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Abstract

Intel’s Haswell and IBM’s Blue Gene/Q and System Z are the first
commercially available systems to include hardware transactional
memory (HTM). However, they are all best-effort, meaning that
every hardware transaction must have an alternative software fall-
back path that guarantees forward progress. The simplest and most
widely used software fallback is a single global lock (SGL), in
which aborted hardware transactions acquire the SGL before they
are re-executed in software. Other hardware transactions need to
subscribe to this lock and abort as soon as it is acquired. This ap-
proach, however, causes many hardware transactions to abort un-
necessarily, determining even more transactions to fail and resort
to the SGL.

In this paper we suggest improvements to the simple SGL fallback.
First, we use lazy subscription to reduce the rate of SGL acquisi-
tions. Next, we propose fine-grained conflict detection mechanisms
between hardware transactions and a software SGL transaction. Fi-
nally, we describe how our findings can be used to improve future
generations of HTMs.

Categories and Subject Descriptors D [1]: 3

General Terms Algorithms, Design, Performance

Keywords Hardware Transactional Memory, Single Global Lock
Fallback, Haswell RTM

1. Introduction

Parallel programming has gained significant importance due to
the rise of commodity multicore computer systems. Unfortunately,
writing correct and efficient software that effectively utilizes the re-
sources of multicore systems remains an obstacle for a wider spread
adoption of parallel programming. Locks, the current state-of-the-
art solution for synchronizing shared memory access in parallel
programs, are notoriously challenging, even for expert program-
mers [14].

Transactional memory (TM) is a synchronization paradigm [13]
that aims to simplify writing correct and efficient parallel software
while avoiding the pitfalls of locks. Threads can speculatively exe-
cute transactions, the synchronization primitive for TM, maintain-
ing read and write sets to track conflicts. If a conflict is detected
between two transactions, one is usually aborted and rolled back so
the other can commit. Transactional memory generally promises
all-or-nothing semantics, where critical sections appear as if they
executed atomically or not at all. There have been many software
transactional memory (STM) proposals [1, 2, 6, 10, 12, 19, 20, 22],
where TM is implemented entirely in software. A specific example
of such an STM is TL2 [9], a lock-based STM that we use in our

study. Unfortunately, the overhead associated with these designs is
generally prohibitive, making them unrealistic for production qual-
ity parallel software.

Hardware transactional memory (HTM), on the other hand, promises
a faster performing, lower overhead alternative to STM. Yet, prac-
tical HTMs are best-effort: they do not guarantee forward progress.
Furthermore, practical HTMs are bounded in size and support a re-
stricted set of operations. It is for these reasons that an HTM alone
is an insufficient TM solution.

In short, ensuring forward progress requires a software fallback.
Hybrid transactional memory (HyTM) allows unsuccessful hard-
ware transactions to revert to software, [5, 7, 8, 17, 18, 21, 23].
Existing HyTM proposals have drawbacks: memory accesses must
be annotated, duplicate code is required for transactional and non-
transactional paths, and it is not easily applied to legacy code. For
many applications, however, it is simpler and more attractive to use
a single global lock (SGL) mechanism [23, 24], where all trans-
actions that access a particular data structure synchronize through
a single lock1. Perhaps the most visible example of an SGL fall-
back scheme is Haswell’s hardware lock elision (HLE) [15], which
supports a lock fallback directly through the instruction set archi-
tecture. SGL schemes are attractive because they can easily be
retrofitted to legacy code, and they do not require code duplica-
tion.

In both HLE, and HTM with SGL fallback, each hardware trans-
action starts by reading the lock’s state, called subscribing to the
lock. Subscription ensure that any software transaction that sub-
sequently acquires that lock will provoke a data conflict, ensuring
correctness by forcing any active subscribing hardware transactions
to abort. The duration of a lock subscription represents a “window
of vulnerability” during which the arrival of a software transaction
will prevent any subscribing hardware transactions from execut-
ing.

In this paper we present novel optimizations to the simple SGL
fallback approach. We show that one can significantly improve per-
formance by performing lock subscription in a lazy manner: opti-
mistically postponing reading the lock state for as long as possible
(usually the very end of the transaction). Lazy subscription was
first proposed in the context of Hybrid NOrec [5] to allow con-
current execution of multiple hardware transactions with the com-
mitting phase of a speculative software transaction. Here, lazy sub-
scription allows concurrent execution of multiple hardware transac-
tions with a single non-speculative SGL transaction. The resulting
mechanism maintains the simplicity and correctness of the original
SGL fallback, but reduces its costs. We evaluate this design us-
ing Haswell’s restricted transactional memory (RTM) running the
STAMP benchmark suite, and compare it to several alternatives:

1 “Global” here could mean a single lock per data structure, not necessarily
system-wide if composability is not an issue.



a non-speculative SGL implementation, a speculative implementa-
tion with the usual SGL fallback, the hardware-only HLE, and to
an STM (TL2). We also show how to improve conflict detection
with the SGL transaction and we propose several novel hardware
extensions.

This paper makes the following contributions:

1. We propose an alternative implementation of the commonly
used SGL fallback, using lazy subscription, that reduces the rate
of lock acquisitions on Haswell and evaluate it on the STAMP
benchmark suite.

2. We describe novel conflict detection algorithms between hard-
ware transactions and an SGL software transaction.

3. Based on our experience, we suggest some simple optimiza-
tions to hardware lock elision mechanisms such as Haswell’s.

2. SGL Fallback (E-SGL)

As noted, hardware transactional memory (HTM) has become a
commercial reality, but HTM provided by processors such as In-
tel’s Haswell and IBM’s Power ISA offer no progress guarantees,
implying that some form of software fallback is needed. In the sin-
gle global lock (SGL) approach, each shared data structure has an
associated lock. When it starts, a hardware transaction immediately
reads the lock state, an action known as eager subscription. When
a repeatedly failed hardware transaction restarts in software, it ac-
quires exclusive access to the lock, forcing any subscribed hard-
ware transactions to abort.

SGL fallback is attractive because it is simple, requiring no memory
access annotation, and no code duplication between alternative
paths. Nevertheless, an inherent limitation of current SGL fallbacks
schemes is that hardware and software transactions that share a
global lock cannot execute concurrently. Figure 1 shows the four
ways in which hardware and software transaction can overlap. In
cases 2 and 3, the hardware transaction is aborted as soon as it
checks the lock, while in cases 1 and 4 the hardware transaction
is aborted when the software transaction acquires the lock. With
eager subscription, it makes sense for a thread starting a hardware
transaction to wait until the SGL becomes free.

In this paper, we describe how to improve conflict detection to al-
low some concurrency between the hardware and software transac-
tion that share a lock. In Section 3, we describe a lazy subscription
mechanism that permits concurrent hardware and software transac-
tions to share the same SGL and intuitively show its correctness.
We evaluate this scheme’s performance in Section 4. We describe
finer-grained conflict detection mechanisms in Section 5. In Sec-
tion 6, we describe how these observations might improve future
hardware.

3. Lazy SGL (L-SGL)

In a naı̈ve SGL implementation (E-SGL), a hardware transaction
immediately adds the lock to its read set, ensuring the transac-
tion will be aborted if that lock is acquired by a software trans-
action. Hardware and software transactions cannot overlap (Fig-
ure 1).

Lazy subscription can improve the chances of success of a hard-
ware transaction by allowing some overlap with a software transac-
tion. In Figure 2, L-SGL allows transactions (3) and (4) to commit,
while E-SGL would abort them.

Figure 1. Obvious SGL Fallback implementation (E-SGL).

Software and hardware transactions are treated differently in L-
SGL. Each software transaction must acquire the SGL. Hardware
transactions do not acquire the SGL, but they must check its sta-
tus. With some exceptions described later, L-SGL hardware trans-
actions read the lock only at the end, right before committing. If
the lock is held by a software transaction, the hardware transac-
tion explicitly aborts. This check is necessary because the hardware
transaction may have observed an inconsistent state. If the lock is
free, then no software transaction is in progress, and the hardware
transaction can commit.

Lazy subscription has been proposed to improve HyTM perfor-
mance [5], but its use for SGL fallback is new. HyTMs typically use
sophisticated techniques to allow concurrency between multiple
hardware and software transactions, but SGLs’ simplicity makes
them attractive in practice [23, 24]. The lazy SGL (L-SGL) ap-
proach described here improves a popular HTM fallback mech-
anism by allowing multiple hardware transactions to run concur-
rently with one software transaction.

Figure 2. Lazy SGL (L-SGL).

Haswell RTM provides an abort status code that offers limited in-
formation about why a hardware transaction aborted. L-SGL makes
it easier to collect diagnostic information about failed hardware
transactions from this abort status code. When an E-SGL hardware
transaction is about to start, it makes sense to wait until the SGL



is free. As a result, eager subscription rarely aborts hardware trans-
actions explicitly at the time of subscription, so transactions are
much more likely to be aborted automatically in-flight. Therefore,
the abort status code will report this abort as a conflict. By con-
trast, L-SGL’s lazy subscription mechanism makes it more likely
that transactions will be aborted explicitly on subscription, allow-
ing the programmer to obtain more detailed diagnostic information
because, in this case, the abort status code can indicate precisely
that the abort was caused by the lock.

L-SGL is similar to E-SGL in that it does not require read or write
annotations, it permits transactions to be arbitrarily nested, but does
not permit explicit transaction aborts in user code.

A software transaction waiting to acquire the SGL uses a combi-
nation of backoff and sleeping to reduce cache line contention. It
starts by inserting an exponentially increasing number of null oper-
ations (NOPs) between successive lock attempts. When the number
of NOPs reaches a threshold, T , the transaction calls the sleep func-
tion to release the processor for a brief duration before trying again.
We found that sleeping right away is generally too slow for bench-
marks where transactions are small and fast, but works well for
larger and slower running transactions. Overall, we found that ex-
ponential waiting followed by sleeping works best across the range
of benchmarks we considered.

Before a thread starts a hardware transaction, it reads the SGL to
prefetch the lock into the cache. If no software transaction tries to
acquire that lock, the lock is likely to be cached at commit time,
which our experiments have observed to speed commit.

3.1 Correctness

STM designers often go to great efforts to ensure that all trans-
actions see a consistent state, even after synchronization conflicts
have occurred, a property called opacity [11]. The L-SGL design is
simplified because hardware transactions do not need opacity. In-
stead, the L-SGL design relies on two guarantees. First, Haswell’s
hardware sandboxing mechanism ensures that any hardware trans-
action that raises an exception or enters an infinite loop because
of an inconsistent state is aborted and rolled back without affect-
ing any other transactions. Second, the L-SGL design ensures that
no hardware transaction can commit while a software transaction
is in progress. There is one exception, explained in the next sec-
tion.

Fig. 3 illustrates why opacity is unnecessary: variables X and Y
are linked by the invariant Y = X + 1. Now suppose a hard-
ware transaction reads X and Y after a software transaction has
incremented X , but before it has incremented Y , resulting in the
inconsistent view X = Y . This hardware transaction will never
commit, but it may encounter a segmentation fault when it evalu-
ates 1/(Y − X). The Haswell hardware sandboxing mechanism
will suppress the exception and roll back the transaction, ensuring
that no other transaction is affected.

Figs. 4 and 5 outline possible orderings between hardware and soft-
ware transactions. We order transactions by their commit time. Be-
cause software transactions cannot abort, any conflicting operation
a software transaction executes after a hardware transaction has
committed must be ordered after the hardware transaction. More-
over, because TSX provides no “escape actions” a hardware trans-
action cannot wait for a software transaction to commit.

In cases 1 (Fig. 4(a)) and 2 (Fig. 4(b)), the hardware transaction
ends before the software transaction ends, and finds the lock taken

Figure 3. Inconsistent reads.

when it tries to commit. In these two cases, the hardware transac-
tion must be serialized before the software transaction. If a soft-
ware transaction performs an operation that conflicts with a con-
currently executing hardware transaction while the hardware trans-
action is still in-flight, the hardware transaction is aborted by the
Haswell HTM conflict detection mechanism. If, on the other hand,
the conflicting operation is performed by the hardware transaction,
the conflict would not be detected. If both transactions were per-
mitted to commit, the value of the conflicting location would be in-
correct because the hardware overwrote the software transaction’s
write (see Fig. 4). Here, we must abort the hardware transaction,
because software transactions cannot be aborted. It does not matter
when the hardware transaction is aborted, so it is sufficient to check
for conflicts as the final step of the hardware transaction before it
commits. In L-SGL, such conflicts are detected by inspecting the
state of the lock.

In cases 3 (Fig. 4(c)) and 4 (Fig. 5), the hardware transaction begins
its commit after the concurrent software transaction has committed.
If the lock is free at the time of the hardware commit, then the hard-
ware transaction can commit even though it might have overlapped
one or more software transactions. Because the hardware transac-
tion commits after any concurrently executing software transaction,
it will be ordered after any such overlapping software transaction.
Therefore the correct value for any conflicting location is the value
written by the hardware transaction. If the last value written to a
location that conflicts with the hardware transaction belonged to
the software transaction, then the hardware transaction would have
aborted, because Haswell’s HTM conflict detection system would
have identified such a conflict and aborted the hardware transaction.
Moreover, a software transaction observes only old values until the
hardware transaction commits, so the software reads are serialized
before the hardware writes.

Figure 5. Correctness: Case 4.

3.2 Sandboxing

Hardware sandboxing prevents faults that occur inside a hardware
transaction from propagating outside of the transaction. Spurious



(a) Case 1 (b) Case 2 (c) Case 3

Figure 4. Correctness: Cases 1-3. Arrows denote the “happens-before” relation.

writes and faults caused by reading inconsistent state from the SGL
transaction are not visible to other threads. There is, however, one
unlikely situation when inconsistent reads can cause a hardware
transaction to commit prematurely. In principle, inconsistent reads
could cause a spurious write to a location that is later used by the
same transaction as the target of an indirect jump. If the target of the
incorrect jump is is an xend (commit) instruction, or data that looks
like one, then the hardware transaction might commit incorrectly,
without checking the lock. Note that the inconsistent transaction
cannot actually change the program code and insert spurious xend
instructions, as the code area is protected and accessing it would
cause the transaction to abort.

To address this hazard, lazy subscription must be performed before
any indirect jump executed inside a hardware transaction that has
written to memory. A read-only transaction, or one that is read-only
before the indirect jump is not subject to this hazard. Moreover, if a
transaction makes multiple indirect jumps, it is sufficient to check
the lock only before the first jump, because the lock remains in the
transaction’s read set.

In the results presented in Section 4, we use L-SGL with early
subscription on the first indirect jump that occurs after a shared
memory write. We found that this restriction did not affect perfor-
mance.

In general, this problem is similar to security concerns caused by
buffer overflows. There is a trend towards compiler support to
help with this issue, which might also be used to protect hardware
transactions from incorrect premature commits. For example, the
latest GCC supports security functionality to check vtable integrity.
Moreover, for optimizations levels higher than -O2, GCC uses
devirtualization and inlining for the most likely target in indirect
jumps. A transactional compiler could use similar techniques to
generate multiple likely targets and use the early lock check only
in the unlikely case that none of the pre-established targets are
chosen.

4. Experimental Evaluation

Our experimental evaluation was performed on an Intel Haswell
processor (Core i7-4770) with RTM and HLE enabled, running at
3.40 GHz. The machine has a total of 8GB of RAM shared across
four cores, each having a 32 KB L1 cache. For our experiments,
hyper-threading was enabled, giving us a total of eight hardware
threads. However, we notice that hyper-threading negatively im-
pacts performance at 8 threads due to L1 cache sharing. In practice,
this results in more hardware transactions being aborted because of

overflow. To show this effect, we performed a simple experiment
in which we measured the rate of aborts due to overflow for one,
two, four and eight threads for all STAMP benchmarks. The rate of
overflow for 1 thread is indicative of the percentage of transactions
that cannot succeed in hardware because of cache size or associa-
tivity limitations. As we increase the number of threads, the rate of
overflow decreases, as more and more transactions abort because
of conflicts with other transactions. However, for 8 threads, the rate
of overflow significantly increases, showing the negative effects of
hyper-threading, as can be seen for the Vacation High benchmark
in Fig. 6. Results were similar for all other STAMP benchmarks,
except for the Labyrinth benchmark, where most of the aborts are
caused by unsupported instructions; we omitted these graphs due
to space constraints.

We used GCC 4.8.2 compiler with -O3 optimization enabled and
gcc intrinsics [16]. We used the STAMP benchmarks [4] to com-
pare L-SGL’s speedup relative to a single-threaded sequential ex-
ecution with software only approaches - a state-of-the-art STM
(TL2) and a single global lock (spinlock) without any transactional
execution (SGL) - and with a hardware only solution (Haswell
HLE). For HLE, we used a single global spin lock prefixed with
HLE-Acquire and HLE-Release instructions to suggest that the
critical section should be executed speculatively. If speculation
fails, the critical section is retried non-speculatively, according to
a hardware policy. We also compared to the naı̈ve SGL implemen-
tation with eager subscription (E-SGL). We ran all methods five
times and presented the median of the results. Variance was gener-
ally low. We also compared L-SGL’s rate of transactional success
with that of HLE and E-SGL, by measuring the percentage of trans-
actions executed non-speculatively for both methods.

Figure 6. Example of overflow due to hyper-threading (vacation
high benchmark).



(a) Bayes. (b) Genome.

(c) Intruder. (d) Kmeans Low.

(e) Kmeans High. (f) Labyrinth.

(g) Ssca2. (h) Vacation Low.

(i) Vacation High. (j) Yada.

Figure 7. STAMP Throughput.



(a) Bayes. (b) Genome.

(c) Intruder. (d) Kmeans Low.

(e) Kmeans High. (f) Labyrinth.

(g) Ssca2. (h) Vacation Low.

(i) Vacation High. (j) Yada.

Figure 8. STAMP Percentage of Lock Acquisitions.



(a) Speedup for 8 threads (b) Slowdown for 1 thread

Figure 9. Speedup for 8 threads and slowdown at 1 thread, compared to sequential.

4.1 Speedup relative to sequential execution

L-SGL performs best on benchmarks with medium sized trans-
actions, such as Intruder 7(c), Vacation Low 7(h) and Vacation
High 7(i), where it outperforms all prior methods. On the bench-
marks with smaller transactions, such as Ssca2 7(g), Kmeans
Low 7(d) and Kmeans High 7(e), L-SGL has good speedup com-
pared to sequential execution, and outperforms TL2, which has
too much overhead for these small transactions. However, L-SGL
does not present a significant advantage compared to HLE on
these benchmarks, because most transactions will quickly suc-
ceed in hardware, therefore making the differences between L-
SGL and HLE less noticeable. For Kmeans Low 7(d), where there
is little contention, SGL performs similar to L-SGL and HLE as
well. However, when there is more contention, as is the case with
Kmeans High 7(e), or when most transactions can succeed in hard-
ware, in parallel, as in Ssca2 7(g), the performance of SGL quickly
degrades.

Finally, for large transactions and those with unsupported instruc-
tions, as in Bayes 7(a), Labyrinth 7(f) and Yada 7(j), TL2 is more
advantageous, because it can execute transactions in parallel, in
software, without overflowing the cache. The effects of hyper-
threading when running with 8 threads are even more pronounced
on these benchmarks, because most transactions are large. We
note that Labyrinth in particular is very suitable for STM sys-
tems because it uses very large transactions, whose initial mem-
ory accesses are all local. Therefore, these memory accesses do not
contribute towards generating conflicts in an STM. Unfortunately,
Haswell RTM does not have escape actions, therefore counting lo-
cal accesses as transactional and overflowing the cache unnecessar-
ily.

4.2 Percentage of lock acquisitions

We measured the percentage of lock acquisitions in L-SGL by
inserting statistics in our code to measure the total number of
transactions and the percentage executed non-speculatively. We
measure the percentage of lock acquisitions in HLE using perf with
support for TSX, a performance analysis tool for Linux.

We can notice in fig. 8 that L-SGL achieves a better rate of trans-
actional execution than HLE on all STAMP benchmarks (its rate
of lock acquisitions is lower than HLE’s rate on all benchmarks).
L-SGL uses lazy subscription, so the lock is read transactionally at
the end of the critical section. In contrast, HLE subscribes to the

lock address in the beginning of the critical section, suffering more
aborts due to changes to the lock.

4.3 Single-threaded penalty

One of the biggest advantages of L-SGL is that it manages to
improve performance for 4 and 8 threads without paying a big
penalty for single threaded execution, as is the case with most
STMs. For example, fig. 9(a) shows L-SGL’s speedup relative to
sequential for 8 threads and fig. 9(b) shows the slowdown for 1
thread. We can see that TL2 pays a huge penalty for single-threaded
execution, while L-SGL execution is almost as good as sequential
execution.

5. Fine-grained SGL

L-SGL allows multiple hardware transactions to execute concur-
rently with a software transaction as long as the software transac-
tion commits first 4(c), 5. Unfortunately, hardware transactions that
attempt to commit while a software transaction is in progress will
abort 4(a), 4(b). This is the correct and expected behavior if there
are conflicts between the hardware transactions and the software
transaction, but otherwise these hardware transactions could suc-
cessfully commit. Despite being an improvement over the simple
single global lock algorithm, L-SGL does not enable the maximum
amount of concurrency possible between multiple hardware trans-
actions and a software transaction.

In this section, we describe another SGL fallback mechanism that
performs finer grained conflict detection than E-SGL and L-SGL,
based on Bloom filters (BF-SGL). BF-SGL increases the amount
of concurrency offered by the hybrid transactional memory system
in Fig. 4(a) and Fig. 4(b). In order to detect conflicts between the
software transaction and hardware transactions, we add a Bloom
filter for each thread. Each read and write is annotated to add the
memory location to the Bloom filter. Hardware transactions consult
the global lock before committing and, if they find it free, they can
commit successfully. However, if the lock is taken, they can com-
pare their Bloom filter with the software transaction’s Bloom filter
to determine if there are conflicts. The Bloom filter allows false
positives, but not false negatives. Therefore, it could detect a con-
flict despite the transactions not having any conflicts, but it will
never report zero conflicts if the transactions accessed the same
memory. So the hardware transactions can commit successfully
even if the lock is taken as long as the Bloom filters do not report



conflicts. L-SGL represents a particular case of BF-SGL. Specif-
ically, L-SGL can be obtained from BF-SGL if the Bloom filter
set intersection operation between the hardware transaction trying
to commit and the currently executing software transaction always
returns that there exists at least one conflict.

5.1 Use Cases

Using BF-SGL, many small hardware transactions that access dis-
joint memory locations and concurrently executing large software
transactions can commit. The same is not true for any other sys-
tem that we are aware of. This is because we provide precise con-
flict detection using the Bloom filters for the HW and SW trans-
actions to track memory accesses. Consider, for example, an array
representing an open addressing hash-table. Threads can perform
lookup(x) operations and insert(x) operations in this hash-table.
Once a threshold of occupancy is achieved, a thread decides to
double the size of the hash-table by allocating a new array and re-
hashing elements from the old array to the new array. Lookup and
insert are short transactions and can succeed in hardware most of
the time. Rehashing is always executed as a software transaction,
so the thread needs to acquire the single global lock.

Using L-SGL, no lookup and insert operations can succeed dur-
ing rehashing. However, using BF-SGL with precise conflict de-
tection between the software transaction and the concurrent hard-
ware transactions, lookup operations executed as hardware transac-
tions can commit using data from the old array while the rehashing
to the new array is taking place. Moreover, insert operations exe-
cuted as hardware transactions at the end of the old array, in the
part that has not been rehashed yet, can also commit during rehash-
ing. Therefore, BF-SGL improves throughput by allowing small
hardware transactions to commit concurrently with long executing
software transactions.

5.2 Performance and Practicality

Adding the software Bloom filter to hardware transactions adds
some overhead compared to simple hardware transactions. How-
ever, the Bloom filter adds the benefit of being able to commit
hardware transactions even when a software transaction is execut-
ing as long as there are no real conflicts or false conflicts caused by
the Bloom filter. An efficient Bloom filter implementation allows
insertion and set intersection in O(1) time, minimizing the over-
head.

In addition, reading these two locations in the hardware transaction
only adds two additional cache lines to the read set of the transac-
tion. This can be optimized so that a bit of the Bloom filter is used
to indicate whether the lock is taken or not and the rest is used as a
Bloom filter. Therefore, the lock location can serve both purposes,
reducing the read set size of the hardware transaction to just one
additional location. The transaction’s own Bloom filters add addi-
tional cache lines to the write set, but this could be as low as only
one cache line, depending on the Bloom filter size.

Hardware transactions read the software Bloom filter only right
before committing, narrowing the window when hardware trans-
actions could be aborted by software transactions. Unfortunately,
the software transaction needs to modify its Bloom filters for ev-
ery read and write, causing many spurious aborts for the hardware
transactions. We found that this behavior significantly affects the
performance of BF-SGL, so we did not include results for this sys-
tem. However, we note that this is a strong motivation why escape
actions should be included with any HTM. If we had escape ac-
tions, the Bloom filters could be read non-transactionally at the end

of the hardware transaction, avoiding the spurious aborts caused
by the software transaction updating its Bloom filters. Correctness
would still be maintained because any conflicting read or write per-
formed by the software will still abort the hardware transaction.
We believe this support will be available in the future, making the
bloom filter based conflict detection a viable option. For example,
IBM’s Power ISA suspended mode [3] provides the necessary func-
tionality.

6. Hardware Optimizations

Lazy Hardware Lock Elision (LHLE). Haswell’s HLE works by
eliding locks prefixed with HLE-Acquire and executing the critical
sections as hardware transactions. If the speculation fails for any
reason, the lock is acquired and the critical section is re-executed
non-speculatively in software. HLE is similar to E-SGL: hardware
transactions need to subscribe to the lock in the beginning of their
execution to ensure correctness. However, we have shown that L-
SGL, implemented in software, outperforms the hardware only
HLE. Therefore, we speculate that Lazy Hardware Lock Elision
(LHLE), where the lock is added to the read set at the end of the
critical section, would perform better than HLE. Similar to HLE,
LHLE enables multiple speculative critical sections to execute in
parallel if there are no conflicts detected at run-time and it simpli-
fies programming by enabling more parallelism for coarse-grained
critical sections. In contrast to HLE, LHLE supports parallelism
between one non-speculative critical section and multiple specu-
lative critical sections. Moreover, LHLE is designed to be imple-
mented entirely in hardware, so the sandboxing issues described
in Section 3.2 do not arise, as the hardware can ensure that the
subscription to the lock occurs whenever the xend instruction is in-
voked.

Bloom Filter Hardware Lock Elision. As described in Section 5,
BF-SGL can improve the granularity of conflict detection with an
SGL, but causes spurious aborts because the SGL transaction’s
Bloom filters become part of the read set of the hardware trans-
actions. This could be avoided if the HTM allowed escape actions.
In that case, the Bloom filters would be read non-transactionally to
detect conflicts. Alternatively, if the Bloom filters were handled by
the hardware instead of the software, they could avoid the track-
ing mechanism of HTM and avoid the unnecessary aborts. Haswell
HLE could be extended with Bloom filters for the hardware trans-
action, as well as for the SGL transaction. With this design, con-
flict detection would be realized at a finer-grained level than it is
currently done.

7. Conclusions

The naı̈ve SGL fallback’s simplicity makes it an appealing al-
ternative to more complicated, even if better-performing, HyTM
schemes. In this paper, we introduced novel SGL methods that im-
prove the performance of the simple SGL fallback, while maintain-
ing its simplicity. First, we described L-SGL, a simple SGL-based
fallback for HTM that uses lazy subscription to allow hardware-
software transaction concurrency. L-SGL improves performance on
current machines by up to 4X compared to state-of-the-art software
and hardware solutions.

In addition, L-SGL has some appealing properties. For example,
it does not require read and write annotations, making it suitable
for implementation in a real system, either in the compiler or
even in hardware. Our L-SGL software implementation improves
performance over native Haswell lock elision by almost a factor



of 2, and reduces the rate of lock acquisitions by up to 35%. We
conjecture this difference would be even higher if L-SGL were
implemented in hardware.

We also described BF-SGL, an alternative SGL fallback mecha-
nism with more accurate conflict detection. Our BF-SGL results,
perhaps counter-intuitively, show that adding a mechanism to sup-
port better conflict detection, such as Bloom filters, hinders perfor-
mance by increasing the abort rate. If the HTM were to support
escape actions, allowing precise conflict detection to be performed
outside of transactional tracking, we speculate that this comparison
would change in favor of BF-SGL. Finally, we showed how to use
these ideas to improve future HTMs with minimal microarchitec-
tural changes.
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