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Abstract

This paper presents the first effort to discover and ex-
ploit a diverse taxonomy of scene attributes. Starting with
the fine-grained SUN database, we perform crowd-sourced
human studies to find over 100 attributes that discrimi-
nate between scene categories. We construct an attribute-
labeled dataset on top of the SUN database [7]. This “SUN
Attribute database” spans more than 700 categories and
14,000 images and has potential for use in high-level scene
understanding, attribute-based hierarchy construction, and
fine-grained scene recognition.

1. Introduction
High-level scene understanding is a fundamental chal-

lenge in computer vision. Traditionally, computer vision al-
gorithms have explained visual phenomena (objects, faces,
actions, scenes, etc.) by giving each instance a categorical
label. For scenes, this model has two significant problems:
the space of scenes cannot be described by a well-defined
taxonomy of non-overlapping categories, and simple cate-
gory recognition does not provide any deep understanding
or information about interesting inter-category and intra-
category variations.

In the past two years there has been significant inter-
est in attribute-based representations of visual phenomena
[3, 1].In the domain of scenes, an attribute-based algo-
rithm might describe an image with ‘tiled floor’, ‘crowded’,
‘shopping’, and ‘shiny’ in contrast to a categorical label
such as ‘store’. Attributes could be considered as an al-
ternative to categorical descriptions of scenes, or they could
be used to reinforce fine-grained classification techniques.

Scenes are difficult to model because instances in the
same category have an incredible variety of layout, illu-
mination, contents, occurrence, etc. Unlike with objects,
people, or faces it is difficult to identify discriminative at-
tributes, and it is more difficult to reliably isolate the same
attributes in many instances of a scene. For example, eyes
are a salient feature of a face, but what are the salient fea-
tures of a mall? Can those mall features be identified for all
malls?

It is also true that many scenes don’t have a clear mem-
bership in any category, and many scenes seem to qualify
for membership in several categories simultaneously. Ide-

ally the boundary between attribute states is clearer. Even if
a given scene does have a few ambiguous attributes, those
that are not will still facilitate scene understanding. For this
reason, one might expect attribute-based representations to
fail more gracefully than strict categorical taxonomies.

2. Building a Taxonomy of Scene Attributes
from Human Descriptions

The results of [5, 4] indicate that global scene attributes
as well as local attributes are probably necessary for cre-
ating a discriminative set of scene attributes. For this ini-
tial endeavor into identifying scene attributes we limit our-
selves to global, binary attributes. Still, the space of such
attributes is effectively infinite. The vast majority of at-
tributes (e.g., “Was these photo taken on a Tuesday”, “Does
this scene contain air?”) are neither interesting nor discrim-
inative among scene types. To determine relevant scene
attributes, we conducted experiments with human users of
Amazon’s Mechanical Turk (AMT) service.

We will discover attributes by having humans describe
and compare scenes. To ensure a maximally diverse set of
probe scenes, we use the most prototypical image of each
scene category in the SUN database as found by Ehinger et
al. [2]. These 707 prototype images were the basis for our
human experiments. In our first experiments we asked par-
ticipants to list attributes for various individual prototypical
scenes. From the thousands of responses, we were able to
determine the most common categories of attributes. Be-
low is a list of the attribute categories we identified in this
experiment, along with a brief description of each.

• Materials: the material components, surface properties, or
lighting found in a scene.

• Functions or affordances: activities that typically occur in
a scene or that a scene may make possible, e.g. playing base-
ball in on a baseball field or thinking in a library.

• Spatial envelope attributes: these address global character-
istics of a scene, for example the symmetry of a scene or a
scene’s degree of enclosure.

• Objects: the items commonly found in a particular scene.

Within these broad categories we want to focus on dis-
criminative attributes - those that differentiate scene cate-
gories. Inspired by the “splitting task” of [5], we show par-
ticipants two sets of scenes and ask them to list attributes
that are present in one set but not the other. The images
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that make up these sets are prototypes from distinct, ran-
dom categories. In the simplest case, with only one scene in
each set, we found that participants would focus on trivial,
happenstance objects or attributes. Such attributes would
not be broadly useful for describing other scenes. At the
other extreme, with many category prototypes in each set,
it is rare that any attribute would be shared by one set and
absent from the other. We found that having two scenes in
each set produced a diverse but broadly applicable set of
scene attributes. Figure 1 shows an example interface.

Figure 1. Mechanical Turk Human Intelligence Task - workers are
asked to compare the images on the left to those on the right.
Workers must attribute tags for left or right images into the text
boxes at the bottom of the page.

The attribute gathering task was repeated more than 6000
times. From the thousands of raw discriminative attributes
reported by participants, we collapse nearly synonymous at-
tributes (e.g. dirt and soil) and then create our final taxon-
omy from the most frequently reported attributes. Some
common emotional attributes (e.g. happy) were not used in
order to focus our initial experiments on attributes that have
a strong visual presence in scenes. The final list of attributes
can be seen on the supplemental poster.

2.1. Labeling the Dataset

Now that we have a taxonomy of attributes we wish to
create a large database of attribute-labeled scenes. In or-
der to study the interplay of attribute and category-based
representations, we build the “SUN Attribute database” on
top of the fine-grained SUN categorical database. Building
an attribute dataset on top of an existing fine-grained image
dataset was successfully demonstrated by Russakovsky and
Fei-Fei in [6] for the object domain.

We use Mechanical Turk to annotate 20 images from
717 scene categories. Participants are shown 20 scenes and

asked to mark all the scenes that contained a specified at-
tribute. The images are randomized to encourage the partic-
ipants to examine each scene individually. Figure 2 shows
an example interface.

Figure 2. Attribute Labeling Interface for MTurk - workers are in-
structed to click on any of the 20 thumbnail-sized images that con-
tain the given attribute (displayed in blue at the top of the page).
Workers are able to mouse over a thumbnail and see the full-sized
image in the review window on the right.

3. Future Work
The human experiments described in this paper are the

first forays into a deep and interesting new domain. It re-
mains to be seen how well attributes can be recognized and
how useful such attributes will be for fine-grained catego-
rization. One unexplored question is whether a principled
hierarchy of the scene categories could be constructed by
clustering based on attributes. Would the resulting cate-
gories resemble the lexicographical taxonomy used in the
SUN database? It would also be interesting to see if
attribute-based representations of scenes help explain hu-
man behaviors in studies of scene perception.
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