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Abstract We introduce feature regularization during feature selection for value
function approximation. Feature regularization introduces a prior into the selec-
tion process, improving function approximation accuracy and reducing overfitting.
We show that the smoothness prior is effective in the incremental feature selection
setting and present closed-form smoothness regularizers for the Fourier and RBF
bases. We present two methods for feature regularization which extend the tempo-
ral difference orthogonal matching pursuit (OMP-TD) algorithm and demonstrate
the effectiveness of the smoothness prior; smooth Tikhonov OMP-TD and smooth-
ness scaled OMP-TD. We compare these methods against OMP-TD, regularized
OMP-TD and least squares TD with random projections, across six benchmark
domains using two different types of basis functions.

1 Introduction

Representing value functions in large or continuous state spaces requires function
approximation. Linear function approximation is one common approach, where
the value function is represented as a weighted sum of basis functions. It is often
beneficial to keep the number of basis functions low (Kolter and Ng, 2009; Painter-
Wakefield and Parr, 2012); however, the right set is usually domain-specific.
Recent work in feature selection (Kolter and Ng, 2009; Johns et al, 2010;
Painter-Wakefield and Parr, 2012; Petrik et al, 2010; Ghavamzadeh et al, 2011;
Geist et al, 2012) and construction (Ghavamzadeh et al, 2010; Sun et al, 2011;
Parr et al, 2007; Mahadevan and Liu, 2010) reduces the size of the approximation
set by selecting or constructing basis functions specifically for each domain, and
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are typically used in conjunction with a batch method (Bradtke and Barto, 1996;
Lagoudakis and Parr, 2003; Ernst et al, 2005) to fit the weights. Of particular
interest are greedy selection methods such as orthogonal matching pursuit TD
(OMP-TD), and orthogonal matching pursuit with Bellman residual minimiza-
tion (OMP-BRM) (Painter-Wakefield and Parr, 2012), which aim to select basis
functions predicted to cause the largest reduction in approximation error post
selection. These methods use a set of samples collected from a fixed policy, and
fit the basis function weights to approximate the value function for that policy.
Unlike OMP-BRM which assigns weights to basis functions only once as they are
selected, OMP-TD recalculates weights using a batch method after each selection.
Appropriate batch method choices for OMP-TD include linear TD (Sutton, 1988),
least squares policy evaluation (LSPE) (Yu and Bertsekas, 2009) and least squares
TD (LSTD) (Bradtke and Barto, 1996), of which LSTD is used in this paper. The
result of either method is a tailored set of basis functions and their respective
weights specific to the domain/task and current policy. We focus on learning the
value function for a specific policy, however policy improvement can be achieved
through policy iteration (Sutton and Barto, 1998) by using the value function of
the old policy (found using OMP-TD for example) to generate a new policy.

Although greedy selection of basis functions using current methods does lead
to steadily improving approximations, the goal is to improve the approximation as
rapidly as possible. OMP-TD often performs better in practice than OMP-BRM
(Painter-Wakefield and Parr, 2012), but even so can be slow to converge for large
discount factors (Mahadevan and Liu, 2010). In our experiments, values as low as
~v = 0.8 reduced performance noticeably on some domains. This problem occurs
because OMP-TD aims to select functions which will improve the representational
power of the approximation set, such that with optimal fitting, the value function
will move closer to the true value function at least as much as applying the Bellman
operator would move it. Since the Bellman operator is a ~y-contraction in the
weighted Lo norm (Van Roy, 1998), the reduction in Lo error depends heavily on
v, with large v leading to slow convergence.

With large v however, value functions of environments with sparse reward
functions and local transitions tend to be smooth. This is due to the Bellman
equation, where the value of a state is equal to the discounted expected value of
the next state and the expected reward. With sparse reward functions, the values
between consecutive states change little, and if those consecutive states are close
in distance sufficiently often, the value function as a whole can be expected to be
smooth. Many domains based on physical systems exhibit spatially local transi-
tions (Jonschkowski and Brock, 2013), and sparse reward functions are common,
making smoothness a reliably exploitable attribute of value functions.

We introduce feature regularization as a way to enhance performance during
feature selection by giving preference to basis functions according to prior expecta-
tions of the value function. In standard regression, regularization is commonly used
to avoid overfitting, where simpler (smoother) solutions—solutions with smaller
weights—are preferred. This regularization is usually applied in the final fitting
of weights with a predetermined set of basis functions. In the incremental feature
selection setting, however, regularization can be applied to the selection of indi-
vidual basis functions as they are selected. Such regularization could be used to
reduce overfitting, or to introduce a prior, but unlike regularizing the fit of the
entire function, weight-based regularization is inappropriate since incremental fea-
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ture selection methods usually choose basis functions that have the largest weights
(high impact on the value function).

Tikhonov regularization (Tikhonov, 1963) is one way to incorporate domain
knowledge such as value function smoothness into feature selection. We present the
general form of this regularization and use it to form the smooth Tikhonov OMP-
TD (STOMP-TD) algorithm, which uses a smoothness regularizer on the selection
step of the OMP-TD algorithm. We also present an almost parameter free heuristic
algorithm utilising smoothness; smoothness scaled OMP-TD (SSOMP-TD).

We show empirically that basis function smoothness is an effective regular-
izer in many reinforcement learning domains, and compare these two methods
against methods with similar goals, regularized OMP-TD (ROMP-TD) (Needell
and Vershynin, 2009) and least squares TD with random projections (LSTD-RP)
(Ghavamzadeh et al, 2010). We chose these methods because ROMP-TD focuses
on the problem of overfitting in feature selection, and LSTD-RP deals with the
problem of large feature spaces by projecting them onto a smaller space.

We empirically evaluate feature regularization across six benchmark domains
using two different types of basis, showing that feature regularization can signifi-
cantly lower prediction error. SSOMP-TD in particular performs reliably well with
no increase in computational complexity and an easily chosen parameter.

2 Background

A reinforcement learning (RL) task is typically formalized as a Markov Decision
Process (MDP) (Sutton and Barto, 1998). An MDP is defined as a tuple, M =
(S, A, P,R,v), where S is the set of all possible states s, A = {a1,a2,...,an} is
the set of all actions, P is the transition probability model where P(s,a, s) is the
probability of moving from state s to state s’ with action a, R is a real-valued
reward function where r = R(s,a, s’) is the reward for taking action a in state s
and ending up in state s’, and v € [0, 1) is the discount factor (Sutton and Barto,
1998). We define our state as a vector of real values, i.e., s = [x1,...,zq] where d
is the number of dimensions, and each x; is scaled to be between 0 and 1.

The goal is to learn a policy, 7, that maximizes the expected return (discounted
sum of future rewards). 7 is a stochastic mapping of states to actions where the
probability of choosing a particular action a in state s is given by 7 (s, a). Learning
a policy can be achieved by learning a value function V if P is known, or an action-
value function @ if P is not known. V™ (s) € R is the expected return an agent
receives starting in state s by following policy 7 thereafter. The value function for
a policy 7 satisfies the Bellman equation V™ = R+ vPV™, where V™" is the value
function for an optimal policy. We only consider V since @) is similar.

Often, the number of states is too large to store individual values. A standard
technique for representing value functions in such cases is value function approxi-
mation. Linear function approximation is a common choice. The approximate value
function at a state s is represented by a linear sum of real-valued basis functions
¢i(s) € R with associated weights w; € R: V™(s) = S8 wii(s) = ¢(s) - w,
where ¢(s) = [p1(s),...,Px(s)]T and w = [wi,...,wg]". For multiple states
s = [s1,...,54]7, the vector V™(s) = [p(s1) - w,...,P(sq) - w]T is more eas-
ily expressed as V™ (s) = &(s)w where &(s) is a matrix with columns formed
by the basis functions ¢1, ¢2,...,¢r and rows formed by the states such that
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®(s)i; = ¢;(s:). We further use the notation @5, where @ € R?*" is a matrix and
J C {1,...,v} is an index set, to mean the submatrix of @ containing only the
columns with indices present in J.

We use two types of basis functions, radial basis functions (RBFs) and the
Fourier basis. An RBF is a Gaussian with variance ¢?> > 0 € R and center
bi € RE: ¢i(s) = mef”b"*suz/%z, where each element b;; gives the RBF’s
center position in dimension j € {1,...,d}. Typically, for an order n RBF ap-
proximation, n + 1 RBFs are tiled evenly across each dimension with an addi-
tional constant function for a total of (n 4+ 1)* + 1 basis functions. The RBF
centers b; in each dimension are further parametrized, with b;; = (ci;)/n, where
ci = [cit,¢i2, ..., Cid],cij € {0,...,n}. The entire tiling can be obtained by vary-
ing ¢, and while o can vary, we use 0% = 1/(2(n + 1)® —4(n + 1)? + 2(n + 1)) as
described in Benoudjit and Verleysen (2003).

An n'" order Fourier basis set (Konidaris et al, 2011) consists of cosine func-
tions of the form: ¢;(s) = cos(me; - s), where ¢; = [¢i1, ..., ¢id], cia € {0,...,n}.
By systematically varying ¢, the full order n set of (n + 1)d basis functions can
be obtained. In the context of the Fourier basis, we say ¢; is independent if it is
univariate.

2.1 Feature Selection

The choice of features ¢1, @2, ..., ¢, can have a significant impact on the perfor-
mance of RL algorithms. One way to choose these features is to use a complete
fixed basis scheme, examples of which include CMAC tilings, RBF and Fourier
basis sets. These sets must grow exponentially in size with the number of dimen-
sions, quickly becoming impractical. An approximate sparse representation is often
desirable (Kolter and Ng, 2009), and therefore, methods for intelligently selecting
sparse sets of features are of practical importance.

One method for feature selection that performs well is OMP-TD (Painter-
Wakefield and Parr, 2012). Despite lacking theoretical guarantees, its empirical
performance is as good as or better than other feature selection methods such
as LARS-TD (Kolter and Ng, 2009; Painter-Wakefield and Parr, 2012). For this
reason, we only consider OMP-TD here, though our methods could be extended
to other feature selection methods.

The OMP-TD algorithm is a variation of Matching Pursuit (MP) (Mallat and
Zhang, 1993). Given sampled states s = [s1,. .., 54|, weights w = [w1, ..., wi]T
and matrix @(s) € R?* &(s);; = ¢;(si) made up of previously selected basis
functions ¢1,...,¢r evaluated on those states, the OMP-TD algorithm selects
basis functions in the same greedy manner as MP. The basis function ¢py1 is
selected from a dictionary D of candidate basis functions such that the correlation
p = |(Ri, d(x))|/||d(x)|| between the basis function and the residual error is
maximised. OMP-TD uses the temporal difference (TD) error as the residual,
Riy1 = 7+ vP(s")w — &(s)w, and maintains optimal weight values w1, ..., wg
using LSTD after each basis function is added. At each iteration, the residual is
recalculated and the basis function in the dictionary with largest correlation to
the residual is selected.
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2.2 Regularization

A common solution in least squares regression to the problem of ill-posed problems
and overfitting is regularization. Given a matrix X and target vector y, the prob-
lem is to find a vector w which minimizes the residual subject to the regularizer
AU (w), equivalent to minimizing

lly — Xwl® + AU (w) (1)

for some A € RT.

An often desirable side effect of regularization is a sparse solution (Kolter and
Ng, 2009), which can be achieved directly with Li regularization by imposing a
sparsity inducing regularizer U(w) = ||w]||1. L2 regularization instead introduces
a constraint U which favors certain solutions or makes a problem well posed. Lo
regularization has the advantage that solutions can be found analytically where L
regularization often requires linear programming techniques. The most common
form of constraint for Lo regularization, U(w) = ||[I'w]||?, is known as Tikhonov
regularization (Tikhonov, 1963) or ridge regression, where I is a suitable regular-
ization matrix (usually the identity matrix which encourages solutions with small
weight norms). While it is common to choose a U which prefers low weights, U
can also be chosen as a measure of the solution’s smoothness. This expresses pref-
erence for simpler solutions that are less likely to overfit the data, and works in
the incremental feature selection setting where basis functions with large weights
are explicitly selected for.

One class of smoothness measures! for a function f acting on a state vector s
is given by

Un(f) = / (£ (5))2ds, (2)

where f(m) is the m'" derivative of f with m = 2 being a common and intuitive
choice (Wahba, 1990) since it gives the total squared rate of change in slope.
In the case of linear function approximation, where X € RI*F
basis functions, ¢1,...,¢x, evaluated at sampled states si,...,sq with X;; =
¢;(si), the smoothness of the underlying function can be expressed independently
of X as Upm(¢ - w), where ¢ = [¢1,...,¢1]" is a vector of basis functions, w =
[wi, ... ,wk]T is a vector of real-valued weights, and ¢ - w is a real-valued function
of s.

is a matrix of

3 Feature Regularization

With OMP-TD, each basis function selected is guaranteed to improve the approx-
imation provided it is sufficiently correlated with the Bellman error basis function
(BEBF) (Parr et al, 2007), the basis function equal to the Bellman error. While
correlation to the Bellman error is a reliable metric for feature selection, in prac-
tice OMP-TD can be slow to reduce prediction error when the value function does

I There are many ways to measure smoothness, many of which exhibit similarities, for ex-
ample the total variation norm is similar to Uj, where instead of squaring the function’s
derivative, the absolute value is taken instead. Our smoothness measure was chosen for its
intuitive simplicity and existence of analytic solutions.
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not resemble the reward function (Mahadevan and Liu, 2010). Using the Neumann
series expansion of the value function V = R+~yPR+~2P?R+ ... it is easy to see
as 7 increases away from 0, the value function looks less like the reward function.
This is important because the first £ BEBFs which OMP-TD aims to select span
the space of the first k terms of the Neumann series (Parr et al, 2008). Even values
as low as v = 0.9 can lead to slow convergence in practice (Mahadevan and Liu,
2010). Since OMP-TD chooses a basis function which approximates the BEBF at
each step, it can be even slower to converge.

One way to improve performance could be to choose basis functions less likely
to overfit the BEBF, a problem when there are insufficient samples and many
basis functions to chose from. This problem is particularly acute in the RL setting
where dimensionality can be high and interaction costly. Another possibility is to
introduce prior knowledge to augment selection. The smoothness prior can be used
when the underlying value function is expected to be smooth. We show in section
3.1 there is good reason to believe that value functions are smooth in general,
making the smoothness prior a powerful tool for feature selection in RL.

We present feature regularization as a way to improve feature selection in RL
by using regularization techniques in the selection process to incorporate prior
knowledge/reduce overfitting. We present methods based on the OMP-TD algo-
rithm because its strong empirical results on benchmark domains and simplicity
make it a good choice for feature selection (Painter-Wakefield and Parr, 2012).
These methods could potentially be extended for use in other feature selection
methods because they are decoupled from the LSTD fitting step in OMP-TD.

3.1 Regularized Selection for Smoothness

The idea that value functions are smooth in general is not new. Mahadevan and
Maggioni (2007) note that value functions are typically smooth in Euclidean space.
Their proto-value functions (PVFs), however, aim to take advantage of smoothness
in the state graph. This type of smoothness derives from the fact that the value
of a state is a function of “neighbouring” state values and associated rewards,
where a state’s neighbours are those reachable through transitions. Smoothness
in Euclidean space is related, and coincides when neighbouring states are close in
distance sufficiently often in conjunction with smooth or sparse reward functions.
These conditions are often easy to fulfil as spatially local transitions are frequent
in domains based on physical interactions (Jonschkowski and Brock, 2013) and
sparse/smooth reward functions are common.

Value function smoothness is also related to the discount factor « by the Bell-
man equation, since the value of each state is a sum of y-discounted values of future
states. Values of v closer to 1 lead to increased smoothness in the value function
along trajectories through the state space as successive values change less. This
however, can also lead to larger differences in values between states which are close
in space but not close in the state graph.

This can be seen in Fig. 1 where the chainwalk and negative mountain car
value functions have been plotted against v using the same policies used in the
experiments in section 4. In mountain car with v = 0.99, the policy follows the
smooth spiral path down to the goal (position > 0.5). The reward = 0 received at
the goal is propagated along the spiral trajectory to the start position at (0,0).
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Fig. 1 50-state chainwalk value functions for different values of v (a-h). As v increases, the
value function gets smoother. Negative mountain car value functions for different values of v
(i-p). As « increases, the value function gets smoother until v ~ 0.9 and then rougher again.

Although the path following 7 is smoothest as v — 1, the value function as a
whole is smoothest around v = 0.9 due to sharp discontinuities forming for larger
~. Chainwalk gets smoother as v — 1.

These observations of value function smoothness naturally lead to a smooth-
ness prior for feature selection. While value functions aren’t necessarily smooth
in Euclidean state space, smoothness is common, and unlike smoothness over
the state graph, introducing a smoothness prior in Euclidean space does not re-
quire specific domain knowledge. In the case of OMP-TD with a fixed basis, the
smoothness of each function in the dictionary U, (¢;) can be pre-calculated inde-
pendently of the state graph since each ¢; is known. Using the Frobenius tensor

norm, [[Al|= | 3> A3 , ., where Ais any order—I tensor, we derive? the
J15J25-501

smoothness measures Up, (¢;) using equation 2 in the general case where m > 1
for both the RBF and Fourier bases. For an RBF basis function ¢; in d dimensions
with variance o and arbitrary center position, the smoothness is:

Un() = =20 2 1) )

For a Fourier basis function ¢; with parameter vector c;, the smoothness is:

lei [ 72
el (4)

Um(¢i) = 2

2 Derivations for these two equations are given in the Appendix.
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3.2 Smoothness Regularized Feature Selection Methods

We describe two ways of integrating the smoothness regularizer into the selec-
tion process, first using the standard Tikhonov regularization formulation with
STOMP-TD, and second by directly modifying the basis function correlation for-
mula with the SSOMP-TD selection algorithm.

The algorithm for each method follows the same steps as OMP-TD. Given a
set of samples obtained using a fixed policy, and a dictionary of basis functions,
an approximation set of basis functions is formed. This is initialized with at least
the constant function. Weights are fitted to the approximation set using LSTD,
and the resulting Bellman residual calculated. The correlation p of the Bellman
residual to each basis function in the dictionary is calculated. This correlation is
then modified by STOMP-TD (equation 6) or SSOMP-TD (equation 7) and the
single most correlated basis function is selected and added to the approximation
set. The weights are again calculated by LSTD and the process repeated until the
Bellman residual is sufficiently small.

The algorithms can be prevented from selecting redundant features by using
orthogonal basis sets in the dictionary, however even with redundant features,
their correlation to the Bellman error will be small. This is because LSTD is the
orthogonal projection of TV into the approximation set, and consequently Parr
et al (2007) show that the Bellman residual (TV — V) is orthogonal to the span
of the approximation set.

3.2.1 Smooth Tikhonov OMP-TD

Tikhonov regularization (ridge regression) is a common type of regularization
where the regularization term AU is added linearly to the minimization problem.
For feature selection we are only interested in finding the single most correlated
basis function, and hence the problem becomes finding the basis function ¢; and
associated weight w; which minimize the regularized problem at step k:

(0 wi) = arg | min_ [[Ri—1 = wo(x)[|* + AU (w9), (5)

)

where U, : C1(R%,R) — R is a suitable regularization function and A € R controls
the harshness of the regularization with A = 0 giving the unregularized case. Here
C*(R? R) is the class of continuously differentiable functions from R to R. We use
the smoothing regularization functions in equations 3 and 4 and find the solution
to equation 5 by searching the dictionary for the basis function ¢; € D with largest
regularized correlation® p} where,

. (Ri—1,9i(x)) .
VIgiX? + AUm (1)

(6)

Using p; in place of p; in the OMP-TD algorithm results in the Smooth Tikhonov
OMP-TD (STOMP-TD) algorithm.

3 The regularized correlation is derived in the Appendix.
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3.2.2 Smoothness Scaled OMP-TD

The STOMP-TD algorithm introduces a new parameter A. Methods for finding
appropriate A exist (Wahba, 1990), however we propose a parameter free heuristic
approach which is less powerful than STOMP-TD but simpler to use in practice,
called Smoothness Scaled OMP-TD (SSOMP-TD). The SSOMP-TD algorithm
favors basis functions which are both smooth and highly correlated instead of
focusing on correlation alone. In order to achieve this, the correlation p; at step
k of each basis function ¢; € D is scaled by the square root of its smoothness
Unm(¢i), giving the regularized correlation p!:

<Rk—1’¢i(x)> — Pi (7)

16:GIVTm ()| V/U(di)’

where smooth basis functions have a low Up,(¢;), increasing the correlation, and
erratic/rough basis functions have a high Up,(¢;), particularly in the case where
m = 2. These two methods of regularizing the selection are similar; SSOMP-TD
can be thought of as STOMP-TD with a large A. To avoid division by 0, all basis
functions with a smoothness of 0 are added to the approximation up front.

SSOMP-TD’s performance is strongly related to the smoothness of V* as shown
in Fig. 2 where the performance of OMP-TD and SSOMP-TD m = 2 are plotted
against the discount factor v (as a way of controlling the function’s smoothness). In
chainwalk, the error in SSOMP-TD steadily decreases along with the smoothness
as = increases. In mountain car, the best performance of SSOMP-TD is reached
when the value function is smoothest.

Both STOMP-TD and SSOMP-TD only modify the correlation calculation
without increasing complexity and hence the running times are the same as OMP-
TD’s O(Kq) for selection, and O(k® 4 gk?) for fitting with LSTD, where K is
the size of the dictionary, ¢ is the number of samples and k is the size of the
approximation set.

/"
;=

3.3 ROMP-TD and LSTD-RP

We compare our methods to two methods with similar goals; the temporal differ-
ence version of the regularized orthogonal matching pursuit algorithm (ROMP)
(Needell and Vershynin, 2009): ROMP-TD, and the least squares temporal differ-
ence with random projections algorithm (LSTD-RP) (Ghavamzadeh et al, 2010).

An adaptation to the OMP algorithm, ROMP has not yet been applied in the
RL setting to the best of our knowledge. While the theoretical guarantees of the
ROMP algorithm may still apply in the TD case, we leave the proofs of such for
a more complete review of the ROMP algorithm in this setting. We include it as
the only other algorithm we know of which employs regularization in the selection
step of OMP. Unlike our OMP-TD based methods, ROMP selects a set of basis
functions to add to the approximation at each step instead of a single function. The
selected set Jy fulfils two criteria: 1) the correlations of each basis function in the
set are comparable,® and 2) the magnitude or energy ||p|s,||* of the correlations

4 The correlation p; of basis function ¢; is comparable to the correlation pj of ¢; if |ps| <
2|p;| and |p;] < 2ps.
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in the set is the largest amongst all sets which fulfil criteria 1. This forces the
correlation of basis functions in the solution to be closer to uniform and thus more
regular (Needell and Vershynin, 2009). Intuitively, it is better to have a set of good
basis functions rather than one highly correlated basis function which may overfit
the data. The selection step of the ROMP algorithm is decoupled from the OMP
fitting step and can be inserted into OMP-TD without modification.

LSTD-RP deals with large feature sets differently. Instead of selecting features
so that the set used in the fitting step is computationally manageable, LSTD-RP
projects the entire set of features using a random projection matrix onto a low
dimensional space. The low dimensional space results in a significant reduction
in the size of the matrices used in LSTD, making it possible to compute value
functions despite the curse of dimensionality.

The running time of the ROMP selection step is of the same order as OMP-
TD’s selection step®: O(K¢q) where K is the number of basis functions in the
dictionary and q is the number of samples.

LSTD-RP has the advantage that it is not incremental and the LSTD calcula-
tion only has to be done once in O(k3 +gkK) where ¢ is the number of samples, K
is the size of the dictionary and k is the size of the low dimensional space which is
the size of the approximation sets of the feature selection methods. Predicting the
value of a state comes with a cost of O(Kk) instead of O(k) for feature selection
methods.

5 See the Appendix for the complete algorithm and analysis.
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4 Experiments

Our goal is to compare the selection methods based on the ordering they impose on
their candidate basis functions. We therefore show the performance of each method
against the number of basis functions selected instead of the stopping condition
parameter () described in the OMP-TD algorithm (Painter-Wakefield and Parr,
2012). Any setting of 8 would correspond to adding a vertical line at some point
in the graph. Our experimental design is similar to that used in Painter-Wakefield
and Parr (2012). For ROMP-TD, where sets of basis functions are selected,® we
added basis functions from the set one at a time in descending order of correlation
magnitude to make the methods comparable. For LSTD-RP, we projected the
entire dictionary available to the other algorithms such that the matrices used in
the fitting step of each method were the same size. We used the same amount of
L2 regularization as the other methods in the fit.

In the RBF experiments, the approximation set contained the constant func-
tion ¢1 = 1 at the start. The dictionary contained basis function sets up to a
maximum order. For example, with a maximum order of 4, the RBF basis sets
of orders n = 1,2,3 and 4 would all be added to the dictionary, with each set
using a different variation parameter ¢ = 1/(2(n + 1) — 4(n + 1)% + 2(n + 1))
depending on its order, n. This would give the selection algorithm the choice be-
tween wider (more general/smoother) and thinner (more specific/sharper) basis
functions where appropriate.

In the Fourier basis experiments, the approximation set contained independent
basis functions up to a given order at the start. The dictionary contained all basis
functions up to a maximum order. For the chain walk experiments, where all
basis functions are independent, only the constant basis function was added to the
approximation set at the start.

4.1 Domains

In each domain, training and test samples were collected using a fixed deterministic
policy. In chainwalk, pairs of samples were collected by following the optimal policy
from a random state to the next state. In the other domains, the given policy was
followed from a random state until termination. The error in the approximation
was obtained by comparing the approximate value V™ to the true value V™ using
the root mean squared error. In chainwalk, V" was calculated using dynamic
programming. In the other domains, V™ was calculated using a single rollout
(deterministic policy). The experiment setup for each domain with the RBF basis
is given in Table 1 and with the Fourier basis in Table 2. We note that the high
regularization for some of the RBF experiments was due to unstable behavior in
OMP-TD and sometimes ROMP-TD. Painter-Wakefield and Parr (2012) also note
this behavior. For the STOMP-TD experiments, we tried on average 10 different
values of A\ and only showed the best performing out of those. A poor choice
significantly affects performance. Results were averaged over 100 trials.

50 State ChainWalk: The 50 state chainwalk domain (Lagoudakis and Parr,
2003) is a 1 dimensional domain with 50 states and rewards at states 10 and 41.
We scaled the states between 0 and 1 for function approximation.

6 We did not restrict the size of the selected set using the optional parameter .
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Fig. 3 The domains used. A 4 state chainwalk with rewards at states 2 and 3 (a). Mountain
car 2d (b). Mountain car 3d (c). The pinball configuration used in our experiments with sample

trajectory (d). RC Car sample trajectories with random starts using our hand coded policy
(e). Acrobot (f).

Domain o7 Max Initial Total Training Test Lo
Order BFs BFs Samples Samples Regularization

50 State Chainwalk 0.8 49 1 1276 500 1000 0.01
Mountain Car 0.99 9 1 385 5000 10000 0.1
Mountain Car 3D 0.99 4 1 978 20000 10000 1000.0
Pinball 0.99 4 1 978 20000 10000 0.1
RC Car 0.99 4 1 978 20000 10000 2500.0
Acrobot 0.99 4 1 978 20000 10000 5000.0

Table 1 Discount, initial dictionary and approximation set, samples collected and L2 regu-
larization for each experiment using the RBF basis.

Mountain Car: Mountain Car (Sutton and Barto, 1998) is a 2 dimensional
domain where an underpowered car must escape a valley by driving up the sides,
using its momentum to get to the top of the valley. We used the policy of accel-
erating in the direction of the current velocity or going right if at rest, used in
Painter-Wakefield and Parr (2012).

Mountain Car 3D: Mountain Car 3D (Taylor et al, 2008) is a 4 dimensional
version of the Mountain Car domain. We used a similar policy to the 2 dimensional
case where the car always accelerates in the direction of maximum velocity, or in
the closest direction towards the goal if stationary.

Pinball: The Pinball domain (Konidaris and Barto, 2009) is a 4 dimensional
domain in which the agent controls a ball it must maneuver to the goal, bypassing
or using the various obstacles. The configuration used is shown in Fig. 3. The
policy was the greedy policy over a value function learned using Sarsa(\) (y =
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Domain o7 Max Initial Total Training Test Lo
Order BFs BFs Samples Samples Regularization

50 State Chainwalk 0.8 300 1 301 500 1000 0.01
Mountain Car 0.99 10 21 121 5000 10000 0.01
Mountain Car 3D 0.99 5 21 1296 20000 10000 0.01
Pinball 0.99 5 21 1296 20000 10000 0.01
RC Car 0.99 5 21 1296 20000 10000 0.01
Acrobot 0.99 5 21 1296 20000 10000 0.01

Table 2 Discount, initial dictionary and approximation set, samples collected and L2 regu-
larization for each experiment using the Fourier basis.

0.99, A = 0.95,¢ = 0.01) with an O(5) Fourier basis and an automatic learning
rate adjusting method (Dabney and Barto, 2012).

RC Car: The Remote Control Car domain (Geramifard, 2013) is a 4 dimen-
sional domain with 9 actions in which a remote control car must be maneuvered
to within a distance of 0.1 meters from the goal. The 9 possible actions are derived
from combinations of 2 primitive action types: steering € {left, straight,right}
and acceleration € {forward, coast,backward}. The state is given by the x and y
position of the car, its heading 6 in radians and its velocity v. If the car collides
with any of the walls in the 2 X 3 meter room it’s in, its velocity is set to 0, oth-
erwise the domain is frictionless. At each step a reward of —1 is given if the agent
is not at the terminal goal state or 100 if it is. The policy 7 used simulates all
possible actions at each state and chooses the one which minimises § 4 20, where §
is the Euclidean distance to the goal and o is the orthogonal distance to the goal
along the current trajectory of the car.

Acrobot: The acrobot domain (Sutton and Barto, 1998) is a 4 dimensional
domain where an agent controls the torque of the middle link of a 2 link pendulum.
The goal is to raise the tip of the pendulum a certain height. The policy applies
torque in the direction of the joints if they are moving in the same direction, else
it reverses it. Occasionally it didn’t terminate, and we discarded those samples.

4.2 Results

The experimental results are shown in Fig. 4 and Fig. 5. They show that standard
OMP-TD performs well in general, but is beaten by SSOMP-TD and STOMP-
TD on all but the Fourier acrobot experiment. Interestingly, with the settings
of ~ selected, the requirement for guaranteed improvement (the angle between
¢ and the BEBF must be less than cos™'(y) (Parr et al, 2007)) was seldom, if
ever, satisfied. Despite this, OMP-TD performs well, suggesting the existence of
stronger theoretical results. The high regularization for the RBF experiments was
due to unstable behavior in the LSTD fitting step. Interestingly SSOMP-TD and
STOMP-TD did not suffer from this unstable behavior.

The SSOMP-TD algorithms performed reliably well, with the smoothing reg-
ularizer Ui performing the worst of the three on average, and Us most often
performing the best, or tied for best. SSOMP-TD performed its worst on acrobot
with both basis sets. This could indicate that the underlying value function of our
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Fig. 4 Experimental results for the RBF basis on the chainwalk, mountain car, mountain car

3d, pinball, rc car and acrobot domains (a-f).

policy is not smooth. The algorithm seems to be at least as good as the others, if
not better on the remaining domains taken as a whole.

The STOMP-TD algorithm performed well across all domains, however se-
lecting an appropriate A was difficult, and some settings resulted in performance
significantly worse than OMP-TD. It is more powerful than SSOMP-TD as it can
be adapted to use any prior, but it is also more difficult to use. In practice, we
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Fig. 5 Experimental results for the Fourier basis on the chainwalk, mountain car, mountain
car 3d, pinball, rc car and acrobot domains (a-f).

would use SSOMP-TD as choosing the m parameter is significantly easier than
choosing A, and the results are comparable for the two methods.

ROMP-TD was never the best performer, and in multiple experiments per-
formed the worst. ROMP-TD primarily tackles the problem of overfitting, and it
is possible there were too many samples for overfitting to occur. This suggests
that the effectiveness of SSOMP-TD and STOMP-TD is primarily due to the
smoothness of the value function in these experiments. Interestingly in the Fourier
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pinball experiment, selecting basis functions randomly outperformed ROMP-TD.
It is possible that selecting batches of basis functions was too conservative and the
other methods could take advantage of the changing residual after each selection.
Even randomly chosen functions were better than a set of functions selected to
approximate one residual well.

LSTD-RP performed poorly in all domains, only beating the random selection
method in two of the RBF experiments. Its best performance with the Fourier basis
was in mountain car, which was the only experiment where every basis function in
the dictionary was selected. In that experiment its performance matched that of
the other methods near the end, indicating that LSTD-RP is negatively affected
by poor basis functions in the dictionary, which dilute the resulting projection.

The spikes in the graphs, particularly in figure 5 (c) are the result of fitting
problems with LSTD. We verified this by fitting the basis set at each step to the
estimates of the true value function obtained using rollouts. We used the same
training and test set and plotted the results.” As expected, the error for each
method decreased monotonically and the relative performance of the methods was
similar.

5 Future Work and Conclusions

A major concern when using function approximation in high dimensional domains
is the large computational costs involved. Feature selection, the automated process
of selecting a subset of these functions to use in the approximation, has conse-
quently begun to receive significant attention recently. However, current greedy
selection techniques ignore characteristics of the underlying value function and
select basis functions which best fit the sample data. This may lead to the selec-
tion of more basis functions than necessary. The introduction of prior knowledge
can improve performance. One such prior is the smoothness prior which can be
integrated into the selection process via regularization.

We have presented three ways to regularize feature selection in RL, ROMP-TD,
STOMP-TD and SSOMP-TD. Our results using these methods show that feature
regularization is a simple yet powerful tool for improving performance without
significant computational overhead. Further, the smoothness prior generalizes the
intuition that wide/low frequency basis functions are better when only a few ba-
sis functions can be selected, and shows continued empirical improvements well
beyond the first few basis functions.

One possible direction for future study is to combine STOMP-TD and SSOMP-
TD with state space restructuring methods such as Predictive Projections (Sprague,
2009), which projects the original state space in such a way that neighboring states
in the state graph are closer together in the projected state space. There is also
potential to use the smoothness prior in dictionary construction, to either reduce
its size significantly in high dimensional domains, or to improve the quality of
basis functions in a dictionary of fixed size. Randomly selected RBF's would be a
natural choice, where a bias towards smooth RBFs could be included easily.

7 Many of the plots involving the true error ||V™ — ITV™|| overlapped the others, so we have
omitted them for clarity.



Regularized Feature Selection in Reinforcement Learning 17

References

Benoudjit N, Verleysen M (2003) On the kernel widths in radial-basis function networks. Neural
Processing Letters 18:139-154

Bradtke S, Barto A (1996) Linear least-squares algorithms for temporal difference learning.
Machine Learning 22(1):33-57

Dabney W, Barto A (2012) Adaptive step-size for online temporal difference learning. In:
Twenty-Sixth AAAI Conference on Artificial Intelligence, pp 872—-878

Ernst D, Geurts P, Wehenkel L (2005) Tree-based batch mode reinforcement learning. In:
Journal of Machine Learning Research, pp 503-556

Geist M, Scherrer B, Lazaric A, Ghavamzadeh M (2012) A Dantzig selector approach to tem-
poral difference learning. In: Proceedings of the 29th International Conference on Machine
Learning, pp 1399-1406

Geramifard A (2013) Rc-car domain. http://acl.mit.edu/RLPy/api/domains_misc.html#rccar

Ghavamzadeh M, Lazaric A, Maillard O, Munos R (2010) LSTD with random projections. In:
Advances in Neural Information Processing Systems 23, pp 721-729

Ghavamzadeh M, Lazaric A, Munos R, Hoffman M (2011) Finite-sample analysis of Lasso-TD.
In: Proceedings of the 28th International Conference on Machine Learning, pp 1177-1184

Johns J, Painter-Wakefield C, Parr R (2010) Linear complementarity for regularized policy
evaluation and improvement. In: Advances in Neural Information Processing Systems 23,
pp 1009-1017

Jonschkowski R, Brock O (2013) Learning task-specific state representations by maximizing
slowness and predictability. 6th International Workshop on Evolutionary and Reinforcement
Learning for Autonomous Robot Systems (ERLARS)

Kolter J, Ng A (2009) Regularization and feature selection in least-squares temporal difference
learning. In: Proceedings of the 26th Annual International Conference on Machine Learning,
pp 521-528

Konidaris G, Barto A (2009) Skill discovery in continuous reinforcement learning domains using
skill chaining. In: Advances in Neural Information Processing Systems 22, pp 1015-1023

Konidaris G, Osentoski S, Thomas P (2011) Value function approximation in reinforcement
learning using the Fourier basis. In: Proceedings of the Twenty-Fifth Conference on Artificial
Intelligence, pp 380-385

Lagoudakis M, Parr R (2003) Least-squares policy iteration. Journal of Machine Learning
Research 4:1107-1149

Mahadevan S, Liu B (2010) Basis construction from power series expansions of value functions.
In: Advances in Neural Information Processing Systems 23, pp 15401548

Mahadevan S, Maggioni M (2007) Proto-value functions: A laplacian framework for learn-
ing representation and control in markov decision processes. Journal of Machine Learning
Research pp 2169-2231

Mallat S, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Transac-
tions on Signal Processing 41(12):3397-3415

Needell D, Vershynin R (2009) Uniform uncertainty principle and signal recovery via regular-
ized orthogonal matching pursuit. Foundations of computational mathematics 9(3):317-334

Painter-Wakefield C, Parr R (2012) Greedy algorithms for sparse reinforcement learning. In:
Proceedings of the 29th International Conference on Machine Learning, pp 1391-1398

Parr R, Painter-Wakefield C, Li L, Littman M (2007) Analyzing feature generation for value-
function approximation. In: Proceedings of the 24th international conference on Machine
learning, pp 737-744

Parr R, Li L, Taylor G, Painter-Wakefield C, Littman M (2008) An analysis of linear models,
linear value-function approximation, and feature selection for reinforcement learning. In:
Proceedings of the 25th International Conference on Machine Learning, pp 752—-759

Petrik M, Taylor G, Parr R, Zilberstein S (2010) Feature selection using regularization in
approximate linear programs for Markov decision processes. In: Proceedings of the 27th
International Conference on Machine Learning, pp 871-878

Sprague N (2009) Predictive projections. In: Proceedings of the 21st international joint con-
ference on Artifical intelligence, pp 1223-1229

Sun Y, Gomez FJ, Ring MB, Schmidhuber J (2011) Incremental basis construction from tem-
poral difference error. In: Proceedings of the 28th International Conference on Machine
Learning, pp 481-488


http://acl.mit.edu/RLPy/api/domains_misc.html#rccar

18 Dean S. Wookey, George D. Konidaris

Sutton R, Barto A (1998) Introduction to Reinforcement Learning. MIT Press, Cambridge,
MA, USA

Sutton RS (1988) Learning to predict by the methods of temporal differences. Machine learning
3(1):9-44

Taylor M, Kuhlmann G, Stone P (2008) Autonomous transfer for reinforcement learning.
In: The Seventh International Joint Conference on Autonomous Agents and Multiagent
Systems, pp 283-290

Tikhonov A (1963) Solution of incorrectly formulated problems and the regularization method.
In: Soviet Math. Dokl., vol 5, p 1035

Van Roy B (1998) Learning and value function approximation in complex decision processes.
PhD thesis, Massachusetts Institute of Technology

Wahba G (1990) Spline models for observational data, vol 59. Society for industrial and applied
mathematics

Yu H, Bertsekas DP (2009) Convergence results for some temporal difference methods based
on least squares. Automatic Control, IEEE Transactions on 54(7):1515-1531

A Smoothness Measures

2

Aj17j2a~~7jl7 where A is any order—I

We use the Frobenius tensor norm, |[A|| = >
J15d25-01
tensor.

The smoothness measure Uy, (¢) gives the smoothness of the function ¢, or how far ¢ is
from a smooth function. In general, different classes of smoothness take the form:

Unn () = /((b(m)(s))zda:ldmg..‘dmd, )

where s = [z1,...,24), d is the number of dimensions, and each z; is scaled to be between 0
and 1.

A.1 Fourier Smoothness

Given a Fourier basis function ¢(s) = cos(mc - s) in d dimensions with parameter vector
¢ = [e1,¢2,...,cq] defined on the interval [0,1], s = [z1,x2,...z4], the smoothness measure for
m =1, Ui(¢) is as follows:

1
U () = /0 l16(s)’|[2ds
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Since c is a vector of integer values, sin(2m Z?:l ¢;) = 0, and hence the expression simplifies
to:
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Since ¢ is a vector of integer values, sin(2r Z?:I ¢;) = 0, and hence the expression simplifies
to:

[le[*a*
Ua(9) = 1T (12)
After the 37% derivative a pattern emerges and the general form for m > 0,m € Z is:
2m 2m
c T
Un(s) = AT (13)
A.2 RBF Smoothness
For a radial basis function,
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e 20
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in d dimensions with parameter vector ¢ = [c1, c2, ..., ¢4] and variance o defined on the interval

(—00,0), s = [z1,Z2,...x4]. When taking the integral with respect to s from —oo to oo, the
location of the rbf center becomes irrelevant so ¢ can be set to 0. The smoothness measure for
m =1, Ui(¢) is as follows:
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The smoothness measure for m = 2, Ua(¢) is derived as follows:

When ¢ = j,
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After the 4t" derivative a pattern emerges and the general form for m > 0,m € Z is:

Um(¢i)

B Full ROMP Algorithm

i1 (d+2(i — 1))

2mg2m

. (19)

The full ROMP selection algorithm is given in algorithm 1.
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B.1 ROMP Running Time

The running time of the ROMP selection step is of the same order as OMP-TD’s selection
step: O(Kq) where K is the number of basis functions in the dictionary and ¢ is the number
of samples. Both compute the correlations of each basis function in O(K¢q) time, however the
ROMP algorithm sorts these correlations (O(K log(K))) and selects the set with maximal
energy which can be done in O(K).

In the given algorithm, the inner while loop only runs forward and never runs over the
same indices more than once, therefore despite being inside a for loop, the total executions of
the instructions in the while loop are of O(K). Additional proof of this is given in the original
ROMP paper.

As long as ¢ > log(K), the time complexity of the selection is the same as OMP-TD
O(Kq), otherwise the complexity is O(K log(K)).

Algorithm 1 ROMPFeatureSelect

Input:

p € RE: Correlation of each basis function.

I C{1,...,, K}: The indices of currently selected basis functions.
1 € [1,..., K]: The sparsity parameter.

Output:

Set of basis function indices Jy to be added to I.

¢ « list of indices, I;, sorted in descending order of the Pr, they correspond to.
J «+ {c1,...,cy}, the set of indices corresponding to the 1 largest values in p.
Select: Find all sets Jo C J such that |p;| < 2|p;| for all 4,5 € Jo. Choose set with the
greatest ||p,||? value.
currTotal < 0, bestTotal < 0, bestStart < 0, bestEnd < 0
j<+<0
for i =1 to size(J) do
currTotal < currTotal + pQJi
while [p;;| > 2|py;| do
currTotal < currTotal — p?]j
j—i+1
end while
if currTotal >= bestTotal then
bestStart < j, bestEnd < i, bestTotal < currTotal
end if
end for

JO — {JbestStartv JbestStarH—la weey JbestEnd}
return Jy

C Tikhonov Derivation

For a single basis function ¢; we derive the Tikohonv regularized correlation p’ at step k by first
solving for the optimal «; which minimizes the residual error vector Ry = Ryg_1 + a;i(x):

@i = arg min IRi—1 — i (X)|1> + AU (cvihi) (20)
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by taking the derivative and setting to 0:

— s 2 b
OzaHkal a;¢;(x)|| +3)\Um(az¢z)

80{7: aai
0= O||Ry—1 — aii(x)||? n OX2Up (i)
Oa; Oay; (21)

0= —2(Rp_1, b (x)) + 20| |s (x)||* + 22, U

= \Br-1,$i(x))
C eI+ AU

Substituting the optimal « into the minimization problem for any given ¢;, the best ¢ € D
is the one that minimizes the following equation:

IRi—1 — ad(x)||* + AUm ()

_ _ (Reo,9x) P (Ri—1,0(x)) |7
= R G601 + AU (@) * ) “Um(‘”H\\¢<x>||2+wm(¢>
R a8 )
= R P —2 (o) o)
(Ri—1, ¢(x)) 2 2 (Rg—1, ¢(x)) 2
* (\|¢(x>||2 + AUm<¢>> 16GI" +AUm () H 0O + A\Om (@) (22)
_ 2o Re-1,6(x))%
= IR 2(||¢<x)\|2+wm(¢>)
(Ryp—1,600))  \* o (Rp_1,6(x)) \*
+(\|¢(x>||2+wm<¢>>> 126l +Wm(‘“(|\¢><x>||2+wm(¢>)
:HRk 1“27 (Rk71’¢(x)>2
G + AU (@)
Therefore in order to minimize equation 20,
pl _ ‘ <Rk—17¢(x)> ’ , (23)

GO + AUm (¢)

must be maximized.
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