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Abstract

We present a framewaork for transfer in reinforcement leagriased on the idea that related tasks
share some common features, and that transfer can be athievéhose shared features. The
framework attempts to capture the notion of tasks that datea but distinct, and provides some
insight into when transfer can be usefully applied to a probkequence and when it cannot. We
apply the framework to the knowledge transfer problem, &odvthat an agent can learn a portable
shaping function from experience in a sequence of taskgtofisiantly improve performance in
a later related task, even given a very brief training peri also apply the framework to skill
transfer, to show that agents can learn portable skillssacacssequence of tasks that significantly
improve performance on later related tasks, approachmgéhformance of agents given perfectly
learned problem-specific skills.

Keywords: reinforcement learning, transfer, shaping, skills

1. Introduction

One aspect of human problem-solving that remains poorly understoodabitie to appropriately
generalize knowledge and skills learned in one task and apply them to impeoigmance in
another. This effective use of prior experience is one of the reas@ashumans are effective
learners, and is therefore an aspect of human learning that we would tielicate when designing
machine learning algorithms.

Although reinforcement learning researchers study algorithms for inmaydask performance
with experience, we do not yet understand how to effectitrelgsferlearned skills and knowledge
from one problem setting to another. It is not even clear which probleuesees allow transfer,
which do not, and which do not need to. Although the idea behind transfeiniorcement learning
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seems intuitively clear, no definition or framework exists that usefully formslihe notion of
“related but distinct” tasks—tasks that are similar enough to allow transtatitberent enough to
require it.

In this paper we present a framework for transfer in reinforcememileg based on the idea
that related tasks share some common features and that transfer cafatakéhpugh functions
defined only over those shared features. The framework attempts toectpunotion of tasks that
are related but distinct, and it provides some insight into when transfdyecarefully applied to a
problem sequence and when it cannot. We then demonstrate the frarisawgerkn producing algo-
rithms for knowledge and skill transfer, and we empirically demonstrate thdtireg performance
benefits.

This paper proceeds as follows. Section 2 briefly introduces reinfarntlearning, hierarchi-
cal reinforcement learning methods, and the notion of transfer. Secitaro8uces our framework
for transfer, which is applied in Section 4 to transfer knowledge learraed €arlier tasks to im-
prove performance on later tasks, and in Section 5 to learn transfehighldevel skills. Section 7
discusses the implications and limitations of this work, and Section 8 concludes.

2. Background

The following sections briefly introduce the reinforcement learning probleerarchical reinforce-
ment learning methods, and the transfer problem.

2.1 Reinforcement Learning

Reinforcement learning (Sutton and Barto, 1998) is a machine learniagigar where an agent
attempts to learn how to maximize a numerical reward signal over time in a giveomrment. As
a reinforcement learning agent interacts with its environment, it receivesard (or sometimes
incurs a cost) for each action taken. The agent’s goal is to use this irtformta learn to act so as
to maximize the cumulative reward it receives over the future.

When the agent’s environment is characterized by a finite number of distates, it is usually
modeled as a finite Markov Decision Process (Puterman, 1994) desbyilsedpleM = (S A P,R),
whereSis the finite set of environmestateghat the agent may encountéris a finite set ofctions
that the agent may executB(s'|s,a) is the probability of moving to state € S from statese S
given actiona € A; andR is areward function which given states ands’ and actiona returns a
scalar reward signal to the agent for executing actions and moving tcs'.

The agent’s objective is to maximize its cumulative reward. If the rewardvext®y the agent
at time k is denotedry, we denote this cumulative reward (termedurn) from timet asR; =
z{’;oy‘rmﬂ, where 0< y < 1 is adiscount factorthat expresses the extent to which the agent
prefers immediate reward over delayed reward.

Given apolicy Tt mapping states to actions, a reinforcement learning agent may laainea
function V, mapping states to expected return. If the agent is given or learns mddelaml R,
then it may update its policy as follows:

1(s) = argmaxy P(s|s,a)[R(s,a,s) +W(s)],Vs€ S (1)
a g

Once the agent has updated its policy, it must learn a new estimate Bie repeated execution
these two steps (value function learning and policy updates) is knowolay iteration Under
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certain conditions (Sutton and Barto, 1998), policy iteration is guarantemmhteerge to aoptimal
policy T that maximizes return from every state. Policy iteration is usually performed ithplic
the agent simply defines its policy as Equation 1, effectively performingypitécation after each
value function update.

In some applications, states are described by vectors of real-valuedefeamaking the state
set a multidimensional continuous state space. (Hereafter we use thetédenspacdo refer to
both discrete state sets and continuous state spaces.) This creates texmprétirst, one must find
a way to compactly represent a value function defined on a multi-dimensieslavalued feature
space. Second, that representation must facilgateeralization in a continuous state space the
agent may never encounter the same state twice and must instead genesalizxgeriences in
nearby states when encountering a novel one.

The most common approximation schemdingar function approximatioriSutton and Barto,
1998). HereV is approximated by the weighted sum of a veasboof basis functions

V(s) = w-0(5) = 5 was. @

where@ is theith basis function. Thus learning entails obtaining a weight veat@uch that
the weighted sum in Equation 2 accurately approxim&atesSinceV is linear inw, whenV'’s

approximation as a weighted sum is not degenerate there is exactly oneginhl w; however,
we may represent complex value functions this way because each basi®riup may be an
arbitrarily complex function os.

The most common family of reinforcement learning methods, and the methodsrugi@s
work, aretemporal difference methodSutton and Barto, 1998). Temporal difference methods
perform value function learning (and hence policy learning) online uidfinadirect interaction with
the environment. For more details see Sutton and Barto (1998).

2.2 Hierarchical Reinforcement Learning and the Options Framework

Much recent research has focused on hierarchical reinforcelemming (Barto and Mahadevan,
2003), where, apart from a given set of primitive actions, an aganacquire and use higher-level
macro actions built out of primitive actions. This paper adopts the optionsefr@rk (Sutton et al.,
1999) for hierarchical reinforcement learning; however, our eagin could also be applied in other
frameworks, for example the MAXQ (Dietterich, 2000) or Hierarchy os#khct Machines (HAM)
(Parr and Russell, 1997) formulations.

An optiono consists of three components:

TH: (s,a +—[0,1],
lo: S — {0,1},
Bo: s — [0,1],

wherery, is theoption policy(which describes the probability of the agent executing actiorstate
s, for all states in which the option is defined))js theinitiation setindicator function, which is 1 for
states where the option can be executed and 0 elsewher, anithetermination conditiongiving
the probability of the option terminating in each state (Sutton et al., 1999). Theneftamework
provides methods for learning and planning using options as temporallydexteactions in the
standard reinforcement learning framework (Sutton and Barto, 1998).
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Algorithms for learning new options must include a method for determining wheretiie an
option or alter its initiation set, how to define its termination condition, and how to leapolicy.
Policy learning is usually performed by an off-policy reinforcement lgay@lgorithm so that the
agent can update many options simultaneously after taking an action (Sution898).

Creation and termination are usually performed by the identification of gdakstaith an op-
tion created to reach a goal state and terminate when it does so. The initidtisthes the set of
states from which the goal is reachable. Previous research has dejeelestates by a variety of
methods, for example: visit frequency and reward gradient (Digri@8) visit frequency on suc-
cessful trajectories (McGovern and Barto, 2001), variable chaegeéncy (Hengst, 2002), relative
novelty (Simsek and Barto, 2004), clustering algorithms and value gradiglannor et al., 2004),
local graph partitioning (Simsek et al., 2005), salience (Singh et al4)2@@usal decomposition
(Jonsson and Barto, 2005), and causal analysis of expert tragsc{Mehta et al., 2008). Other
research has focused on extracting options by exploiting commonalities ictanie of policies
over a single state space (Thrun and Schwartz, 1995; Bernstein, R889ns and Precup, 1999;
Pickett and Barto, 2002).

2.3 Transfer

Consider an agent solving a sequenca pfoblems, in the form of a sequence of Markov Decision
ProcesseM;, ..., M,. If these problems are somehow “related”, and the agent has solveleim®
Mi,...,Mp_1, then it seems intuitively reasonable that the agent should be able to uske#ge
gained in their solutions to soh\Md,, faster than it would be able to otherwise. The transfer problem
is the problem of how to obtain, represent and apply such knowledge.

Since transfer hinges on the tasks being related, the nature of that relt@iovill define how
transfer can take place. For example, it is common to assume that all of tlsehi@sk the same
state space, action set and transition probabilities but differing rewaddidns, so that for ani
M; = (SAPR). In that case, skills learned in the state space and knowledge aboututtteirstr
of the state space from previous tasks can be transferred, but kigsmdoout the optimal policy
cannot.

In many transfer settings, however, each task in the sequence has atditdte space, but
the tasks nevertheless seem intuitively related. In the next section, wdluog@ framework for
describing the commonalities between tasks that have different state spacastion sets.

3. Related Tasks Share Common Features

Successful transfer requires an agent that must solve a sequ¢asiesdhat are related but distinct—
different, but not so different that experience in one is irrelevankpeeence in another. How can
we define such a sequence? How can we use such a definition to padoster?

Consider the illustrative example of an indoor mobile robot required to penfsany learning
tasks over its lifetime. Although the robot might be equipped with a very riclofsstnsors—for
example, laser range finders, temperature and pressure gauges-fasimg a particular task it
will construct a task-specific representation that captures that tasdemngal features. Such a task-
specific representation ensures that the resulting learning task is no ifiilcidtdhan necessary,
and depends on the complexity of the problem rather than the robot (atdiregsensors or actu-
ators should not make an easy task hard). In the reinforcement leaetingy, a plausible design
for such a robot would use a task-specific MDP, most likely designed tastmmall as possible
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(without discarding information necessary for a solution), and discesteh@at the task does not
require function approximation).

Thus, a robot given the tasks of searching for a particular type oftibjevo different buildings
B; andB; might form two completely distinct discrete MDRd; andM,, most likely as topological
maps of the two buildings. Then even though the robot should be able ®isfamation between
the two problems, without further knowledge there is no way to transfernrdon between them
based only on their description as MDR®cause the state labels and transition probabilitids; of
andM-, need have no relation at all.

We argue that finding relationships between pairs of arbitrary MDPs islbothcessarily dif-
ficult and misses the connection between these problems. The problemadhat sobot might
encounter are all relatdakcause they are faced by the same agamd therefore the same sensor
features are present in each, even if those shared features saetgsaway when the problems are
framed as MDPs. If the robot is seeking a heat-emitting object in BotimdB,, it should be able
to learn after solvindd; that its temperature gauge is a good predictor of the object’s location, and
use it to better seardBp, even though its temperature gauge reading does not appear as a iieatur
either MDP.

When trying to solve a single problem, we aim to create a minimal problem-spesiie-r
sentation. When trying to transfer information across a sequence deprspwe should instead
concentrate on what is common across the sequence. We therefoosg@tbptwhat makes tasks
related is the existence of a feature set that is shared and retains the sama@tics across tasks.
To define what we mean by a feature having the same semantics acrossveadkgine the notion
of asensor

Consider a parametrized class of tafk8), wherel returns a task instance given parameter
0 € ©. For example[" might be the class of square gridworlds, @dhight fix obstacle and goal
locations and size. We can obtain a sequence of tegks., My, via a sequence of task parameters
01,...,0n.

Definition 1 A sensok is a function mapping a task instance parameier © and state g€ So
of the task obtained usirgjto a real number f:

§:(0,5)— f.

The important property of is that it is a function defined over all taskslin it produces a
feature,f, that describes some property of an environment given that envirdisrpanameters and
current state. For examplé,might describe the distance from a robot in a building to the nearest
wall; this requires both the position of the robot in the building (the problem)staie the layout
of the building (the environment parameters). The feafulas the same semantics across tasks
because it is generated by the same function in each task instance.

An agent may in general be equipped with a suite of such sensors, fhoch W can read at
any point to obtain a feature vector. We call the space generated bysthitmg features aagent-
space because it is a property of the agent rather than any of the tasks inallyidas opposed to
the problem-specific state space used to solve each problem (which vaguatllem-space

We note that in some cases the agent-space and problem-spaces asajfgnce of tasks may
be related, for example, each problem-space might be formed by apgentdisk-specific amount

1. We exclude degenerate cases, for example whaimply usesd as an index and produces completely different
outputs for different values @, or whereg returns a constant, or completely random, value.
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of memory to agent-space. However, in general it may not be possibledearan agent-space
descriptor from a problem-space descriptor, or vice versa. Theidumsamnapping the environment
to each descriptor are distinct and must be designed (or learned ouftdide@inforcement learning
process) with different objectives.

We now model each problem in a sequence as an MDP augmented with &spges, writing
the augmented MDP corresponding to itileproblem as:

Mi = (S,A,R,R,D),

whereD (the agent-space) is a feature space defined across all tasks. yFsia@min any of the
environments, the agent also obtains an observatioddscripto) d € D, the features of which
have the same semantics across all tasks.

The core idea of our framework is that task learning occurs in probleroes@nd transfer can
occur via agent-space. If we have an MDP augmented with featuresréhbawn to be shared,
we can use those shared features as a bridge across which knosdedoge transferred. This leads
to the following definition:

Definition 2 A sequence of tasksiiglatedif that sequence has a non-empty agent-space—that is,
if a set of shared features exist in all of the tasks.

A further definition will prove useful in understanding when the transfanformation about
the value function is useful:

Definition 3 We define a sequence of related tasks todveard-linkedif the reward function for
all tasks is the same sensor, so that rewards are allocated the same madltésks (for example,
reward is always x for finding food).

A sequence of tasks must be (at least approximately) reward-linkedafrweo transfer infor-
mation about the optimal value function: if the reward functions in two tasksldffeeent sensors
then there is no reason to hope that their value functions contain useihiaiion about each other.

If a sequence of tasks is related, we may be able to perform effectisdardy taking advantage
of the shared space. If no such space exists, we cannot transies &lce sequence because there
is no view (however abstract or lossy) in which the tasks share commturdea If we can find
an agent-space that is also usable as a problem-space for every tasls@gtlence, then we can
treat the sequence as a set of tasks in the same space (byDudingctly as a state space) and
perform transfer directly by learning about the structure of this spHde.addition the sequence
is reward-linked, then the tasks are not distinct and transfer is triviause we can view them as
a single problem. However, there may be cases where a shared prgidemexists but results in
slow learning, and using task-specific problem-spaces coupled withsidranechanism is more
practical.

We can therefore define the working hypothesis of this paper as follows:

We can usefully describe two tasks as related when they share a commor fgzace,
which we term aragent-spacelf learning to solve each individual task is possible and
feasible in agent-space, then transfer is trivial: the tasks are effigciiv@ngle task
and we can learn a single policy in agent-space for all tasks. If it is not,tthaesfer
between two tasks can nevertheless be effected through agent@ifaeethrough the
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transfer of knowledge about the value function (when the tasks adeinked), or
through the transfer of skills defined in agent-space.

In the following sections we use this framework to build agents that perfaesettwo different
types of transfer. Section 4 shows that an agent can transfer vwalggeins learned in agent-space
to significantly decrease the time taken to find an initial solution to a task, giyegriexce in a
sequence of related and reward-linked tasks. In Section 5 we shoartlagient can learn portable
high-level skills directly in agent-space which can dramatically improve tadonpeance, given
experience in a sequence of related tasks.

4. Knowledge Transfer

In this section, we show that agents that must repeatedly solve the samé tggle (@n the form of

a sequence of related, reward-linked tasks) can transfer usefwléaige in the form of gortable
shaping functiorthat acts as an initial value function and thereby endows the agent with ah initia
policy. This significantly improves initial performance in later tasks, resultinggents that can,

for example, learn to solve difficult tasks quickly after being given a tetlatively easy training
tasks.

We empirically demonstrate the effects of knowledge transfer using a e{asimple demon-
stration domain (a rod positioning task with an artificial agent space) andeghallenging domain
(Keepaway). We argue (in Section 4.5) that this has the effect of cgeagjants which can learn
their own heuristic functions.

4.1 Shaping

Shaping is a popular method for speeding up reinforcement learning ergjeand goal-directed
exploration in particular (Dorigo and Colombetti, 1998). Although this termben applied to
a variety of different methods within the reinforcement learning community, tovo are relevant
here. The first is the gradual increase in complexity of a single task toseang given final level
(for example, Randlgv and Alstrgm 1998; Selfridge et al. 1985), saliagent can safely learn
easier versions of the same task and use the resulting policy to speeddessire task becomes
more compleX. Unfortunately, this type of shaping does not generally transfer betwaesis—
it can only be used to gently introduce an agent to a single task, and isateereft suited to a
sequence of distinct tasks.

Alternatively, the agent’s reward function could be augmented throughgb®f intermediate
shaping rewards or “progress indicators” (Matafi997) that provide an augmented (and hopefully
more informative) reinforcement signal to the agent. This has the effettastening the reward
horizon of the problem—the number of correct actions the agent mustitexkefore receiving a
useful reward signal (Laud and DeJong, 2003). Ng et al. (1988)ad that an arbitrary externally
specified reward function could be included as a potential-based shiapiciipn in a reinforce-
ment learning system without modifying its optimal policy. Wiewiora (2003) sfwbwhat this is
equivalent to using the same reward function as a non-uniform initial sédtie function, or with

2. We note that this definition of shaping is closest to its original meaning ingehplogy literature, where it refers
to a process by which an experimenter rewards an animal for behéeibprogresses toward the completion of
a complex task, and thereby guides the animal’s learning process. cAdtsefers to a training technique, not a
learning mechanism (see Skinner, 1938).
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a small change in action selection, as an initial state-action value function {@véeet al., 2003).
Thus, we can use any function we like as an initial value function for thatageen if (as is often
the case in function approximation) it is not possible to directly initialize the valaetion. The
major drawback is that designing such a shaping function requires sagnigagineering effort. In
the following sections we show that an agent can learn its own shapinfdaricom experience
across several related, reward-linked tasks without having it spoifedvance.

4.2 Learning Portable Shaping Functions

As before, consider an agent solvingroblems with MDPaMy, ..., My, each with their own state

space, denote8,, ..., S, and augmented with agent-space features. We associate a fouc;ﬁuple
with theith state inM;:

o = (g.d.rl. V),
wheregj is the usual problem-space state descriptor (sufficient to distinguish thesfsten the
others inS)), d’ is the agent-space descriptat,is the reward obtained at the state afds the
state’s value (expected total reward for action starting from the state&).gdal of value-function

based reinforcement learning is to obtain #ealues for each state in the form of a value function
VjI
Vi :qj — v,J
Vj maps problem-specific state descriptors to expected return, but it is rtabjeobetween
tasks, because the form and meaningf @&s a problem-space descriptor) may change from one task
to another. However, the form and meaningdpfias an agent-space descriptor) does not change.

Since we want an estimator of return that is portable across tasks, weticdéradnew functior.
that is similar to eacl'j, but that estimates expected return given an agent-space descriptor:

L:dij»—>vij.

L is also a value function, but it is defined over portable agent-spaceifgtess rather than
problem-specific state space descriptors. As such, we could considerrit of feature-based value
function approximation and update it online (using a suitable reinforcemanniihg algorithm)
during each task. Alternatively, once an agent has completed soms§;taskl has learned a good
approximation of the value of each state usifygit can use its(di’,vij) pairs as training examples
for a supervised learning algorithm to ledrnSinceL is portable, we can in addition use samples
from multiple related, reward-linked tasks.

After a reasonable amount of traininig,can be used to estimate a value for newly observed
states in any future related and reward-linked tasks. Thus, when faaiegy taskMy, the agent
can usd. to provide a good initial estimate fof that can be refined using a standard reinforcement
learning algorithm. Alternatively (and equivalently)could be used as an external shaping reward
function.

4.3 A Rod Positioning Experiment

In this section we empirically evaluate the potential benefits of a learned ghiaiction in a rod
positioning task (Moore and Atkeson, 1993), where we add a simple altdipéat space that can
be easily manipulated for experimental purposes.
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Each task consists of a square workspace that contains a rod, someedsand a target. The
agent is required to maneuver the rod so that its tip touches the target (lmygnits\base coordinate
or its angle of orientation) while avoiding obstacles. An example 20x20 utkitiag solution path
are shown in Figure 1.

e | P .

]
/O O

Figure 1: A 20x20 rod positioning task and one possible solution path.

Following Moore and Atkeson (1993), we discretize the state space intx amitly coordi-
nates and 10angle increments. Thus, each state in the problem-space can be debgritvem
coordinates and one angle, and the actions available to the agent are mbwéore unit in either
direction along the rod’s axis, or a4 6otation in either direction. If a movement causes the rod to
collide with an obstacle, it results in no change in state, so the portions of thesptece where any
part of the rod would be interior to an obstacle are not reachable. Hre sggeives a reward efl
for each action, and a reward of 1000 when reaching the goal (wbenehe current episode ends).

We augment the task environment with five beacons, each of which emitsa gighdrops
off with the square of the Euclidean distance from a strength of 1 at theobda O at a distance
of 60 units. The tip of the rod has a sensor array that can detect thes\aleach of these signals
separately at the adjacent state in each action direction. Since thesadaae@resent in every
task, the sensor readings are an agent-space and we include an efetherdagent that learris
and uses it to predict reward for each adjacent state given the fival &gels present there.

The usefulness df as a reward predictor will depend on the relationship between beacas plac
ment and reward across a sequence of individual rod positioning tasks we can consider the
beacons as simple abstract signals present in the environment, and bylakamgheir placement
(and therefore their relationship to reward) across the sequenceksf tas can experimentally
evaluate the usefulness of various formd of

4.3.1 EXPERIMENTAL STRUCTURE

In each experiment, the agent is exposed to a sequence of trainingeexesr during which it is
allowed to updaté. After each training experience, itis evaluated in a large test casegduhich
it is notallowed to updaté.

Each individual training experience places the agent in a small taslomapaelected from a
randomly generated set of 100 such tasks, where it is given suffioieato learn a good solution.
Once this time is up, the agent updalttessing the value of each visited state and the sensory signal
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present at it, before it is tested on the much larger test task. All state vhlas tae cleared between
training episodes.

Each agent performed reinforcement learning using $&yga = 0.9,a = 0.1,y = 0.99,
€ = 0.01) in problem-space and used training tasks that were either 10x10(Wwhexs given 100
episodes to converge in each training task), or 15x15 (when it was )@ episodes to converge),
and tested in a 40x40 tadk. was a linear estimator of reward, using either the five beacon signal
levels and a constant as features (requiring 6 parameters, anéddfeas the linear model) or using
those with five additional features for the square of each beacon va&qeirfng 11 parameters,
referred to as the quadratic model). All parameters were initialized to 0, andirg forL was
accomplished using gradient descent with= 0.001. We used two experiments with different
beacon placement schemes.

4.3.2 FOLLOWING A HOMING BEACON

In the first experiment, we always placed the first beacon at the taptda, and randomly dis-
tributed the remainder throughout the workspace. Thus a high signalftene the first beacon
predicts high reward, and the others should be ignored. This is a vamyriafive indication of
reward that should be easy to learn, and can be well approximated éVea knearL. Figure 2
shows the 40x40 test task used to evaluate the performance of eathamgkfour sample 10x10
training tasks.

Figure 3(a) shows the number of steps (averaged over 50 runsjaeeda first reach the goal
in the test task, against the number of training tasks completed by the agéime four types of
learned shaping elements (linear and quadiatend either 10x10 or 15x15 training tasks). It also
shows the average number of steps required by an agent with a unifii@hvalue of O (agents
with a uniform initial value of 500 performed similarly while first finding the godlpte that there
is just a single data point for the uniform initial value agents (in the uppecdefter) because their
performance does not vary with the number of training experiences.

Figure 3(a) shows that training significantly lowers the number of stepsrestto initially find
the goal in the test task in all cases, reducing it after one training experieym over 100000 steps
to at most just over 7@00, and by six episodes to between@D and 40000 steps. This difference
is statistically significant (by a t-tesp < 0.01) for all combinations of. and training task sizes,
even after just a single training experience. Figure 3(a) also showththabmplexity ofL does
not appear to make a significant difference to the long-term benefitiofrtga(probably because
of the simplicity of the reward indicator), but training task size does. Therdiffce between the
number of steps required to first find the goal for 10x10 and 15x151ii@atask sizes is statistically
significant (p < 0.01) after 20 training experiences for both linear and quadratic formsasthough
this difference is clearer for the quadratic form, where it is significaietr & training experiences.

Figure 3(b) shows the number of steps (averaged over 50 rungyaeéda reach the goal as
the agents repeat episodes in the test task, after completing 20 trainirrgeegpe (note thdt is
never updated in the test task), compared to the number of steps requageriis with value tables
uniformly initialized to 0 and 500. This illustrates the difference in overall le@yperformance
on a single new task between agents that have had many training expgrecagents that have

3. We note that in general the tasks used to train the agent need not ler $hzen the task used to test it. We used
small training tasks in this experiment to highlight the fact that the size di@no-space may differ between related
tasks.
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Figure 2: The homing experiment 40x40 test task (a) and four sampledlttihing tasks (b).
Beacon locations are shown as crosses, and the goal is shown asddanyote that the
first beacon is on the target in each task. The optimal solution for the tkstsres 69
steps.

not. Figure 3(b) shows that the learned shaping function significantly wepneerformance during
the first few episodes of learning, as expected. It also shows thatthber of episodes required
for convergence is roughly the same as that of an agent using a unifoptilgistic value table
initialization of 500, and slightly longer than that of an agent using a uniforrasimistic value
table initialization of 0. This suggests that once a solution is found the agentumiearn” some of
its overly optimistic estimates to achieve convergence. Note that a uniform iratige wf O works
well here because it discourages extended exploration, which isessay in this domain.

4.3.3 ANDING THE CENTER OF ABEACON TRIANGLE

In the second experiment, we arranged the first three beacons in ddrérige edges of the task
workspace, so that the first beacon lay to the left of the target, the defigactly above it, and
the third to its right. The remaining two were randomly distributed throughout tr&kspace.
This provides a more informative signal, but results in a shaping functidrighearder to learn.
Figure 4 shows the 10x10 sample training tasks given in Figure 2 after maidifi¢ar the triangle
experiment. The test task was similarly modified.

Figure 5(a) shows the number of steps initially required to reach the godariangle exper-
iment, again showing that completing even a single training task results in a stiyistigaificant
(p < 0.01in all cases) reduction from the number required by an agent usifegrarinitial values,
from just over 100000 steps to at most just over,PBO0 steps after a single training episode. Figure
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(a) The average number of steps required to first reach the goal rothimg test task, for agents
that have completed varying numbers of training task episodes.
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(b) Steps to reward against episodes in the homing test task for agdrtiavbaompleted 20 training tasks.

Figure 3: Results for the homing task.
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Figure 4: Sample 10x10 training tasks for the triangle experiment. The tkesmbs surrounding
the goal in a triangle are shown in gray.

+

5(a) also shows that there is no significant difference between forinsod size of training task.
This suggests that extra information in the agent-space more than makesaughfping function

being difficult to accurately represent—in all cases the performancegesfta learning using the
triangle beacon arrangement is better than that of those learning usingrtieghbeacon arrange-
ment. Figure 5(b) shows again that the initial few episodes of repeatadrigan the test task
are much faster, and again that the total number of episodes requiredvierge lies somewhere
between the number required by an agent initializing its value table pessimisticéllgrid one

initializing it optimistically to 500.

4.3.4 ENSITIVITY ANALYSIS

So far, we have used shared features that are accurate in the saneeyhprovide a signal that
is uncorrupted by noise and that has exactly the same semantics acrassliiaiis section, we
empirically examine how sensitive a learned shaping reward might be to thenpe=of noise, both
in the features and in their role across tasks.

To do so, we repeat the above experiments (using training tasks of sizd5 quadratic
approximator) but with only a single beacon whose position is given by tleniag formula:

b=(1-n)g+nr,

whereg is the coordinate vector of the targgte [0, 1] is a noise parameter, ands a co-ordinate
vector generated uniformly at random. Thus, whea 0 we have no noise and the beacon is always
placed directly over the goal; whap= 1, the beacon is placed randomly in the environment.
Varying n between 0 and 1 allows us to manipulate the amount of noise present in tfenlseac
placement, and hence in the shared feature used to learn a portablegdaption. We consider
two scenarios.

In the first scenario, the sanmevalue is used to place the beacon in both the training and the
test problem. This corresponds to a signal that is perturbed by noisehloge semantics remain
the same in both source and target tasks. This measures how sensitieg Islaaping rewards are
to feature noise, and so we call this tgsy-signatask. The results are shown in Figure 6(a) and
6(b).

Figure 6(a) measures the number of steps required to complete the fisteepighe large test
problem, given experience in various numbers of training problems agthgdevels of noise. The
results show that transfer is fairly robust to noise, resulting in an improveower starting from
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(a) The average number of steps required to first reach the goalinahgle test task, for agents
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(b) Steps to reward against episodes in the triangle test task for agdrtiavbaompleted 20 training tasks.

Figure 5: Results for the triangle task.
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(a) The average number of steps required to first reach the testdakgigen a predictor
learned using a noisy signal.
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(b) Steps to reward against episodes in the test task for agents thatdmapéeted 20 training task episodes
using a noisy signal.

Figure 6: Results for theoisy-signatask.
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scratch that drops with increased noise but still does betterrunti0.6, when the feature has more
noise than signal.

Higher levels of noise more severely affects agents that have seen highéers of training
problems, until a performance floor is reached between 5 and 10 trairoliems. This reflects
the training procedure used to ledrywhereby each training problem results in a small adjustment
of L's parameters and those adjustments accumulate over several trainirgespiso

Similarly, Figure 6(b) shows learning curves in the test problem for agleatfiave experienced
20 test problems, with varying amounts of noise. We see that, although terss aften do worse
than learning from scratch in the first episode, they subsequently do tten < 1, and again
converge at roughly the same rate as agents that use an optimistic initial wadtie.

In the second scenarig, is zero in the training problems, but non-zero in the test problem.
This corresponds to a feature which has slightly different semantics irothreesand target tasks,
and thus measures how learning is affected by an imperfect or approxihmaite of agent space
features. We call this theoisy-semantictask.

Results for the noisy-semantics task are given in Figures 7(a) andTH®3e two graphs show
that transfer achieves a performance benefit wipen0.5—when there is at least as much signal
as noise—and the more training problems the agent has solved, the worsddtsnance will be
whenn = 1. However, the possible performance penalty for ljgh more severe—an agent using
a learned shaping function that rewards it for following a beacon sigagltake nearly four times
as long to first solve the test problem when that feature becomes raatigm (). Again, however,
whenn < 1 the agents recover after their first episode to outperform agents éinatftem scratch
within the first few episodes.

4.3.5 SYMMARY

The first two experiments above show that an agent able to learn its owimghrawards through
training can use even a few training experiences to significantly improve itd miliay in a novel
task. They also show that such training results in agents with convergbacacteristics similar
to that of agents using uniformly optimistic initial value functions. Thus, an tjet learns its
own shaping rewards can improve its initial speed at solving a task whenacethfp an agent that
cannot, but it will not converge to an approximately optimal policy in less timer(@asured in
episodes).

The results also seem to suggest that a better training environment isl belttoat its useful-
ness decreases as the signal predicting reward becomes more inferraatithat increasing the
complexity of the shaping function estimator does not appear to significantipimphe agent'’s
performance. Although this is a very simple domain, this suggests that givieh aignal from
which to predict reward, even a weak estimator of reward can greatly iragerformance.

Finally, our third pair of experiments suggest that transfer is relativdiysbto noise, both
in the features themselves and in their relationship across tasks, resultiaampance benefits
provided there is at least as much useful information in the features asishavise. Beyond that,
however, agents may experience negative transfer where eitherfeatsyes or an imperfect or
approximate set of agent-space features result in poor learned gHiapations.
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(a) The average number of steps required to first reach the testdakgigen a predictor
learned using features with imperfectly preserved semantics.
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(b) Steps to reward against episodes in the test task for agents thatdmapéeted 20 training task episodes
using features with imperfectly preserved semantics.

Figure 7: Results for theroisy-semantictask.
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4.4 Keepaway

In this section we evaluate knowledge transfer using common features pawag (Stone et al.,
2005), a robot soccer domain implemented in the RoboCup soccer simulatpaWay is a chal-
lenging domain for reinforcement learning because it is multi-agent ané égh-dimensional
continuous state space. We use Keepaway to illustrate the use of leaapéthstewards on a stan-
dard but challenging benchmark that has been used in other transfierssfliaylor et al., 2007).

Keepaway has a square field of a given size, which contains playdra aall. Players are
divided into two groups: keepers, who are originally in possession oballeand try to stay in
control of it, and takers, who attempt to capture the ball from the keepédrs arrangement is
depicted in Figure 8.

©) ©

o
@

<l

Figure 8: The Keepaway Task. The keepers (white circles) must kesgegsion of the ball and
not allow the takers (gray octagons) to take it away. This diagram depi2tk@epaway,
where there are 3 keepers and 2 takers.

Each episode begins with the takers in one corner of the field and therkegepeomly dis-
tributed. The episode ends when the ball goes out of bounds, or wlh&rraends up in possession
of the ball (i.e., within a small distance of the ball for a specified period of tifilbg goal of the
keepers is then to maximize the duration of the episode. At each time step, tbevelpélearning
is to modify the behavior of the keeper currently in possession of the ba#. takers and other
keepers act according to simple hand-coded behaviors. Keepdrspuassession of the ball try to
open a clear shot from the keeper with the ball to themselves and attempeitgerte ball when it
is passed to them. Takers either try to block keepers that are not holdibglthiey to take the ball
from the keeper in possession, or try to intercept a pass.

Rather than using the primitive actions of the domain, keepers are givanch peedefined
options. The options available to the keeper in possession of the ball EiBalldremain stationary
while keeping the ball positioned away from the takers) and PaskBgdHss the ball to thieh other
keeper). Since only the keeper in possession of the ball is acting acgaedihe reinforcement
learner at any given time, multiple keepers may learn during each episacte keeper’s learner
runs separately.

The state variables are continuous and defined according to the ceritexr lbbard and the
location of the players, with the number of variables depending on the nuoflpayers. For
example, 3v2 Keepaway (three keepers versus two takers) has tlstédewariables: the distance
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from K1 (the keeper in possession) to each other player, the minimum aB@@&r each other
keeper (wher®8 is the other keepeh is K1, andC is a taker—this measures how “open” each other
keeper is to a pass), the distance from each player to the center, and theimidistance from
each other keeper to a taker. The number of state variabld¢is2T — 3, for K keepers and
takers. We used a field measuring 20x20 units for 3v2 games, and a fiesdimnmga30x30 for 4v3
and 5v4. For a more detailed description of the Keepaway domain we refezaller to Stone et al.
(2005).

4.4.1 EXPERIMENTAL STRUCTURE

In the previous section, we studied transferring portable shaping fuisdtiom a varying number
of smaller randomly generated source tasks to a fixed larger target telkkepaway, instances of
the domain are obtained by fixing the number of keepers and the numbeers.t&lince we cannot
obtain experience in more than a few distinct source tasks, in this sectiosteadrstudy the effect
of varying amounts of training time in a source task on performance in a tagjet

We thus studied transfer from 3v2 Keepaway to 4v3 and 5v4 Keepwayfram 4v3 to 5v4;
these are the most common Keepaway configurations and are the sameratiofig studied by
Taylor and Stone (2005). In all three cases we used the state variaite5¥4 as an agent-space.
When a state variable is not defined (e.g., the distance to the 4th keeperke8paway), we set
distances and angles to keepers to 0, and distances and angles to tdkensrtaximum value,
which effectively simulates their being present but not meaningfully inebluethe current state.
We employed linear function approximation with Sarsa (Sutton and Barto,) 1898y 32 radial
basis functions per state variable, tiling each variable independently othkespfollowing and
using the same parameters as Stone et al. (2005).

We performed 20 separate runs for each condition. We first ran Zditsasuns for 3v2, 4v3,
and 5v4 Keepaway, saving weights for the common space for each @&/8mun at 50, 250, 500,
1000, 2000, and 5000 episodes. Then for each set of common spagi@svrom a given number
of episodes, we ran 20 transfer runs. For example, for the 3v2 to andfar with 250-episode
weights, we ran 20 5v4 transfer runs, each of which used one of trea&fl 250-episode 3v2
weights.

Because of Keepaway'’s high variance, and in order to provide rdeakely comparable with
Taylor and Stone (2005), we evaluated the performance of transfezgpdtvay by measuring the
average time required to reach some benchmark performance. We seldmtadhmark time for
each setting (3v2, 4v3 or 5v4) which the baseline learner could corndysteach by about 5000
episodes. This benchmark tinTfeis considered reached at episatevhen the average of the
times fromn — 500 ton-+ 500 is at leasT ; this window averaging compensates Keepaway'’s high
performance variance. The benchmark times for each domain were,an a2b seconds, %
seconds, and.B seconds.

4.4.2 RESULTS

Table 1 shows the results of performing transfer from 3v2 Keepaway3dkéepaway. Results
are reported as time (in simulator hours) to reach the benchmark in the talgétt8 Keepaway)
given a particular number of training episodes in the source task (3y2afiesy), and the total time
(source task training time plus time to reach the benchmark in the target task, iatsinhours).
We can thereby evaluate whether the agents achweak transfer—where there is an improvement
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in the target task with experience in the source task—by examining the thimhodhaverage 4v3
time), andstrong transfer—where the sum of the time spent in both source and target tasks is lower
than that taken when learning the target task in isolation—by examining thé fmlumn (average
total time).

The results show that training in 3v2 decreases the amount of time requiteattothe bench-
mark in 4v3, which shows that transfer is successful in this case ankl tnazsfer is achieved.
However, the total (source and target) time to benchmark never desmitheexperience in the
source task, so strong transfer is not achieved.

# 3v2 Episodes Ave. 3v2 Time Ave 4v3Time Ave. Total Time Std. Dew.

0 0.0000 5.5616 5.5616 1.5012
50 0.0765 5.7780 5.8544 0.8870
250 0.3919 5.4763 5.8682 1.2399
500 0.8871 5.1192 6.0063 0.9914
1000 1.8166 4.7380 6.5546 1.2680
2000 3.9908 3.1295 7.1203 1.1465
5000 14.7554 1.4236 16.1790 0.2738

Table 1: Results of transfer from 3v2 Keepaway to 4v3 Keepaway.

Figure 9 shows sample learning curves for agents learning from s@matchgents using trans-
ferred knowledge from 5000 episodes of 3v2 Keepaway, demonsfreitat agents that transfer
knowledge start with better policies and learn faster.

Table 2 shows the results of transfer from 3v2 Keepaway (Table dfa)v3 Keepaway (Table
1(b)) to 5v4 Keepaway. As before, in both cases more training on theréask results in better
performance in 5v4 Keepaway, demonstrating that weak transfer isvadhi¢lowever, the least
total time (including training time on the source task) is obtained using a moderatmbofisource
task training, and so when transferring to 5v4 we achieve strong transfe

Finally, Table 3 shows the results of transfer for shaping functions éelaom both 3v2 and
4v3 Keepaway, applied to 5v4 Keepaway. Again, more training time obtatter besults although
over-training appears to be harmful.

These results show that knowledge transfer through agent-spaaetuane effective transfer in
a challenging problem and can do so in multiple problems through the samessetimion features.

4.5 Discussion

The results presented above suggest that agents that employ reimdatdearning methods can
be augmented to use their experience to learn their own shaping rewahis.cotild result in
agents that are more flexible than those with pre-engineered shapingpfisndt also creates the
possibility of training such agents on easy tasks as a way of equipping tlitarkrnwledge that
will make harder tasks tractable, and is thus an instance of an autonomalgpaeental learning
system (Weng et al., 2000).

In some situations, the learning algorithm chosen to learn the shaping furmtithee sensory
patterns given to it, might result in an agent that is completely unable to legtirey useful. We
do not expect such an agent to do much worse than one without anpgheyards at all. Another
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Figure 9: Sample learning curves for 4v3 Keepaway given no tra(sféd lines) or having expe-
rienced 5000 episodes of experience in 3v2 (dashed lines).

potential concern is the possibility that a maliciously chosen or unfortunatef $eaining tasks
could result in an agent that performs worse than one with no traininguradely, such agents will
still eventually be able to learn the correct value function (Ng et al., 1999).

All of the experiments reported in this paper use model-free learning algwittGiven that
an agent facing a sequence of tasks receives many example transdioreeb pairs of agent-
space descriptors, it may prove efficient to instead learn an approxiraasition model in agent-
space and then use that model to obtain a shaping function via planningeveliguearning a good
transition model in such a scenario may prove difficult because the agacd-$eatures are not
Markov.

In standard classical search algorithms such ‘gs/euristic imposes an order in which nodes
are considered during the search process. In reinforcement lgahenstate space is searched
by the agent itself, but its initial value function (either directly or via a shajumgtion) acts to
order the selection of unvisited nodes by the agent. Therefore, we Hrgureinforcement learning
agents using non-uniform initial value functions are using something wailasto a heuristic, and
those that are able to learn their own portable shaping functions are i &iffie to learn their own
heuristics.

5. Skill Transfer

The previous section showed that we can effectively transfer kngsleout reward when a se-
guence of tasks is related and reward-linked, and that such knowteaigsignificantly improve

1353



KONIDARIS, SCHEIDWASSER ANDBARTO

(a) Transfer results from 3v2 to 5v4 Keepaway.

# 3v2 Episodes Ave. 3v2 Time Ave 5v4 Time Ave. Total Time Std. Dev.

0 0.0000 7.4931 7.4931 1.5229
50 0.0765 6.3963 6.4728 1.0036
250 0.3919 5.6675 6.0594 0.7657
500 0.8870 5.9012 6.7882 1.1754
1000 1.8166 3.9817 5.7983 1.2522
2000 3.9908 3.9678 7.9586 1.8367
5000 14.7554 3.9241 18.6795 1.3228

(b) Transfer results from 4v3 to 5v4 Keepaway.

# 4v3 Episodes Ave. 4v3 Time Ave 5v4 Time Ave. Total Time Std. Dev.

0 0.0000 7.4931 7.4930 1.5229
50 0.0856 6.6268 6.7125 1.2162
250 0.4366 6.1323 6.5689 1.1198
500 0.8951 6.3227 7.2177 1.0084
1000 1.8671 6.0406 7.9077 1.0766
2000 4.0224 5.0520 9.0744 0.9760
5000 11.9047 3.218 15.1222 0.6966

Table 2: Results of transfer to 5v4 Keepaway.

# 3v2 Episodes # 4v3 Episodes Ave 5v4 Time Ave. Total Time Std. Dev.

500 500 6.1716 8.0703 1.1421
500 1000 5.6139 8.6229 0.9597
1000 500 4.5395 7.3922 0.6689

1000 1000 4.8648 8.8448 0.9517
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Table 3: Results of transfer from both 3v2 Keepaway and 4v3 Kegpawev4 Keepaway.

performance. We can apply the same framework to effect skill trangferdating portable option
policies. Most option learning methods work within the same state space astilerprthe agent
is solving at the time. Although this can lead to faster learning on later tasks iarfeestate space,

learned options would be more useful if they could be reused in later testkarthrelated but have
distinct state spaces.

In this section we demonstrate empirically that an agent that learns portatdeogirectly in
agent-space can reuse those options in future related tasks to signifiogmibye performance.

We also show that the best performance is obtained using portable opti@oesjimction with
problem-specific options.
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5.1 Options in Agent-Space

Following section 4.2, we consider an agent solipgoblemaMy, ..., M, with state spaces, ..., §,,
and action spacd. Once again, we associate a four-tuglewith theith state inv i

<si dI ’rl 7VIJ>

Wheree is the usual problem-space state descriptor (sufficient to distinguish thesfsten the
others inS), d is the agent-space descnptq¥ is the reward obtained at the state ahds the
state’s value (expected total reward for action starting from the state).

The agent is also either given, or learns, a set of higher-level ogbaesiuce the time required
to solve the task. Options defined usigigare not portable between tasks because the form and
meaning of§/ (as a problem-space descriptor) may change from one task to anotiveevet, the
form and meaning odiij (as an agent-space descriptor) does not. Therefore we definespgee
option components as:

! (c_lij,a) — [0,1],
lo: df — {0,1},
Bo: d! — [0,1].

Although the agent will be learning task and option policies in differentegpanoth types of poli-
cies can be updated simultaneously as the agent receives both agenasgdgroblem-space de-
scriptors at each state.

To support learning a portable shaping function, an agent spacédstantain some features
that are correlated to return across tasks. To support succddifpblicy learning, an agent space
needs more: it must be suitable for directly learning control policies.

If that is the case, then why not perform task learning (in addition to optemieg) in agent-
space? There are two primary reasons why we might prefer to perfetnigarning in problem-
space, even when given an agent-space suitable for control learfirgfirst is that agent-space
may be very much larger than problem-space, making directly learning the &skrin agent-space
inefficient or impractical. The second is that the agent-space may onlyfli@esu for learning
control policies locally, rather than globally. In the next two sections we daitnate portable skill
learning on domains with each characteristic in turn.

5.2 The Lightworld Domain

The lightworld domain is a parameterizable class of discrete domains whiah ahagent-space
that is much larger than any individual problem-space. In this section,mygrieally examine
whether learning portable skills can improve performance in such a domain.

An agent is placed in an environment consisting of a sequence of rodthssach room con-
taining a locked door, a lock, and possibly a key. In order to leave a rtmrggent must unlock
the door and step through it. In order to unlock the door, it must move up todkeand press it,
but if a key is present in the room the agent must be holding it to sucdigasflock the door. The
agent can obtain a key by moving on top of it and picking it up. The ageeiwes a reward of
1000 for leaving the door of the final room, and a step penalty bfor each action. Six actions
are available: movement in each of the four grid directions, a pickup aatida @ress action. The
environments are deterministic and unsuccessful actions (for examplagnioto a wall) result in
no change in state.
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In order to specify an individual lightworld instance, we must specify tinalmer of roomsx
andy sizes for each room, and the location of the room entrance, key (or lacdfdine), lock and
door in each. Thus, we may generate new lightworld instances by gemgeratidom values for
each of these parameters.

We equip the agent with twelve light sensors, grouped into threes on édslsioes. The first
sensor in each triplet detects red light, the second green and the thirdHalak.sensor responds
to light sources on its side of the agent, ranging from a reading of 1 whemit top of the light
source, to 0 when it is 20 squares away. Open doors emit a red lightpkekis floor (but not those
held by the agent) emit a green light, and locks emit a blue light. Figure 10 slroesample.

Figure 10: A small example lightworld.

Five pieces of data form a problem-space descriptor for any lightwosl@ice: the current
room number, thex andy coordinates of the agent in that room, whether or not the agent has
the key, and whether or not the door is open. We use the light senstingeaas an agent-space
because their semantics are consistent across lightworld instances chmsththe agent-space (with
12 continuous variables) has much higher dimension than any individollepn-space, and it is
impractical to perform task learning in it directly, even though the problem nifgprinciple be
solvable that way.

5.2.1 TYPES OFAGENT

We used five types of reinforcement learning agents: agents withouheptgents with problem-
space options, agents with perfect problem-space options, agents withsggce options, and
agents with both option types.

The agents without options used Sakgafith e-greedy action selectioro(= 0.1, y = 0.99,
A =0.9,e =0.01) to learn a solution policy in problem-space, with each state-action panass
an initial value of 500.

Agents with problem-space options had an (initially unlearned) option fdr pes-specified
salient event (picking up each key, unlocking each lock, and walkirgugir each door). Options
were learned in problem-space and used the same parameters as thetagembptions, but used
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off-policy trace-based tree-backup updates (Precup et al., 260Djtfa-option learning. We used
an option termination reward of 1 for successful completion, and a dis€axtor of Q99 per action.
Options could be executed only in the room in which they were defined dgdrostates where
their value function exceeded a minimum threshol®@01). Because these options were learned
in problem-space, they were useful but needed to be relearnedcfoiretividual lightworld.

Agents with perfect problem-space options were given options with prede policies for
each salient event, though they still performed option updates and wemvite identical to the
standard agent with options. They represent the ideal case of agémthat can perform perfect
transfer, arriving in a new task with fully learned options.

Agents with agent-space options still learned their solution policies in probparesut learned
their option policies in agent-space. Each agent employed three optioesfoopicking up a
key, one for going through an open door and one for unlocking a, datir each one’s policy a
function of the twelve light sensors. Since the sensor outputs are conginveemployed linear
function approximation for each option’s value function, performing tgslasing gradient descent
(a = 0.01) and off-policy trace-based tree-backup updates. We usedtiam ¢grmination reward
of 1, a step penalty of.05 and a discount factor of@. An option could be taken at a particular
state when its value function there exceeded a minimum threshold ofB&cause these options
were learned in agent-space, they could be transferred between litthimgiances.

Finally, agents with both types of options were included to represent atettéearn both
general portable and specific non-portable skills simultaneously.

Note that all agents used discrete problem-space value functions to selvaderlying task
instance, because their agent-space descriptors are only Markovtinditds with a single room,
which were not present in our experiments.

5.2.2 EXPERIMENTAL STRUCTURE

We generated 100 random lightworlds, each consisting of 2-5 rooms with aidl height of be-
tween 5 and 15 cells. A door and lock were randomly placed on each roamdhry, and% of
rooms included a randomly placed key. This resulted in state space with Ined@@and approxi-
mately 20000 state-action pairs (800 on average). We evaluated each problem-space option agent
type on 1000 lightworlds (10 samples of each generated lightworld).

To evaluate the performance of agent-space options as the agents maireedxperience, we
similarly obtained 1000 lightworld samples and test tasks, but for each tkstiéasan the agents
once without training and then with between 1 and 10 training experienaeh.tEaining experience
for a test lightworld task consisted of 100 episodes in a training lightworldamaty selected from
the remaining 99. Although the agents updated their options during evaluattentist lightworld,
these updates were discarded before the next training experienoe agetht-space options never
received prior training in the test lightworld.

5.2.3 RESULTS

Figure 11(a) shows average learning curves for agents employibteprespace options, and Fig-
ure 11(b) shows the same for agents employing agent-space optionBtsTlimme an agent-space
option agent encounters a lightworld, it performs similarly to an agent withatidres (as evidenced
by the two topmost learning curves in each figure), but its performarelyamproves with ex-
perience in other lightworlds. After experiencing a single training lightwdHd,agent starts with
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better performance than an agent using problem-space options alditdyyub experiences its

learning curve is similar to that of an agent with perfect problem-spacernspftmmpare the learn-
ing curves in Figure 11(b) with the bottom-most learning curve of Figura)),1éven though its

options are never trained in the same lightworld in which it is tested. The coropdretween

Figures 11(a) and 11(b) shows that agent-space options can bessiutly transferred between
lightworld instances.
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Figure 11: Results for the Lightworld Domain.

Figure 11(c) shows average learning curves for agents emplbyitittypes of optiong. The
first time such agents encounter a lightworld, they perform as well agsagsimg problem-space

4. In 8 of the more than 20000 episodes used when testing agents with both types of options, anspgeatvalue
function approximator diverged, and we restarted the episode. Alththigis a known problem with the backup
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options (compare with the second highest curve in Figure 11(a)), anelfter rapidly improve
their performance (performing better than agents using only agent-gmgicms) and again by
5 experiences performed nearly as well as agents with perfect opfltns.improvement can be
explained by two factors. First, the agent-space is much larger than avigirad problem-space, so
problem-space options are easier to learn from scratch than ageeteggams. This explains why
agents using only agent-space options and no training experiencespearbre like agents without
options than like agents with problem-space options. Second, optionsdéarmmgr problem-space
can represent exact solutions to specific subgoals, whereas optionsedean our agent-space are
general and must be approximated, and are therefore likely to be slightleffggent for any
specific subgoal. This explains why agents using both types of optiofaripebetter in the long
run than agents using only agent-space options.

Figure 11(d) shows the mean total number of steps required over 7@epifar agents using
no options, problem-space options, perfect options, agent-spac@gpiiod both option types.
Experience in training environments rapidly drops the number of total séepsred to nearly as
low as the number required for an agent with perfect options. It alsdgksows that agents using
both types of options do consistently better than those using agent-sparesa@one. We note that
the error bars in Figure 11(d) are small and decrease with experiadating consistent transfer.

In summary, these results show that learning using portable options cathygneprove per-
formance over learning using problem-specific options. Given enoxjggrience, learned portable
options can perform similarly to perfect pre-learned problem-specifiorg even when the agent-
space is much harder to learn in than any individual problem-space. udgwbe best learning
strategy is to learn using both problem-specific options and portable options.

5.3 The Conveyor Belt Domain

In the previous section we showed that an agent can use experieetatéutasks to learn portable
options, and that those options can improve performance in later tasks thdagent has a high-
dimensional agent-space. In this section we consider a task where thiespgee is not high-
dimensional, but is only sufficient for local control.

In the conveyor belt domain, a conveyor belt system must move a sefesftelirom a row
of feeders to a row of bins. There are two types of objects (trianglesamnares), and each bin
starts with a capacity for each type. The objects are issued one at a tima femder and must be
directed to a bin. Dropping an object into a bin with a positive capacity for its tigerements that
capacity.

Each feeder is directly connected to its opposing bin through a conveitowiich is connected
to the belts above and below it at a pair of fixed points along its length. Thensysay either run
the conveyor belt (which moves the current object one step along theobéft) to move it up or
down (which only moves the object if it is at a connection point). Each acésults in a reward of
—1, except where it causes an object to be dropped into a bin with sgaaeityain which case it
results in a reward of 100. Dropping an object into a bin with zero capamitthat type results in
the standard reward of1.

method we used (Precup et al., 2000), it did not occur during the samber of samples obtained for agents with
agent-space options only.
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To specify an instance of the conveyor belt domain, we must specify thidbeuof objects
present, belts present, bin capacities, belt length, and where eackradjair of belts are con-
nected. A small example conveyor belt system is shown in Figure 12.

Figure 12: A small example conveyor belt problem.

Each system has a camera that tracks the current object and retuessindicating the distance
(up to 15 units) to the bin and each connector along the current belt. S8=ta® space generated
by the camera is present in every conveyor-belt problem and retairsathe semantics, it is an
agent-space, and because it is discrete and relatively smaliQ@ 3tates), we can learn policies in
it without function approximation. However, because it is non-Markae(tb its limited range and
inability to distinguish between belts), it cannot be used as a problem-space.

A problem-space descriptor for a conveyor belt instance consistsed thumbers: the current
object number, the belt it is on, and how far along that belt it lies (technieadlghould include the
current capacity of each bin, but we can omit this and still obtain good ps)idige generated 100
random instances with 30 objects and 20-30 belts (each of length 30#0jandomly-selected
interconnections, resulting in problem-spaces gD08-45000 states.

We ran experiments where the agents learned three options: one to mowerdrd object to
the bin at the end of the belt it is currently on, one for moving it to the belt alitp\and one for
moving it to the belt below it. We used the same agent types and experimentalisdras before,
except that the agent-space options did not use function approximation.

5.3.1 RESULTS

Figures 13(a), 13(b) and 13(c) show learning curves for agentsogmg no options, problem-
space options and perfect options; agents employing agent-spacespptimhagents employing
both types of options, respectively.

Figure 13(b) shows that the agents with agent-space options and ne&xperience initially
improve quickly but eventually obtain lower quality solutions than agents withleno-space op-
tions (Figure 13(a)). One or two training experiences result in rougldys#tme curve as agents
using problem-space options, but by 5 training experiences the agmrg-gptions are a significant
improvement (although due to their limited range they are never as goodfastpgtions). This
initial dip relatively to agents with no prior experience is probably due to the limaede of the
agent-space options (due to the limited range of the camera) and the fattethate only locally
Markov, even for their own subgoals.
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Figure 13: Results for the Conveyor Belt Domain.

Figure 13(c) shows that agents with both option types do not experieisdeitial dip relative
to agents with no prior experience and outperform problem-space ofriomsdiately, most likely
because the agent-space options are able to generalise across beits.1B{g@) shows the mean
total reward for each type of agent. Agents using agent-space optientally outperform agents
using problem-space options only, even though the agent-space opiana Imuch more limited
range; agents using both types of options consistently outperform agémesther option type and
eventually approach the performance of agents using pre-learniel@prspace options.

In summary, these results demonstrate that when an agent-space is oltyyNtzs&ov, learn-
ing portable options can still result in a significant performance improvementlearning using
problem-specific options, but that even with a great deal of experweilcaot reach the perfor-
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mance of perfect pre-learned problem-specific options. Once agaitbett approach is to learn
using both problem-specific and agent-space options simultaneously.

5.4 Summary

Our results show that options learned in agent-space can be sutlgdesfigferred between related
tasks, and that this significantly improves performance in sequenceksftasre the agent space
cannot be used for learning directly. Our results suggest that wheagtre space is large but can
support global policies, experience in related tasks can eventually iresptions that perform as
well as perfect problem-specific options. When the agent space is ardiiidVarkov, learned
portable options will improve performance but are unlikely to reach theopeence of perfect
problem-specific options due to their limited range.

We expect that, in general, learning an option in agent-space will oftealbche harder than
solving an individual problem-space instance, as was the case in enregpts. In such situations,
learning both problem-specific and agent space options simultaneously wii} fbtain better
performance than either individually. Since intra-option learning methodw &tiothe update of
several options from the same experiences, it may be better in generalitageously learn both
general portable skills and specific, exact but non-portable skillsabiowt them to bootstrap each
other.

6. Related Work

Although the majority of research in transfer assumes that the sourcergatieoblems have the
same state space, some existing research does not make that assumption.

Wilson et al. (2007) consider the case where an agent faces a sequfegnvironments, each
generated by one of a set of environment classes. Each environtassiismodeled as a distri-
bution of values of some observed signal given a feature vector,inod the number of classes
is unknown, the agent must learn an infinite mixture model of classes. \oed fvith a new
environment, the agent determines which of its existing models it best matcivegibrer it instead
corresponds to a novel class. A model-based planning algorithm is tedrtaisolve the new task.
This work explicitly considers environment sequences that do not havsatime state space, and
thus defines the distributions of each environment class over the outptundtionf that generates
a feature vector for each state in each environment. Since that featioe ketains its semantics
across all of the tasks, it is exactly an agent-space descriptor asddhfine Thus, this work can
be seen as using agent-space to learn a set of environment models.

Banerjee and Stone (2007) consider transfer learning for the caSereral Game Playing,
where knowledge gained from playing one game (e.g., Tic-Tac-Toeplsited to improve perfor-
mance in another (e.g., Connect-4). Here, transfer is affected thtbegiiame tree: the authors
define generic game-tree features that apply across all games andéhrenQ-values to initial-
ize the values of novel states with matching features when playing a sdmeayame. This is a
very similar mechanism to a portable shaping function, including the use tfrésa—in this case
derived from the game tree—that are common across all tasks.

Taylor et al. (2007) use a hand-coded transfer function to seed skis talue function with
learned values from another similar task with a potentially different stateespHais requires a
mapping to be constructed between the weights of the function approximétmstopair of tasks
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between which transfer might occurOur method offers two advantages over this. First, we ef-
fectively require the construction of a mapping from each task to an apawt, so the number of
mappings scales linearly with the number of tasks, rather than quadraticallgn& through the
use of a shaping function, those mappings can be constructed betwieetlesteriptors, rather than
between function approximation terms. This allows us to treat the functio@ppator employed
for each task as a black box rather than requiring detailed knowledge adritgtruction, and it
allows us to transfer between potentially very different function appraimavhere a direct map-
ping might be difficult to obtain. On the other hand, if performance is critical tonstructing a
specialized task-to-task mapping may result in better performance than ayermec agent-space
mapping; the results in Taylor et al. (2007) seem slightly better than thosa givSection 4.4.2,
although a direct comparison is not possible since the benchmarks wupeels@ng the underlying
learning performance) differ (presumably due to implementation diffes}neeen though we used
the same parameters.

Another related line of research focuses on effecting representagiosfér, where basis func-
tions are learned in one task and applied in another. Representatioretrbasfso far focused
primarily on task sequences where reward function or dynamics diftethbustate space remains
the same (Ferguson and Mahadevan, 2006; Ferrante et al., 2008).skate spaces differ signifi-
cantly, manifold alignment or scaling methods may be employed to transformfbasisns from
one state space to another (Ferguson and Mahadevan, 2008)enogumh transformations require
prior knowledge of the topology of the two state spaces to either achielegsoato obtain a good
alignment.

Lazaric et al. (2008) introduced sample transfer, where sample trassitimm a source task
may be used as additional data to improve performance in a new task. Trassitigples from a
set of source tasks are stored, and then used along with a small setgiégeansitions in a new
task to compute a similarity measure between the new task and the source tasksariBferred
transitions are then sampled according to the similarity measure and added ¢wvttask samples,
resulting in a performance boost for batch-learning methods. Reusitgsamples requires their
state descriptors to (at least) be the same size, although if the reuseiptdesavere defined in
an agent-space, then such a method may be useful for more efficientijnfpaortable shaping
functions.

Konidaris and Hayes (2004) describe a similar method to ours that useadrtasks to learn
associations between reward and strong signals at reward statdtingeaaia significant improve-
ment in the total reward obtained by a simulated robot learning to find a puckovel maze.
The research presented in this paper employs a more general mechdrésentlne agent learns a
heuristic from all visited states.

Zhang and Dietterich (1995) use common features to transfer learnea fualctions across
a class of job-shop scheduling problems. The value functions (repieesas neural networks)
were learned using TRA] over a set of features constructed to be common to the entire problem
class. Value functions trained using small instances of scheduling problenmesthen used to
obtain solutions to larger problems. This research is a case where arspger was sufficient to

5. Construction has been primarily accomplished by hand, but we bdisftyuss recent work aimed at automating it in
Section 7.1.

1363



KONIDARIS, SCHEIDWASSER ANDBARTO

represent a solution to each individual problem and the need for ¢epnedpecific state space was
avoided®

The X-STAGE algorithm (Boyan and Moore, 2000) uses features comanoyss a class of
tasks to transfer learned evaluation functions that predict the perfomudia local search algorithm
applied to an optimization task. The evaluation functions—which are similar to ¥@hetions in
that they predict the outcome of the execution of a policy, in this case ahselgarithm—serve
to identify the most promising restart points for local search. The X-STA®@rithm learns a
distinct evaluation function for each source task and then obtains a “fmtehe next action in
the target task from each source evaluation function. Interestingly, Whdanethod of transfer
results in an initial performance boost, it eventually obtains solutions inferitose obtained by
learning a problem-specific evaluation function; our use of shaping swthid dilemma, because
it naturally incorporates experience from the current task into the ageaitie function and thus
avoids permanent bias arising from the use of transferred knowledge.

All of the option creation methods given in Section 2.2 learn options in the sateesgce in
which the agent is performing reinforcement learning, and thus the optaomenly be reused for
the same problem or for a new problem in the same space. The availablebstaéetton methods
(Jonsson and Barto, 2001; Hengst, 2002) only allow for the automatictieelef a subset of this
space for option learning, or they require an explicit transformation fooim space to another
(Ravindran and Barto, 2003a).

There has been some research focusing on extracting options by exptmtimmonalities in
collections of policies (Thrun and Schwartz, 1995; Bernstein, 199&ifeand Precup, 1999;
Pickett and Barto, 2002) or analysing the relationships between vargiltas sample trajectories
(Mehta et al., 2008), but in each case the options are learned overl@ siag space. In contrast,
we leave the method used for creating the options unspecified—any opttioormethod may be
used—>but create them in a portable space.

Ferrandez and Veloso (2006) describe a method called Policy Reuse, whageat given a
library of existing policies determines which of them is closest to a new problfes, and then
incorporates that policy into the agent’s exploration strategy. The resudlistgnce metric is also
used to build a library of core policies that can be reused for later taske sathe state space. Al-
though this method has very attractive attributes (particularly when appligaénarchical setting),
it is limited to task sequences where only the reward function changes.

Torrey et al. (2006) show that policy fragments learned in a symbolic fasimguinductive
logic programming (ILP) can be transferred to new tasks as constraitkearew value-function.
This results in a substantial performance improvement. However, a usépmugle a mapping
from state variables in the first task to the second, and the use of an ILRmexpiation introduces
significant complexity and overhead.

Croonenborghs et al. (2007) learns relational options and showththatan be transferred to
different state spaces provided the same symbols are still present. phiselp is similar to ours,
in that we could consider the symbols shared between the tasks to be &ispaen

6. The agent-space in this case did introduce aliasing, which occasioaafigd policies with loops. This was avoided
using a loop-detection algorithm.
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7. Discussion

The work in the preceding sections has shown that both knowledge #iridbsisfer can be effected
across a sequence of tasks through the use of features common to slintéis& sequence. Our
results have shown significant improvements over learning from sciatchthe framework offers
some insight into which problems are amenable to transfer.

However, our framework requires the identification of a suitable ageattes facilitate trans-
fer, but it does not specify how that space is identified, which creatkesign problem similar to
that of standard state space design. Researchers in the reinfordearaittg community have so
far developed significant expertise at designing problem-spacesobaigent-spaces. Neverthe-
less, the example domains in this paper offer several examples of reldtedvitts different types
of common feature sets—deictic sensors (the Rod positioning task and theargh), a maximum
set (Keepaway), and local sensing (the Conveyor Belt domain)—arithwe pointed out the use of
similar feature sets in existing work (Zhang and Dietterich, 1995; Boyarivarade, 2000; Wilson
et al., 2007; Snel and Whiteson, 2010). Taken together, these exasugigsst that transfer via
common features may find wide application.

Additionally, for option learning, an agent-space descriptor should idbaliMarkov within the
set of states that the option is defined over. The agent-space desfwiptowill therefore affect
both what options can be learned and their range. In this respect, mesagrent-spaces for learning
options requires more care than for learning shaping functions.

An important assumption made in our option transfer work is that all tasksthexsame set of
available actions, even though they have different state spaces. If tigstise case, then learning
portable options directly is only possible if the action spaces share a comroset sr if we can
find a mapping between action spaces. If no such mapping is given, we eralyldto construct
one from experience using a homomorphism (Ravindran and Bartop2003

When learning portable shaping functions, if the action space diffeocsatasks then we can
simply learn shaping functions defined over states only (as potential-bhapthg functions were
originally defined by Ng et al., 1999) rather than defining them over staterapairs. Although
we expect that learning using portable state-only shaping functions wilp&idorm as well as
learning using portable state-action shaping functions, we neverthejesst ¢hat they will result
in substantial performance gains for reward-linked tasks.

The idea of an agent-centric representation is closely related to the notaiobic or ego-
centric representations (Agre and Chapman, 1987), where objeatspesented from the point
of view of the agent rather than in some global frame of reference. \Mecexhat for most prob-
lems, especially in robotics, agent-space representations will be egocertept in manipulation
tasks, where they will likely be object-centric. In problems involving spatighsnave expect that
the difference between problem-space and agent-space will be clekslydrto the difference be-
tween allocentric and egocentric representations of space (Guazzallj @998)—the utility of
such spaces for transfer has been demonstrated by Frommberggy. (200

7.1 Identifying Agent-Spaces

In this work we have assumed that an agent-space is given. Howeiemady not always be
the case; if it is not, then we are faced with the problem of attempting to automaiidefiyify
collections of features that retain their semantics across tasks.
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This problem may arise in several settings. In the simplest setting, givanaf parresponding
feature sets for two problems, we must determine whether the two featul@raets agent-space.
To do this, we may build approximate transition models for each feature seh@mdompare them.

In an intermediate setting, we might be given two sets of correspondingdsaind asked to
identify which subsets of these features form an agent-space. Shéliteson (2010) report very
promising results on this problem using a formalization of how task-informatifeature is (and
thus how likely it is to be in problem-space) against how domain-informative(éns thus how
likely it is to be in agent-space).

The problem becomes much harder when we are given an arbitrary nofifbatures for each
task, and we are required to both identify correspondences betwatemefe and determine which
subset of features form an agent-space. Taylor et al. (2008 s&ldrsimilar problem: constructing
mappings between two sets of state variables for a pair of given taskg.pfo@ose an algorithm
which generates all possible mappings from the first task to the secomdletmas a transition
model from the first and compares its predictions (using each candidafgngapo sample data
from the second; finally the algorithm selects the mapping with the lowest transitior. This
method can be adapted to our setting by selecting a reference task (mostHikdigst task the
agent sees) and then building mappings from each new task back to it.ubbet ®f variables in
the reference task that appear in all mappings constitute an agent-space.

Taylor et al. (2008) claim that their algorithm is data-efficient becausesdhee sample tran-
sitions can be used for comparing every possible mapping, even thouglgtréghm’s time com-
plexity is exponential in the size of the number of variables in the two tasksurlsaiting, once the
first mapping (from the reference task to some other task) has beemnumted, we may remove the
reference variables absent from the mapping from later consideratioch could lead to signifi-
cant efficiency gains when constructing later mappings. In addition, ausbthod (mapping to a
reference task) would require ory— 1 mappings to be constructed for arbitrary transfer between
pairs of tasks drawn from a sequencendfsks, whereas a direct mapping methodology requires
O(n?) mappings to be constructed.

In the most difficult setting, we might be given no features at all, and askednstruct an
agent-space. This can be considered a problem of discovering largattles that describe aspects
of the state space which can be used for transfer. We expect that thisewallchallenging but
fruitful avenue of future work.

7.2 ldentifying Reward-Linked Tasks

An important distinction raised by this work is the difference between relagid tand tasks that
are both related and reward-linked. Tasks that are related (in thathhey an agent-space) but are
not reward-linked do not allow us to transfer knowledge about the Wahgion, since they do not
necessarily have similar reward functions.

This raises an important question for future work: given a solvedTaakd a new related task
Th, how can we determine whether they are reward-linked? More broadty) g set of previously
learned related tasks that are not reward-linked, which one shouldenasithe source of a portable
shaping function for a new related task?

Answering these questions relies upon us finding some method of compfmigbe two task
reward functionsR, andRs. Since one of the important motivations behind learning portable shap-
ing functions is boosting initial task performance, we would prefer to perfthis comparison
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without requiring much experience. If we are givienin some appropriate functional form, then
we could obtain its value at sample state-action paifk iand compare the results with the expe-
rienced values oRs. If the method used to compare the two reward functions returns a distance
metric, then the agent could use it to cluster portable shaping functionsudiddilraries of them,
drawing on an appropriate one for each new task it encounters.

However, if we are not giveR,,, then we must samplg, with experience. Itis easy to construct
an adversarial argument showing that an agent with experience oiygamnot determine whether
T, andTs are reward-linked without at the very least one full episode’s woréxperience if,.

However, we do not believe the complete absence of prior informationt @&task is rep-
resentative of applied reinforcement learning settings where the agesttswive multiple tasks
sequentially. In most cases, the agent has access to some extra inforabatin@ new task before
it attempts to solve it. We can formalize this by attaching a descriptor to each taskijih extent
to which an agent can recognize a task “type” depends on how mucmiafion is contained in
its descriptor. If the relationship between task descriptor and task “typ@tiknown in advance,
it can be learned over time using training examples obtained by comparingdriwetions after
experience.

8. Summary and Conclusions

We have presented a framework for transfer in reinforcement leabaisgd on the idea that related
tasks share common features and that transfer can take place throegbrfs defined over those
related features. The framework attempts to capture the notion of tasksehatated but distinct,
and it provides some insight into when transfer can be usefully applied robdéem sequence and
when it cannot.

Most prior work on transfer relies on mappings between pairs of taskisheerefore implicitly
defines transfer as a relationship between problems. This work pravitm#rasting viewpoint by
relying on a stronger notion of an agent: that there is something commorsacsesies of tasks
faced by the same agent, and that that commonality derives from feabaresi because they are a
property of an agent.

We have empirically demonstrated that this framework can be successfpligcipo signif-
icantly improve transfer using both knowledge transfer and skill trangtegrovides a practical
approach to building agents that are capable of improving their own probdérimg capabilities
through experience over multiple problems.
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