an existing
state from an MDP at some level (say j) in the hierarchy. In
that case it need not search for a matching level, and could
instead immediately plan at level j, though it may still need
to drop to lower levels if no plan is found in M.

6 An Example Domain: Taxi

We now explain the construction and use of an abstraction
hierarchy for a common hierarchical reinforcement learning
benchmark: the Taxi domain [Dietterich, 2000], depicted in
Figure 3a. A taxi must navigate a 5 x 5 grid, which contains a
few walls, four depots (labeled red, green, blue, and yellow),
and a passenger. The taxi may move one square in each direc-
tion (unless impeded by a wall), pick up a passenger (when
occupying the same square), or drop off a passenger (when
it has previously picked the passenger up). A state at base
MDP M, is described by 5 state variables: the x and y lo-
cation of the taxi and the passenger, and whether or not the
passenger is in the taxi. This results in a total of 650 states
(25 x 25 = 625 states for when the passenger is not in the
taxi, plus another 25 for when the passenger is in the taxi and
they are constrained to have the same location).

We now describe the construction of a hierarchy for the
taxi domain using hand-designed options at each level, and
present some results for planning using Algorithm 1 for three
example plan queries.

Constructing M. In this version of taxi, the agent is able
to move the taxi to, and drop the passenger at, any square,
but it expects to face a distribution of problems generated by
placing the taxi and the passenger at a depot at random, and
selecting a random target depot at which the passenger must
be deposited. Consequently, we create navigation options for
driving the taxi to each depot, and retain the existing put-
down and pick-up options.* These options over My form the
action set for level 1 of the hierarchy: A; = {drive-to-red,
drive-to-green, drive-to-blue, drive-to-yellow, pick-up, put-
down}.

Consider the drive-to-blue-depot option. It is executable in
all states (i.e., its initiation set is Sy), and terminates with the
taxi’s x and y position set to the position of the blue depot; if

“These roughly correspond to the hand-designed hierarchical ac-
tions used in Dietterich [2000].

Hierarchical Planning

Query Level Matching Planning Total Base + Options Base MDP
1 2 <1 <1 <1 770.42 1423.36
2 1 <1 10.55 11.1 1010.85 1767.45
3 0 12.36 1330.38 1342.74 1174.35 1314.94

Table 1: Timing results for three example queries in the Taxi domain. The final three columns compare the total time for
planning using the hierarchy, by planning in the SMDP obtained by adding all options into the base MDP (i.e., using options
but not changing the representation), and by flat planning in the base MDP. All times are in milliseconds and are averaged over
100 samples, obtained using a Java implementation run on a Macbook Air with a 1.4 GHz Intel Core i5 and 8GB of RAM.

(b)

Figure 3: The Taxi Domain (a), and its induced 3-level hierar-
chy. The base MDP contains 650 states (shown in red), which
is abstracted to an MDP with 20 states (green) after the first
level of options, and one with 4 states (blue) after the second.
At the base level, the agent makes decisions about moving the
taxi one step at a time; at the second level, about moving the
taxi between depots; at the third, about moving the passenger
between depots.

the passenger is in the taxi, their location is also set to that of
the blue depot; otherwise, their location (and the fact that they
are not in the taxi) remains unchanged. It can therefore be
partitioned into two abstract subgoal options: one, when the
passenger is in the taxi, sets the x and y positions of the taxi
and passenger to those of the blue depot; another, when the
passenger is not in the taxi, sets the taxi « and y coordinates
and leaves those of the passenger unchanged. Both leave the
in-taxi state variable unmodified. Similarly, the put-down and
pick-up options are executable everywhere and when the taxi
and passenger are in the same square, respectively, and mod-
ify the in-taxi variable while leaving the remaining variables
the same. Partitioning all options in A; into abstract sub-
goal options results in a factored state space consisting of 20
reachable states where the taxi or passenger are at the depot

locations (4 x 4 states for when the passenger is not in the
taxi, plus 4 for when they are).

Constructing M. Given M;, we now build the second
level of the hierarchy by constructing options that pick up
the passenger (wherever they are), move them to each of
the four depots, and drop them off. These options become
Ao = {passenger-to-blue, passenger-to-red, passenger-to-
green, passenger-to-yellow}. Each option is executable
whenever the passenger is not already at the relevant depot,
and it leaves the passenger and taxi at the depot, with the pas-
senger outside the taxi. Since these are subgoal (as opposed
to abstract subgoal) options, the resulting MDP, M, consists
of only 4 states (one for each location of the passenger) and
is a simple (and coincidentally fully connected) graph. The
resulting hierarchy is depicted in Figure 3b.

We used the above hierarchy to compute plans for three
example queries, using dynamic programming and decision
trees for planning and grounding classifiers, respectively. The
results are given in Table 1; we next present each query, and
step through the matching process in detail.

Example Query 1. Query (); has the passenger start at
the blue depot (with the taxi at an unknown depot) and re-
quest to be moved to the red depot. In this case B refers
to all states where the passenger is at the blue depot and the
taxi is located at one of four depots, and G similarly refers
to the red depot. The agent must first determine the appro-
priate level to plan at, starting from M5, the highest level of
the hierarchy. It finds state s, where Gy (s,) = B (and there-
fore By C Go(sp) holds), and s, where Gy(s,) = G (and
therefore Go(s,) € G1), where s, and s, are the states in
M, referring to the passenger being located at the blue and
red depots, respectively. Planning therefore consists of find-
ing a plan from sy to s, at level Ms; this is virtually trivial
(there are only four states in M5 and the state space is fully
connected).

Example Query 2. Query Q- has the start state set as be-
fore, but now specifies a goal depot (the yellow depot) for the
taxi. B, refers to all states where the passenger is at the blue
depot and the taxi is at an unknown depot, but G5 refers to a
single state. M5 contains a state that has the same grounding
set as By, but no state in M5 is a subset of G5 because no state
in M, specifies the location of the taxi. The agent therefore
cannot find a planmatch for Q- at level M.

At M; no single state is a superset of Bs, but the agent
finds a collection of states s;, such that Go(U;s;) = Ba.

It also finds a single state with the same grounding as Gb.
Therefore, it builds a plan at level M; for each state in s;.

Example Query 3. In query ()3, the taxi begins at the red
depot and the passenger at the blue depot, and its goal is to
leave the passenger at grid location (1,4), with the taxi goal
location left unspecified. The start set, B3, refers to a single
state, and the goal set, G, refers to the set of states where the
passenger is located at (1,4).

Again the agent starts at Ms. Bs is a subset of the ground-
ing of the single state in M, where the passenger is at the
blue depot but the taxi is at an unknown depot. However, G
is not a superset of any of the states in Mo, since none contain
any state where the passenger is not at a depot. Therefore the
agent cannot plan for Q3 at level Ms.

At level M, it again find a state that is a superset of Bs,
but no state that is a subset of Gz—all states in My now ad-
ditionally specify the position of the taxi and passenger, but
like the states in M5 they all fix the location of the passenger
at a depot. All state groundings are in fact disjoint from the
grounding of GG3. The agent must therefore resort to planning
in My, and the hierarchy does not help (indeed, it results in a
performance penalty due to the compute time required to rule
out M7 and M>).

7 Summary

We have introduced a framework for building abstraction hi-
erarchies by alternating skill- and representation-acquisition
phases. The framework is completely automatic except for
the choice of skill acquisition algorithm, to which our for-
mulation is agnostic but upon which the usefulness of the hi-
erarchy entirely depends. The resulting hierarchies combine
temporal and state abstraction to realize efficient planning and
learning in the multi-task setting.

Acknowledgments

The author would like to thank Michael Littman and Philip
Thomas, as well as the reviewers, for their helpful thoughts
on earlier drafts of this paper. This research was supported
in part by DARPA under agreement number D15AP00104,
and by the National Institutes of Health under award num-
ber ROIMH109177. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The content
is solely the responsibility of the authors and does not neces-
sarily represent the official views of the National Institutes of
Health or DARPA.

References

[Bacchus and Yang, 1991] F. Bacchus and Q. Yang. The downward
refinement property. In Proceedings of the 12th International
Joint Conference on Artificial Intelligence, pages 286-292, 1991.

[Barto and Mahadevan, 2003] A.G. Barto and S. Mahadevan. Re-
cent advances in hierarchical reinforcement learning. Discrete
Event Dynamic Systems, 13:41-77, 2003.

[Dietterich, 2000] T.G. Dietterich. Hierarchical reinforcement
learning with the MAXQ value function decomposition. Jour-
nal of Artificial Intelligence Research, 13:227-303, 2000.

[Hengst, 2002] B. Hengst. Discovering hierarchy in reinforcement
learning with HEXQ. In Proceedings of the Nineteenth Interna-
tional Conference on Machine Learning, pages 243-250, 2002.

[Hengst, 2012] Bernhard Hengst. Hierarchical approaches. In
Marco Wiering and Martijn van Otterlo, editors, Reinforcement
Learning, volume 12 of Adaptation, Learning, and Optimization,
pages 293-323. Springer Berlin Heidelberg, 2012.

[Jonsson and Barto, 2005] A. Jonsson and A.G. Barto. A causal
approach to hierarchical decomposition of factored MDPs. In
Proceedings of the Twenty Second International Conference on
Machine Learning, pages 401-408, 2005.

[Konidaris er al., 2014] G.D. Konidaris, L.P. Kaelbling, and
T. Lozano-Perez. Constructing symbolic representations for
high-level planning. In Proceedings of the Twenty-Eighth Con-
ference on Artificial Intelligence, pages 1932—1940, 2014.

[Konidaris ef al., 2015] G.D. Konidaris, L.P. Kaelbling, and
T. Lozano-Perez. Symbol acquisition for probabilistic high-level
planning. In Proceedings of the Tiventy Fourth International Joint
Conference on Artificial Intelligence, pages 3619-3627, 2015.

[McDermott et al., 1998] D. McDermott, M. Ghallab, A. Howe,
C. Knoblock, A. Ram, M. Veloso, D. Weld, and D. Wilkins.
PDDL—the planning domain definition language. Technical Re-
port CVC TR98003/DCS TR1165, Yale Center for Computa-
tional Vision and Control, 1998.

[Mehta et al., 2008] N. Mehta, S. Ray, P. Tadepalli, and T. Diet-
terich. Automatic discovery and transfer of MAXQ hierarchies.
In Proceedings of the Twenty Fifth International Conference on
Machine Learning, pages 648-655, 2008.

[Mugan and Kuipers, 2012] J. Mugan and B. Kuipers. Autonomous
learning of high-level states and actions in continuous environ-
ments. IEEE Transactions on Autonomous Mental Development,
4(1):70-86, 2012.

[Parr and Russell, 1997] R. Parr and S. Russell. Reinforcement
learning with hierarchies of machines. In Advances in Neural
Information Processing Systems 10, pages 1043—-1049, 1997.

[Simgek and Barto, 2008] O. Simsek and A.G. Barto. Skill charac-
terization based on betweenness. In Advances in Neural Infor-
mation Processing Systems 22, pages 1497-1504, 2008.

[Solway et al., 2014] A. Solway, C. Diuk, N. Cordova, D. Yee,
A.G. Barto, Y. Niv, and M.M. Botvinick. Optimal behavioral
hierarchy. PLOS Computational Biology, 10(8):e1003779, 2014.

[Sutton and Barto, 1998] R.S. Sutton and A.G. Barto. Reinforce-
ment Learning: An Introduction. MIT Press, Cambridge, MA,
1998.

[Sutton er al., 1999] R.S. Sutton, D. Precup, and S.P. Singh. Be-
tween MDPs and semi-MDPs: A framework for temporal ab-
straction in reinforcement learning. Artificial Intelligence, 112(1-
2):181-211, 1999.

[Vigorito and Barto, 2010] C.M. Vigorito and A.G. Barto. Intrinsi-
cally motivated hierarchical skill learning in structured environ-
ments. [EEE Transactions on Autonomous Mental Development,
2(2), 2010.

