
1 Animated GIF from http://www.earthcon.com/clipart/page10.htm.

Getting Started

1. In this chapter we will look briefly at the various pieces of the language and standard library you need to
know to write a first program. We will come back to most of these to look at them in more detail later in
the course.

Overview

l The main function

l Include files

l The standard namespace

l Indentation

Executable

Main

l In C++, every program has a function
called main

lWhen the program is run, the function
main is executed

lMost programs have a main function that
looks like this:

1. int main()

2. {

3. // code here

4. }

The function main

A comment

1. All the code examples in this course are numbered, to make it easier for the instructor or the students to refer to specific lines. You
do not number the lines in your code.

2. The first line says that main is a function that takes no parameters and returns an integer. The return value is used by the operating
system to decide whether the program succeeded or failed.

3. main is special in that you do not have to explicitly return a value; it defaults to 0, which means success.

4. Functions in C++ have a head and a body.

5. The head says what the return type is, what the name of the function is, and, in parentheses, what parameters the function takes. We
will look at function parameters in XXX.

6. The body of a function is enclosed in curly braces { and }, and consists of a sequence of instructions that are executed in the order
they are given.

7. Comments are information for people reading or maintaining (correcting or improving) the code; they are ignored by the compiler.

8. There are two kinds of comments in C++:

• C-style comments, starting with a /*, and ending with */

• C++ comments, starting with a // and ending at the end of the line.

9. C-style comments are useful for multiple-line comments; C++ comments are useful for short comments.

10. There is another form of main that allows you to pass parameters to main; this is useful for console-based programs (as opposed to
programs that use a graphical user interface); we will see this in XXX.

11. In some development environments (e.g., Windows) you will not write the main function yourself; it is built by the development
environment. Instead, you define a function called WinMain, which will be called after various initializations have been done.

Include Files

lC++ consists of a language and a
standard library

lTo use a library, you include a header file
that contains declarations that tell the
compiler about the library

l Including header files is done with a
preprocessor directive, #include, e.G.,

1. #include <iostream>

2. int main()

3. {

4. // code here

5. }
An include directive

1. A library is a bundle of software provided by your compiler vendor or a third-party company.

2. C++ compilers are (since 1998 or so) always provided with the standard C++ library. Using the standard
library makes code more portable (to different platforms) and easier to maintain, as most C++
programmers know it.

3. The preprocessor is part of the compiler; it is a program that takes a file and replaces #include directives
with the contents of the file specified. It can also be used to make macro substitutions, but this is
generally unwise, as there are better alternatives in almost every case.

4. Preprocessor directives must start in the left-most column. This, and // comments, are the only cases
where there is such a restriction; generally, C++ treats all whitespace equivalently. For example, the
program shown here is exactly equivalent to:

•#include <iostream>

•Int main(){//code here

•}

5. An include directive specifies the name of the include file in angle brackets if the file is part of the
standard library; if it is not, the name is specified in double quotes, e.g., #include “myfile.h”

6. Standard library includes do not have an extension --- this is because different platforms use different
conventions for naming header files.

7. This is a complete C++ program, so it is shown in a solid box.

The Standard Namespace

l Namespaces provide a way of dividing up a
piece of software into pieces without name
collisions

l Everything in the standard library is in a
namespace called std

l A namespace directive tells the compiler to look
for names in that namespace

1. #include <iostream>

2. int main()

3. {

4. using namespace std;

5. // code here

6. }

using directive

1. Namespaces were added to C++ fairly late in the standardization process, so they are unfamiliar to many
C++ programmers who learned C++ before they were available.

2. Some compilers still do not fully support namespaces.

3. A name collision is the problem that occurs when the same name is used for different things in two parts
of a program.

4. If the same name is used in two different namespaces, there is no problem.

5. We will look at namespaces in more detail in XXX; for now, all you need to know is to put the line using
namespace std at the beginning of each function that uses components of the standard library.

1. A namespace is a piece of code whose names are isolated from other namespaces.

2. You can use names in a namespace by explicitly qualifying them, like std::cout, with the namespace
name, '::', referred to as a scoping operator, and the name in that namespace.

3. Here is a picture of three namespaces, std (the ANSI standard C++ library), LEDA (a free(?) library
providing classes for mathematical constructs like geometric shapes, and VCL, the Borland visual
component library.

4. As of writing (Jan 2000), Leda is not packaged like this, and neither is Borland's VCL. The gnu
compilers do not properly support namespaces.

5. The names in the std namespace are precisely defined by the ANSI specification. Those in LEDA and
VCL may (and typically do) change from version to version. The Borland convention for naming types is
with an initial T. Microsoft uses C. It doesn't matter what you use, just be consistent.

6. One common convention is to name all user-defined types with "cuddly caps": GraphNode, SetInts, etc.

7. Another is that preprocessor macros shout at you: int here; int is; int a = MAX(here,is);

8. (for the curious, the result of the above is undefined – variables aren't iniitialized if you don't specify an
initial value.)

9. Many companies have coding standards that specify things like this.

10. There are tools that will automatically check that you follow the rules, similar to lint for C.

Namespaces

l In large projects, the problem of name
collisions becomes serious

l A name collision is caused by two variables or
classes in different modules having the same
name.

l To get around this problem, C++ lets you
define namespaces --- portions of code in
which everything declared is implicitly
preceded with the name of the namespace.

l There is one namespace in the standard
library: std, and some nested namespaces
such as rel_ops.

Fred Fred

1. 1 Namespaces are a relatively recent addition to C++; some older compilers may not implement
them properly.

Defining a namespace

l The keyword namespace introduces a new
namespace; names defined inside it are
implicitly qualified with the name of the
namespace:

1. namespace XWindows

2. {

3. class Window // really XWindows::Window

4. {

5. // …

6. };

7. void printWindows(); // really XWindows::printWindows

8. };

9. namespace NTWindows
10. {

11. class Window // really NTWindows::Window, so no collision

12. {

13. // …

14. };

15. };

1. 1 Namespaces can be reopened, unlike classes, so that the components in a namespace can be
broken over several files.

Using namespaces

lYou can access names in a namespace
with the :: qualfier:

lThis quickly becomes tedious

1. #include <string>

2. #include <iostream>

3. int main()

4. {

5. std::string a(10, 'a'); // make string aaaaaaaaaa

6. std::cout << a << std::endl;

7. }

1. All of the components of the standard library are in the namespace called std.

2. The string class is defined in the header file <string>.

3. We will see strings and IO in more detail shortly.

Importing Namespaces

lThe standard library is in the namespace
std

lThere are some nested namespaces in
std, e.g., rel_ops

lYou can import an entire namespace:

using namespace std;

1. 1 Importing the entire std namespace may be inadvisable, as it contains a huge number of
names.

2. 2 However, for small projects, importing the entire std namespace is unlikely to cause conflicts,
and we recommend that you do this for simplicity in the labs.

Selective importing

lYou can also import individual names:
using std::vector;

lFor small projects, importing the entire
std namespace is fine, but for larger
projects it may be inadvisable

1. 1 There is as yet very little experience in the industry with namespaces, as they have been
available only for a few years, so there is not yet a consensus on the best ways to use them.

Indentation

l Indentation is used to make code more
readable

l It is ignored by the compiler

l Indentation is extremely important

lMany development environments have
facilities that help you indent well

lThere are different indentation
conventions

1. Poorly indented code is very difficult to read.

2. The Emacs editor has excellent indentation facilities –- not only does it automatically indent each line for
you, it lets you select a region and automatically indent the entire region. It also lets you specify various
parameters to customize the way indentation is done, e.g., how many spaces to indent by, which of
several common conventions to use, etc.

3. Most PC development environments (e.g., Visual C++, Borland Builder) have some indentation facilities,
but they usually do not allow you to indent a region automatically.

4. There are different conventions for indenting --- it is more important that you be consistent than which
convention you use.

5. Many companies have coding standards that specify how you should indent your code.

Good Indentation

lShows the logical structure
1. int main()
2. {
3. while (true)
4. {
5. int n;
6. cin >> n;
7. if (n < 0)
8. {
9. cout << "negative" << endl;
10. }
11. else
12. cout << "positive" << endl;
13. if (n == 0)
14. break;
15. }
16. cout << "done loop" << endl;
17. }

1. The indentation is exagerated here for illustration, usually indenting two spaces is enough.

2. Personally, I prefer to have the beginning and closing braces in the same column, to make it easy to see
the blocks. Other people dislike wasting so many lines with only an open or a closed brace on them, so
they would write this:

int main() {
while (true) {

int n;
cin >> n;
if (n < 0) {

cout << "negative" << endl;
}
else

cout << "positive" << endl;
if (n == 0)

break;
}

Poor Indentation

1. int main()
2. {
3. while (true)
4. {
5. int n;
6. cin >> n;
7. if (n < 0)
8. { cout << "negative" << endl;
9. } else
10. cout << "positive" << endl;
11. if (n == 0) break; }
12. cout << "done loop" << endl;
13. }

1. How easy do you find this code to read?

2. To the compiler, this is identical to the previous example.

Input and Output

lEvery program can read from stdin and
write to stdout and stderr

lTypically these correspond to the
keyboard and the screen

stdout

stderr

stdin

Executable

1. stdin (standard input), stdout (standard output), stderr (standard error).

2. Both stdout and stderr usually go to the screen, but they can be redirected to a file or to other processes,
either together or separately.

3. stdin usually comes from the keyboard, but can be redirected to come from a file or the output of another
proces.

4. By convention, stdout is used for "normal" output, and stderr for "error" output, but the meaning of these
two is not always obvious.

5. This kind of console IO is becoming less and less important as graphical user interfaces become more
common.

Streams

lLet you read from stdin and write to
stdout

lLet you read/write files
lLet you read/write strings in memory

lAre extensible

lFor now, we will just look at writing to
stdout

1. In C++, three file descriptors are available by default, as in any program in Unix: stdin, stdout and stderr.
Typically stdin comes from the console keyboard, stdout and stderr are both printed to the console
display.

2. The console is the display of the computer the program is run on, or the shell it is run from.

3. In Windows, console programs are run from a DOS shell; in Unix from your shell of choice.

Printing to stdout

lThe header file <iostream> contains the
necessary declarations

lcout is an object (global variable) that is
connected to standard output
lAn operator, <<, is defined for all the built-

in types
1. cout << "here is a number: " << 666

2. << " and a character: " << '&'

3. << " pi to a Texan:" << 4.0

4. << " newline and flush: " << endl;

1. So to use cout, you must include <iostream>.

2. Don’t worry about what an object is – for now, just think cout as something that is magically created and
put in the std namespace.

3. Import the standard library to use it (we will see other options later), with the instruction using namespace
std;

4. String literals are enclosed in double quotes: "string", character literals in single quotes: 'c'.

5. There is a (probably apocryphal) story that at some time (in the mid 19th century?) the state of Texas in
the USA passed legislation requiring that children be taught that the mathematical constant pi was equal
to 4 [sic].

6. Endl is an object which, when printed, sends a newline to the stream and then forces the stream to flush
itself (to actually print out anything that may just be buffered at the moment).

7. The built-in types include integers, characters, and real numbers (floating point).

8. String literals are a bit of an oddity in C++ (they are actually pointers to null-terminated character
sequences in memory), but this is a detail you needn’t worry about at the moment. We will cover
pointers and how they relate to arrays in chapter XXX.

Development Environments

lEditor

lCompiler

lDebugger

lClass browser

lProfiler

lVersion management

1. There are many development environments available. At the moment, the trend is to use Microsoft
Visual Studio for C++ programming in industry.

2. Borland Builder (actually, Borland is now called Inprise, but many people refer to this as borland builder)
is very popular; it has a Visual Component Library (VCL) that makes many gui components available to
the developer in a graphical view.

3. CodeWarrior is quite popular.

4. KAI is a commercial compiler I don't know much about.

Editors

lA good editor provides
Ø indentation facilities

Øsyntax coloring

Ømatching parentheses and braces

Ø integration with the compiler

Ø integration with the debugger

1. Show examples of what editors look like

2. emacs, VC, Borland, CodeWarrior

Compiler

lThere are many C++ compilers
ØUnix

– SGI, Sun, IBM, HP, g++, egcs

ØWindows
– VC++, BCB, KAI, Comeau

ØMacintosh
– ??

l Important aspects
ØConformity

ØEfficiency of code

1. Silicon Graphics, International Business Machines, Hewlett-Packard.

2. Visual C++, Borland C++ Builder, KAI?

3. Comeau?

4. Online compiler

5. Latest versions of each

Debugger

lMost Integrated Development
Environments have a built-in debugger

lDebuggers typically let you
Øset breakpoints

Østep through the program

Øshow data

Øedit data

Øwatch variables

1. Feature table for debuggers

2. VC, Borland, gdb, Sun?

Class Browser

lShows a hierarchy of classes graphically

lLets you navigate around

lLets you see more or less detail for each
class

1. What do VC and Borland have?

2. What good ones are commercially available?

3. Rose, other round-trip tools

4. Show examples

Profilers

lLet you see where time is being spent

lGraphical profilers are very helpful

lQuantify

1. Mention gprof and prof, and more recent versions

Version Management

lSCCS, RCS, CVS

lSourceSafe, Source OffSite

lOthers?

Bug Tracking

l<need material for this>

