Conflict Graphs

- Corresponding to each column i with value 1, we have a node.
- Columns i and j conflict, iff there is an edge (i,j).

C1	C2	C 3	C 4	C 5
1	1	1	1	1
1	0	1	1	1
0	1	0	1	1
0	0	0	0	1
0	0	1	0	0
0	0	0	1	1
0	0	0	0	0

Errata

Theorem 4. Given a simple graph G with n vertices and m edges, there exists a binary matrix M with n columns and 2m + 1 rows, such that all entries of its first row are equal to 1 and $\mathcal{G}_{M,1} = G$.

 In our setting for tumor phylogeny, the conflict graph cannot be any arbitrary graph and this will affect some of our results.

Characterizing conflict graphs

Let M be a mutation matrix with an all-zeros row and an all-ones row:

For a given row r, let G(r) be its conflict graph for a row r.

Lemma: The complement of G(r) (i.e. the containment graph) is a partial order

Characterizing conflict graphs

Remark: For any graph H whose complement is a containment graph, there is a mutation matrix with an all-ones row r such that G(r)=H.

C1	C2	С3	C 4	C 5
1	1	1	1	1
1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1
0	0	0	0	0

C 1	C 2	C 3	C 4	C 5
1	1	1	1	1
1	0	1	1	1
0	1	0	1	1
0	0	1	0	0
0	0	0	1	1
0	0	0	0	1
0	0	0	0	0