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Mechanical Turk User Interface:

Final Set of Classifiers ter. 3

Click on all the image patches that contain: a blazer viewed from the front

Click submit when you are finished.
Drag or click images to select or deselect.
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Expert Review:

The initial experts can review detections for each
attribute model, discarding models that are low-quality,
e.g. low visual coherence, does not capture an aspect
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When non-expert crowd members select hard
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drift from the original exemplars. The example of
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more general ‘leg-exposing garment’ classifier. This
problem does not occur if experts answer the active
learning queries.




