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Abstract. We present a framework that, given a set of skills a robot can per-
form, abstracts sensor data into symbols that are used to automatically encode
the robot’s capabilities in Linear Temporal Logic (LTL). We specify reactive
high-level tasks based on these capabilities, for which a strategy is automati-
cally synthesized and executed on the robot, if the task is feasible. If a task is
not feasible given the robot’s capabilities, our framework automatically suggests
additional skills for the robot that would make the task feasible. We demonstrate
our framework on a Baxter robot manipulating blocks on a table.

1 Introduction

One of the central challenges in robotics is to create robots that can autonomously per-
form complex tasks in different environments. Adding to the challenge is the desire to
specify the task at a high-level – the “what” and not the “how”. For example, we would
like to specify a task for a robotic waiter as “we have five people sitting at the table,
make sure the table is set and that their water glasses are constantly refilled” instead of
providing a sequence of commands of the form “place a fork by plate 1, then place a
knife by plate 1”, etc. High-level tasks may be reactive, requiring the robot to change its
behavior based on environment input, for example, the choice of whether to pour more
water in a cup will depend on the water level in the cup and on the person’s requests.
Additionally, the robot actions, referred to here as skills, may have nondeterministic
outcomes – a fork may fall on the plate, or off the table – requiring care in the choice
of actions. It is also possible that the robot does not have the right skills to perform the
requested task. In these cases, we would like feedback to be provided to the user.

We automatically abstract and encode the robot’s capabilities in Linear Temporal
Logic (LTL). We do so with abstractions created from sensor data [1]. We take into ac-
count unmodeled nondeterminism in robot skills, such as a fork slipping from a gripper
and landing on the plate or floor instead of next to the plate. Our framework allows
a user to specify a reactive high-level task that takes into account the robot’s skills,
learned symbols, and additional user defined symbols. If the task the user specifies is
infeasible, we automatically suggest additional skills for the robot that would enable it
to complete the task.
Contributions: Given a set of skills a robot is able to perform, we present a framework
for (1) automatically encoding into LTL, from sensor data, the robot capabilities that



2 Pacheck, Konidaris, and Kress-Gazit

are then used to automatically synthesize high-level robot behaviors and (2) if a task is
not feasible due to a missing skill, automatically suggesting skills that repair the task
(i.e. make it executable by the robot). We demonstrate our approach on a Baxter robot
manipulating blocks.
Related work: Typically, to enable robots to perform high-level tasks, the robot’s ca-
pabilities, state, and environment are abstracted into predicates that include the robot’s
skills and their effects on the robot’s state and environment. These predicates are often
abstractions of the state space [2,3,4]. Automated creation of abstractions has been stud-
ied in various domains [1], including the manipulation domain [5]. In He, et al. [5], the
authors sample the state space and plan trajectories to automatically create abstractions
for a manipulation domain before executing a reactive task. We use sensor information
from repeated executions of a given set of skills to create abstractions [1].

Planning algorithms and frameworks use abstractions to find a sequence of com-
mands to reach a goal state [6,7,8]. If there is uncertainty in the outcome of skills,
planners exist that will return the sequence of skills that is most likely to accomplish
the task, but often require replanning when an unexpected effect occurs (e.g. [9]). When
there is uncertainty in sensing, initial state, and actuation, conditional planning can re-
turn a plan that will take these into account [8]. If the robot can not observe the envi-
ronment at all, conformant planning generates a plan for a robot to accomplish its goal
[8]. However, these goals are typically defined as a desired end state, while we consider
more complex tasks. Additionally, if a planner fails to find a plan, to the best of our
knowledge, planners are unable to suggest new skills that result in a valid plan.

Work in synthesis for robotics [2] allows us to specify a reactive high-level task for
a robot and produce a strategy guaranteed to succeed, or a proof that the task cannot
be accomplished (e.g. [10,5,11,12,13,14]). Using synthesis, robots can find a strategy
that accounts for all possible outcomes of their skills and changes in the environment.
If completion of a task cannot be guaranteed, synthesis algorithms can provide expla-
nations as to what caused the problem (e.g. [15,16,17]). This allows repair suggestions
and automated fixes to be made to specifications [18,19]. In prior work, these sugges-
tions either restricted the environment for which the behavior could be guaranteed or
removed robot goals. In this work, we suggest changes that extend the capabilities of the
robot through new skills that are grounded in the sensor-based abstract representation.
Approach: In this paper, we automatically use sensor data to encode robot capabilities
into LTL formulas for use with synthesis algorithms. The abstractions are automatically
created from sensor data using recent work [1]. If a specified task can be completed, we
find a strategy to do so and execute it on the robot. If the task cannot be performed, we
suggest skills that would enable the robot to complete the task.

2 Background

To automatically encode the robot’s capabilities, allow a user to specify reactive high-
level tasks, and offer skill suggestions to repair tasks that cannot be completed, we use
work in symbol generation [1] and Linear Temporal Logic (LTL) synthesis [2].
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Fig. 1: Depiction of Example 1, demonstrating the symbol generation process. (A) Two
skills a1 and a2 and their precondition and effect sets. (B,C) The grounding sets of
the symbols generated from skill a1. The robot considers the value of x1 and x2
when deciding if it can apply a1, so pre-mask(a1) = {>,>}. It only considers the
value of x1 when deciding if it can apply a2, so pre-mask(a2) = {>,⊥}. The ap-
plication of a1 either changes x1 and x2 or only x1, so eff-mask1(a1) = {>,>}
and eff-mask2(a1) = {>,⊥}. In effect 1 of a1, σ>

eff1(a1)
= {σa1,1,x1

, σa1,1,x2
} be-

come > and σ⊥
eff1(a1)

= {σa1,2,x1
, σa2,1,x1

, σa2,1,x2
} become ⊥. In effect 2 of a1,

σ>
eff2(a1)

= {σa1,2,x1
} becomes >, σ⊥

eff2(a1)
= {σa1,1,x1

, σa2,1,x1
} becomes ⊥, and

σstay
eff2(a1)

= {σa1,1,x2 , σa2,1,x2} do not change.

2.1 Symbol Generation

The process of symbol generation [1] automatically constructs a set of symbols which
are used for planning. To illustrate the main ideas of symbol generation, we introduce
Example 1, shown in Figure 1. In this two dimensional space, a robot has two skills a1
and a2 that allow it to move between regions, as shown by the arrows.

The input to the symbol generation process is a set of skills A operating over a
world with a continuous state space (x1, . . . , xn) ∈ X ⊆ Rn. Each skill a ∈ A has
a region from which it is applicable, termed the precondition of a, Pre(a) ⊆ X . The
application of a will result in the state being in one of j ∈ {1, . . . , k(a)} possible
effect sets, denoted by Effj(a) ⊆ X . In Figure 1, a1 has a nondeterministic outcome,
resulting in either Eff1(a1) or Eff2(a1). We create a finite set of propositional symbols
Σ representing the effect sets of a ∈ A. Each σ ∈ Σ is grounded via the grounding
operator G to the state space X .

In determining if a skill can be applied, the values of some xi may matter, while the
values of others may not. We denote this in the precondition mask of a, pre-mask(a) ∈
Bn, where pre-mask(a)(i) = > if the value of xi influences if a can be applied and
⊥ otherwise. We create a classifier to test inclusion in Pre(a), which is defined for xi
for which pre-mask(a)(i) = > . Similarly, when a skill is applied, it may change some
or all of the state variables. We record this in the effect mask, eff-maskj(a) ∈ Bn,
where eff-maskj(a)(i) = > if the value of xi is modified by the application of a in
the jth outcome and ⊥ otherwise. In Figure 1, to apply a1, the values of both x1 and
x2 matter, so pre-mask(a1) = {>,>}. We only consider the value of x1 to determine
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if a2 can be applied, so pre-mask(a2) = {>,⊥}. Effect 1 of a1 changes the value of
x1 and x2 so eff-mask1(a1) = {>,>}, while effect 2 only changes the value of x1, so
eff-mask2(a1) = {>,⊥}.

A separate σ is created1 for each a, j, and xi when eff-maskj(a)(i) = >. We
add subscripts to σ and say each σa,j,xi

grounds to a set over one state variable xi. In
our work, this is done by fitting a Gaussian over the raw data in xi and considering
G(σa,j,xi) to be the set of states spanned by five standard deviations from the mean. If
the raw data for two symbols is found to be the same by a two sample Kolmogorov-
Smirnov test [20], the two symbols are merged into one symbol. The set of symbols
referring to a single state variable xi is Σxi

= {σa,j,xi
|a ∈ A, j ∈ {1, . . . , k(a)}}. The

set of all symbols is Σ =
⋃
xi∈X Σxi . In Figure 1B, Eff1(a1) results in two symbols,

σa1,1,x1 and σa1,1,x2 , because eff-mask1(a1) = {>,>}. Only one symbol, σa1,2,x1 is
generated from Eff2(a1) as eff-mask2(a1) = {>,⊥}.

2.2 Linear Temporal Logic (LTL)

Let AP be a set of atomic propositions and π ∈ AP be a Boolean variable. A formula
in Linear Temporal Logic (LTL) [21] is constructed as:

ϕ ::= π | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕ U ϕ
where negation (¬,“not”) and disjunction (∨,“or”) are Boolean operators and ©

(“next”) and U (“until”) are temporal operators. True is defined as> = ϕ∨¬ϕ and False
as ⊥ = ¬>. Given these operators one can derive conjunction (ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨
¬ϕ2)), implication (ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2), equivalence (ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧
(ϕ2 → ϕ1)), eventually (♦ϕ ≡ >Uϕ), and always (�ϕ ≡ ¬♦¬ϕ).

The semantics of an LTL formula ϕ are defined over an infinite sequence w =
w1w2 . . .[21]. Each wi corresponds to the set of π that are > at step i. We denote that a
sequence w satisfies an LTL formula at instance i by w, i |= ϕ. Intuitively, w, i |=©ϕ
if ϕ is > at step i + 1, w, i |= �ϕ if ϕ holds at every step after and including i in w,
and w, i |= ♦ϕ if ϕ holds at some step on or after i in w.

We consider the generalized reactivity(1) (GR(1)) fragment of LTL [22]. Let AP =
X ∪Y be the set of atomic propositions, whereX is the state of the world as represented
by Σ and additional user defined symbols E, and Y refers to the activation of robot
skills, A. In GR(1), formulas are of the form:

ϕ = (ϕe → ϕs), ϕe = ϕei ∧ ϕet ∧ ϕeg, ϕs = ϕsi ∧ ϕst ∧ ϕsg (1)

where ϕe are assumptions about the environment’s behavior and ϕs are guarantees for
the robot, also referred to as the system, and:

• ϕei and ϕsi are constraints on the initial environment and system states, respectively.
• ϕet and ϕst are environment and system safety constraints, respectively, that must

always be satisfied, of the form
∧
j �φj where φj are Boolean formulas over X ∪

Y ∪ X ′ ∪ Y ′. Here X ′ and Y ′ represent variables in X and Y prefixed with©.
1 Note that σ are only generated from effect sets in Konidaris, et al. [1], future work will consider

generating σ from precondition sets as well.
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• ϕeg and ϕsg are the liveness guarantees of the environment and system, respectively.
These correspond to goals that should be repeatedly achieved and are of the form∧
k �♦ψk where ψk are Boolean formulas over X ∪ Y .

2.3 Synthesis and Counter Strategies

Synthesis is the process of creating a finite state controller for the system such that
Equation 1 is > for every execution [22]. This means that either the environment as-
sumptions hold and the system guarantees are satisfied (ϕe and ϕs are >) or the en-
vironment assumptions are not satisfied (ϕe is ⊥). We say that Equation 1 is realiz-
able if such a controller exists and unrealizable otherwise. We define a controller as
F = (X ,Y, Q,Q0, δ, L), where:

• X and Y are the environment and system propositions, respectively, defined above
• Q is the set of states
• Q0 ⊆ Q is the set of initial states
• δ : Q× 2X → Q is the transition function
• L : Q→ 2X × 2Y is a labeling function that returns which X and Y are >

for q ∈ Q, x ∈ 2X , q′ = δ(q, x) is the next state and L(q) is the set of symbols that
are > in state q. Here, δ depends on X as the system reacts to the environment state.

If Equation 1 is unrealizable, meaning that there does not exist a controller F , the
synthesis algorithm can provide a counter-strategy that represents the behavior of the
environment that will cause the system to fail [17,16]. We define such a strategy as
Fcs = (X ,Y, Q,Q0, Qnt, δcs, Lt, Lnt), where X ,Y, Q,Q0 are the same as in F and:

• Qnt ⊆ Q is the set of states from which there are no outgoing transitions
• δcs : Q \Qnt × 2X → Q is the transition function
• Lt : Q\Qnt → 2X ×2Y is the labeling function for states with outgoing transitions
• Lnt : Qnt → 2X is the labeling function for states with no outgoing transitions.

The system has no valid transitions from Qnt, so only X is needed to label Qnt.

In section 5, we use the states with no outgoing transitions, Qnt, to narrow the search
for skills to repair unrealizable specifications.

3 Problem Formulation

Our goal is to automatically encode the capabilities of the robot in a Linear Temporal
Logic (LTL) formula and find a strategy for a reactive high-level task. If no strategy can
be found, we find additional skills that would allow the robot to complete the task.

Problem 1: Given a set of skills A, automatically abstract and encode the capabili-
ties of the robot in an LTL formula, ϕfixed. Allow a user to specify a reactive high-level
task and find a strategy to fulfill it.

Problem 2: Given an unrealizable specification ϕunreal and counter-strategy Fcs,
find an additional skill, anew, such that constructing ϕfixed with A ∪ anew makes the
specification ϕunreal realizable, if such a skill exists.
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Fig. 2: Framework for automatically encoding robot capabilities, executing tasks, and
repairing unrealizable tasks. Novel contributions are in bold.

4 Symbols, Specifications, and Synthesis

In Problem 1, we automatically encode the robot’s capabilities in ϕfixed using learned
abstractions. The robot-fixed specification, ϕfixed, can be reused for different tasks per-
formed by the same robot. The user then writes the task specific specification, ϕtask, over
Σ ∪E ∪A, which is combined with ϕfixed to create ϕfull. The symbols in Σ are learned
from the low-level sensor information [1], E are additional user defined environment
propositions, and A are the skills of the robot. Using a synthesis algorithm, such as
Slugs [23], we either find a strategy for accomplishing ϕfull or a counter-strategy. An
overview of the framework is depicted in Figure 2.

4.1 Robot-fixed Specification (ϕfixed)

Given a set of skillsA, we first create symbols σ ∈ Σ, representing the effects of a ∈ A
[1]. We slightly abuse notation and use a as a proposition that is > when the skill a is
active, and ⊥ otherwise.

The robot-fixed specification (ϕfixed) is composed of the system safety (ϕs
t,fixed =

ϕs
t,pre ∧ ϕs

t,mut exc) and environment safety (ϕe
t,fixed = ϕe

t,eff ∧ ϕe
t,no act) specifications. The

system safety specification includes constraints on when the system is allowed to per-
form skills (ϕs

t,pre) and optionally the mutual exclusion of skills (ϕs
t,mut exc). The environ-

ment safety specification includes how each σ is allowed to change with the application
of a skill (ϕe

t,eff) and the effect of no skill being performed (ϕe
t,no act).

System Safety (ϕs
t,fixed): For each action, we find all possible combinations of sym-

bols that overlap with the precondition mask and determine which combinations fall
within the precondition set [1]. We define σpre(a) = {σp ∈ Σpre-mask(a)|G(σp) ⊆
Pre(a)}, where Σpre-mask(a) =

∏
xi∈X,pre-mask(a)(i)=>Σxi

. The set σpre(a) contains all
the combinations of σ that satisfy the precondition of a. When none of the preconditions
in σpre(a) are satisfied, the robot is not allowed to perform a. We encode this as:
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ϕs
t,pre =

∧
a∈A

�

¬
 ∨
σp∈σpre(a)

 ∧
σ∈σp

σ

→ ¬a
 . (2)

Equation 2 states that skill a cannot be executed if no combinations of symbols
σp ∈ σpre(a), are >. Therefore, only when some combination of symbols σp ∈ σpre(a)
is > can a be performed. In Figure 1, σpre(a2) = {{σa1,1,x1

}, {σa1,2,x1
}}.

We can encode mutual exclusion of skills in ϕs
t,mut exc. In the examples presented,

skills are mutually exclusive, although in general they do not have to be.
Environment Safety (ϕe

t,fixed): To encode a skill’s nondeterministic effects, we con-
sider the skill outcome as part of the uncontrolled environment.

We denote the symbols which become>with the application of a skill a as σ>
effj(a) =

∪i σa,j,xi [1]. In Figure 1, σ>
eff2(a1)

= {σa1,2,x1}.
When a is applied, symbols whose grounding sets do not overlap with those in

σ>
effj(a) become ⊥ due to mutual exclusion. We denote this set of symbols as σ⊥

effj(a) =

∪xi|eff-maskj(a)(i)=>{σ ∈ Σxi
| G(σ) ∩ G(σa,j,xi

) = ∅}. In Figure 1, σ⊥
eff2(a1)

=

{σa1,1,x1 , σa2,1,x1}.
When performing synthesis [2], if a symbol is not constrained, it can be set to

any value. We must therefore consider the “frame problem” [24] and constrain sym-
bols that are not modified by the current skill to stay the same. The set σstay

effj(a) =

∪xi|eff-maskj(a)(i)=⊥Σxi contains the σ not modified by skill a in the jth outcome. In
Figure 1, because x2 is not modified in effect 2 of a1, σstay

eff2(a1)
= {σa1,1,x2

, σa2,1,x2
}.

We encode how the truth values for σ can change when a skill is applied in ϕe
t,eff:

ϕe
t,eff =

∧
a∈A

�

a→ ∨
j∈{1,...,k(a)}


 ∧
σ∈σ>

effj(a)

©σ

∧
 ∧
σ∈σ⊥

effj(a)

©¬σ

∧
 ∧
σ∈σstay

effj(a)

(σ ↔©σ)



 .

(3)

Equation 3 states that when skill a is performed, it leads to one of j nondeterministic
outcomes with σ ∈ σ>

effj(a) becoming >, σ ∈ σ⊥
effj(a) becoming ⊥, and σ ∈ σstay

effj(a) not
changing. Symbols whose grounding sets overlap with those in σ>

effj(a) and are therefore

not in σ>
effj(a), σ

⊥
effj(a), or σstay

effj(a) are not constrained. In the examples presented in this
work, there are no such symbols.

When no skill is performed, no σ can change as encoded in ϕe
t,no act:

ϕe
t,no act = �

[(∧
a∈A
¬a

)
→

( ∧
σ∈Σ

(σ ↔©σ)

)]
. (4)
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4.2 Task-Specific Specification, Synthesis, and Execution

The user writes the task-specific specification, ϕtask, which may include adding environ-
ment propositions πenv ∈ E. The task-specific specification includes the initial state of
the system, initial state of the environment, system liveness, and environment liveness
in ϕs

i,task, ϕe
i,task, ϕs

g,task, and ϕe
g,task, respectively. Additional system safety constraints

can be added in ϕs
t,task. We give examples of these formulas in Section 6.

The full specification is then written as:

ϕfull = ϕe
i,task ∧ ϕe

t,fixed ∧ ϕe
g,task → ϕs

i,task ∧ ϕs
t,fixed ∧ ϕs

t,task ∧ ϕs
g,task (5)

We generate a strategy for satisfying ϕfull using a synthesis algorithm, such as Slugs
[23]. If ϕfull is realizable, the resulting automaton F = (X ,Y, Q,Q0, δ, L), where
X = Σ ∪ E and Y = A, is used to control the robot.

To assist the user in writing ϕtask, we visualize the grounding of the symbols and
combinations of symbols. Figures 4E and 4F show examples of individual symbol
groundings. Figures 4A-D, 5C, and 5F visualize the combination of multiple symbols.
To visualize each combination of symbols, 10 samples are drawn from the intersection
of the grounding sets of the symbols.

5 Specification Repair through Finding Additional Skills

We address Problem 2 by searching for a skill, anew, to make an unrealizable task re-
alizable when ϕfixed is constructed with A ∪ {anew}. We assume the robot has all the
symbols it needs to define the task and that our new skill will consist of a precondition
set and effect mask we have already seen, reducing the search space of the new skill.

We leverage the structure of Fcs to focus the repair process. The counter strategy,
Fcs, contains the environment behaviors that make a specification unrealizable. In gen-
eral, a generalized reactivity(1) (GR(1)) specification is unrealizable either because the
robot violates safety constraints or gets stuck in a loop when trying to satisfy its liveness
goals. When the robot can only satisfy its liveness goals by violating safety constraints,
the counter strategy contains states with no successors (i.e.Qnt 6= ∅). We find the skills
that lead to these states, and use their precondition sets to narrow the search space for
anew. We generate new effect sets, based on existing effect masks, and combine them
with the precondition sets to create new skills.

Algorithm 1 shows our procedure for repairing unrealizable specifications. In line
2, we create new effect sets based on existing effect masks. We only consider effect
masks that already exist, making the assumption that the new skills will change similar
states as current skills. For each existing effect mask, we find all the state variables that
are changed. We then compute all possible combinations of σa,j,xi that ground to those
state variables, regardless of which skill they were originally generated from. In line 3,
we findAtest, the set of skills whose preconditions were satisfied that lead to states with
no outgoing transitions. In lines 5-8, we construct new skills, anew, each one consisting
of the precondition set of a skill in Atest and a new effect set found in Σ+. In line 9, we
check that the anew under consideration does not already exist. We then construct ϕfixed
with the proposed skill anew in line 10 and synthesize a strategy for ϕfull in line 11. If
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Algorithm 1 Specification Repair

1: procedure REPAIR(Fcs, A,Σ)
2: Σ+ ←

⋃
a∈A,j∈{1,...,k(a)}

∏
xi∈X,eff-maskj(a)(i)=>Σxi

3: Atest ← {a ∈ A| ∃σp ∈ σpre(a), q ∈ Q, x ∈ 2X s.t. δ(q, x) ∈ Qnt, σp ∈
Lt(q)}

4: An ← ∅
5: for a ∈ Atest do
6: σpre(anew) ← σpre(a)
7: for σtest ∈ Σ+ do
8: σ>

eff(anew)
← σtest

9: if @ a ∈ A, s.t. σpre(anew) = σpre(a)and σ>
eff(anew)

= σ>
eff(a) then

10: Write ϕfixed with A ∪ anew
11: Synthesize ϕfull with ϕfixed and ϕtask
12: if Realizable then
13: An ← An ∪ (σpre(anew), σ

>
eff(anew)

)
14: end if
15: end if
16: end for
17: end for
18: return An
19: end procedure

the new specification is realizable, anew is added to the set of suggested skills in line 13.
All anew which make ϕfull realizable are returned to the user, enabling them to select the
skill they deem easiest to physically implement.

6 Robot Demonstrations

We use the following example with a Baxter to demonstrate the process of automatically
creating ϕfixed, writing and executing task specifications, and the repair process.

Example 2: Consider a robot manipulating blocks. The robot has skills that enable
it to move the blocks between different locations as shown in Figure 3A. In this domain,
the location AT is one block height above location A and location C is slightly elevated.
Skills are referenced by the starting and ending locations in the format astart-to-end.
For example, the skill moving a block from location D to A is referred to as ad-to-a.
One skill takes blocks from locations A and AT to D and another takes blocks from A
and AT to E. There is no robot skill which attempts to place a block directly in location
G. The skill moving block 3 from location F to C, af-to-c, may result in block 3 ending
up in either location C or G. Likewise, the skill moving block 3 from location G to C,
ag-to-c, may result in block 3 ending up in C or G. In this scenario, the nondeterminism
was due to location C being elevated and block 3 having a chance of falling into G.
Given these skills, we want the robot to configure the blocks as shown in Figure 5A
when a user defined environmental variable switch = > and as shown in Figure 5D
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DEF 123
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A                                B

Fig. 3: (A) Example 2: Block manipulation domain. The arrows show the skills given
to the robots to move blocks between lettered locations. Dashed arrows represent skills
with nondeterministic outcomes. One skill takes blocks from A and AT to D and another
from A and AT to E. (B) Initial setup of the Baxter robot and blocks.

when switch = ⊥. The robot must react to the variable switch and the outcome of
skills moving block 3 to location C.

6.1 Environment Setup

Figure 3 shows the environment, a table with seven locations and three blocks on it.
The blocks are 6.4 cm cubes. AprilTags [25] denote each location and block. The origin
of the coordinate system is in the Baxter robot, with the the x and y positions of the
AprilTags (in meters) at approximately (0.7,.0.2), (0.7,0), (0.7,-.1), (0.4,0.2), (0.4,0),
and (0.4,-.2) for locations A, B, D, E, F, and G, respectively, and z = -0.12. The location
of region C was on top of a wooden block at approximately (0.7,-0.3,-.08).

6.2 Skills

We defined 10 robot skills, each of which involved moving a block from one location
to another, shown by arrows in Figure 3A. Blocks 1 and 2 (red and blue, respectively)
were manipulated by the left arm of the Baxter and block 3 (green) by the right arm.
The robot was allowed to execute each skill when the center of the block is within 6
cm of the AprilTag representing the starting location, with the exception of location G,
where the distance is 15 cm.

The sensor data are the coordinates of the AprilTags, identified by cameras at the
ends of the Baxter’s arms. Each skill consists of a robot arm moving from the resting
position, shown in Figure 3B, to above the block, picking up the block, moving above
the goal location, releasing the block, and returning to the resting position. We use
MoveIt [26] to generate the commands to move the robot arms between the waypoints
that make up the skill.

6.3 Symbol learning

The continuous state space is the x, y, and z positions of each of the blocks. We col-
lected position data from between 60 and 137 executions of each skill.
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Fig. 4: Visualization of symbol combinations (A): σ9∧σ7∧σ10∧σ11∧σ13∧σ12∧σ17∧
σ18∧σ16, (B): σ9∧σ7∧σ10∧σ3∧σ4∧σ12∧σ17∧σ18∧σ16, (C): σ9∧σ7∧σ10∧σ3∧σ4∧
σ12∧σ0∧σ1∧σ2, (D): σ9∧σ7∧σ10∧σ3∧σ4∧σ12∧σ0∧σ18∧σ16. All other symbols were
⊥. Ten samples were drawn from the intersection of the grounding sets of each symbol
combination. Possible transitions are shown between the subfigures, corresponding to
transitions in Equations 7 and 8. Applying skill ae-to-a-2 to (A) results in (B). Applying
skill af-to-c in (B) results in (C) or (D). Examples of symbol groundings are shown in
(E) and (F) in black. The raw data is shown in green and the Gaussian fit to it in red.

The symbol learning process created 19 symbols after automatically merging sym-
bols with similar effect sets, as found by a two sample Kolmogorov-Smirnov test [20].
Block 3 has three distinct sets of values in the y dimension, corresponding to loca-
tions C, B, and G, therefore the framework created three symbols referring to the y3
state variable. For every other block and dimension, there are only two distinct sets of
values, and therefore two symbols.

The learning process created 20 abstract skills from the 10 initial robot skills. This
is due to the learning process partitioning skills that could move either block 1 or 2 into
separate skills [1]. For example, skill ae-to-a was partitioned into two skills, ae-to-a-1
and ae-to-a-2. Skills ad-to-a, ae-to-at, and ad-to-at were also partitioned into two
skills. Skills aa-to-d, and aa-to-e were partitioned into four skills each, corresponding
to blocks 1 and 2 starting in either A or AT. Skills involving block 3 were not partitioned.

6.4 Robot-fixed Specification (ϕfixed)

We automatically encoded the symbols {σ0, . . . , σ18} ∈ Σ and skills {af-to-c, . . . ,
ad-to-at-2} ∈ A in ϕfixed. In Equation 6, part of the robot-fixed system safety formula
ϕs

t,fixed is shown. Part of the environment safety formula ϕe
t,eff is shown in Equations 7

and 8. Figure 4A-D visualize the result of applying skills ae-to-a-2 and af-to-c.
The precondition requirements of ac-to-b are encoded in ϕs

t,fixed as:

�(¬σ1 → ¬ac-to-b) (6)

Based on the data the robot has seen, it determines that it only needs to consider
the value of y3 in deciding if skill ac-to-b can be performed. There is only one symbol
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falling inside the precondition set so σpre(ac-to-b) = {{σ1}}. Therefore, equation 6 states
that if σ1 is not >, i.e. block 3 is not at approximately y = −0.3m, skill ac-to-b can
not be applied.

The part of ϕe
t,fixed referring to the effect of skill ae-to-a-2 is:

�( ae-to-a-2 → (©(σ3 ∧ σ4) ∧©(¬σ11 ∧ ¬σ13)
∧

σ∈σstay
eff1(ae-to-a-2)

(σ ↔©σ)))
(7)

where σstay
eff1(ae-to-a-2)

= {σ0, σ1, σ2, σ5, . . . , σ10, σ12, σ14, . . . , σ18}. This corresponds
to block 2 moving from location E to A and blocks 1 and 3 not moving. A potential out-
come of applying skill ae-to-a-2 is visualized in Figure 4B.

The part of ϕe
t,fixed referring to the nondeterministic effects of skill af-to-c is:

�((af-to-c)→ ((©σ0 ∧©¬σ17
∧

σ∈σstay
eff1(af-to-c)

(σ ↔©σ))∨

(©(σ0 ∧ σ1 ∧ σ2) ∧©(¬σ15 ∧ ¬σ17 ∧ ¬σ16 ∧ ¬σ18)
∧

σ∈σstay
eff2(af-to-c)

(σ ↔©σ))))

(8)

where σstay
eff1(af-to-c)

= {σ1, . . . , σ16, σ18} and σstay
eff2(af-to-c)

= {σ3, . . . , σ14}. Equa-
tion 8 encodes that when skill af-to-c is applied, either σ0 becomes> and σ17 becomes
⊥ with symbols in σstay

eff1(af-to-c)
not changing (block 3 ends in G), or σ0, σ1, and σ2 be-

come> and σ15, σ17, σ16, and σ18 become⊥with symbols in σstay
eff2(af-to-c)

not changing
(block 3 ends in C). This is visualized in Figures 4C and 4D.

6.5 Task Specification (ϕtask)

We introduce an additional environment variable switch ∈ E. The task liveness speci-
fication shown in Figure 5 is:

�♦(Switch→ (σ6 ∧ σ7 ∧ σ10 ∧ σ3 ∧ σ4 ∧ σ5 ∧ σ17 ∧ σ18 ∧ σ16)) (9)

�♦(¬Switch→ (σ6 ∧ σ7 ∧ σ8 ∧ σ3 ∧ σ4 ∧ σ12 ∧ σ0 ∧ σ1 ∧ σ2)) (10)

Equation 9 encodes that when switch = >, block 1 should eventually be in A, block
2 in AT, and block 3 in F (Figure 5A-C). Equation 10 encodes that when switch = ⊥,
block 1 should be in AT, block 2 in A, and block 3 in C (Figure 5D-F).

We include a fairness assumption on the environment (Equation 11) that block 3
will eventually be placed in location C when ag-to-c is applied. Without this, the spec-
ification is unrealizable because in the worst case, skill ag-to-c always results block 3
ending in G.

ϕe
g,task = �♦(ag-to-c → (σ0 ∧ σ1 ∧ σ2)) (11)
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Fig. 5: (A,B,C) Where the blocks should be when switch = >. (D,E,F) Where the
blocks should be when switch = ⊥. (A,D) As seen by an observer. (B,E) As seen by
the Baxter’s left hand camera. (C,F) As represented by sampling 10 points from the
grounding sets of the > symbols. Above each row is the liveness formula.

6.6 Synthesis and Execution

We generated an automaton F , with 58 states, containing a strategy to fulfill the specifi-
cation ϕfull using Slugs [23] in 12 seconds on a desktop machine running Ubuntu 14.04
with 8 GB RAM. We controlled the Baxter using F and provided the switch input
through a user interface. We sampled the current state x ∈ X to find out which symbols
were >. A symbol σa,j,xi

was > if the state was in the grounding set for the symbol,
G(σa,j,xi

). All other symbols were⊥. We show an example execution of F in Figure 6.

6.7 Repair

We demonstrate the repair process by finding skill suggestions for four unrealizable
specifications. For two specifications we find Atest 6= ∅, allowing us to narrow the
search space for new skills to those with the same preconditions as a ∈ Atest. We find
Atest = ∅ for the other two specifications, requiring us to perform an exhaustive search
for new skills over all preconditions sets.

The two unrealizable specifications for which we can narrow the search space of
possible skills have the same ϕfixed and ϕtask as in Section 6.4 and 6.5, with the addition
of ϕs

t,task, as shown in Figure 7 and described below.
Unrealizable Specification 1: In Figure 7A, we show the added constraint that

block 3 never be in location B, ϕs
t,task = �¬© (σ0 ∧ σ15). This type of scenario could

occur if there was an obstacle in location B.
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A B C

D E F

Fig. 6: The Baxter reacting to the value of switch (shown at the bottom of each figure)
and the nondeterministic effects of its skills to fulfill the task in Equations 9 and 10.

Unrealizable Specification 2: In Figure 7B, we show the added constraint that the
robot never use skill ac-to-b, ϕs

t,task = �¬ac-to-b. This type of scenario could occur if
a motor enabling skill ac-to-b was damaged and the skill could not be performed.

For both Unrealizable Specifications 1 and 2, the repair process found Atest =
{ac-to-b}, corresponding to the precondition that block 3 be in location C. The repair
process searched through 63 possible skills and tested 62 with Slugs to find six skill
suggestions for Unrealizable Specification 1 and three skill suggestions for Unrealizable
Specification 2 in 9.9 minutes and 23.1 minutes, respectively. Some suggestions were
not physically possible, such as a suggestion with σpre(anew) = {{σ1}} and σ>

eff(anew)
=

{σ17, σ1, σ16}, corresponding to moving block 3 to the x position of location F and the y
and z position of to location C, which would leave the block floating in the air. One skill
suggestion, with σpre(anew) = {{σ1}} and σ>

eff(anew)
= {σ17, σ18, σ16}, corresponding to

moving block 3 from location C to F, is physically possible. When this skill is added to
Unrealizable Specifications 1 and 2, the task is realizable.

Unrealizable Specification 3: We removed skill ac-to-b from A before writing the
specification, using the same set of symbols Σ as in Section 6.4. The user defined task
was the same as in Equations 9 and 10.

Unrealizable Specification 4: We removed all data pertaining to skill ac-to-b be-
fore the symbol generation process. This resulted in a different set of symbols, Σ. The
user defined task was the same as represented in Figure 5. There were no longer sym-
bols corresponding to block 3 being in location B, as symbols are only generated from
effect sets, so the subscripts in Equations 9 and 10 were different.

For both Unrealizable Specification 3 and 4, the repair process found Atest = ∅,
requiring an exhaustive search of the skill space. For Unrealizable Specification 3, the
repair process searched through 1197 new skills, tested 1172 of them with Slugs, and
found 68 possible new skills in 325 minutes. For Unrealizable Specification 4, the repair
process searched through 810 new skills, tested 788 of them, and found 17 possible
skills to repair the specification in 111 minutes. The repair process suggested a skill that
would move block 3 from both locations C and G to location F for both specifications.
With the fairness assumption in Equation 11, this has the same result as giving the
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Fig. 7: Additional constraints for: (A) Unrealizable Specification 1 (the block cannot
move into location B, �¬©(σ0∧σ15)), (B) Unrealizable Specification 2 (skill ac-to-b
is not allowed). (C) The skill, ac-to-f, used to repair Unrealizable Specifications 1-4.

robot a skill moving block 3 from C to F. When we added a skill from C to F, both
specifications were realizable.

Figure 7C shows the additional skill ac-to-f. We collected data from 57 executions
of skill ac-to-f and relearned the symbols, precondition sets, and effect sets. When we
rewrote the previously unrealizable specifications after incorporating this new data, all
the specifications were realizable.

7 Conclusion

We have shown a framework for automatically encoding robot capabilities using ab-
stractions generated from sensor data in Linear Temporal Logic (LTL). We allow a
user to specify reactive high-level tasks for the robot to perform, which can involve
additional user defined symbols. We provide skill suggestions to repair unrealizable
specifications. Our framework is demonstrated on a Baxter robot manipulating blocks.

In future work, we will demonstrate our framework on additional domains, and con-
sider abstract representations that are grounded locally [27]. We will develop methods
of refining skill suggestions for repair.
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