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Abstract

Learning Patch-Based Structural Element Models With Hierarchical Palettes
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2012

Image patches can be factorized into ‘shapelets’ that describe segmentation patterns, and palettes that describe how
to paint the segments. This allows a flexible factorization of local shape (segmentation patterns) and appearance
(palettes), which we argue is useful for tasks such as object and scene recognition. Here, we introduce the
‘shapelet” model- a framework that is able to learn a library of ‘shapelet’ segmentation patterns to capture local
shape, and hierarchical palettes of colors to capture appearance. Using a learned shapelet library, image patches
can be analyzed using a variational technique to produce descriptors that separately describe local shape and local
appearance. These descriptors can be used for high-level vision tasks, such as object and scene recognition. We
show that the shapelet model is competitive with SIFT-based methods and structure element (stel) model variants

on the object recognition datasets Caltech28 and Caltech101, and the scene recognition dataset All-I-Have-Seen.
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Chapter 1

Introduction

1.1 Motivation

Separating the description of an object’s shape from appearance details, such as color and low-level texture, is an
important problem in the field of computer vision [15]. Finding a factorized description of shape and appearance
is especially useful for object recognition [10, 19, 20, 5, 9, 21]. Some object classes are delineated from other
object classes by shape alone, others by appearance alone, and others by a mix of the two (see Figure 1.1), and so
having a factorized description of shape and appearance aids in discovering salient aspects of an object.

The importance of factorizing descriptions of shape and color is especially relevant when examining com-
mon object recognition paradigms [24, 12, 5, 25]. For clarity of presentation, we will outline a common object
recognition paradigm where it is assumed only one instance from one object is present in an image. Given an
image Z, and C' possible object classes, the goal of object recognition is to predict the object class contained
within the image. This is a challenging task as objects can greatly vary in appearance due to a myriad of rea-
sons, including occlusion, lighting variations, structural changes (eg a car without a roof), articulated pose, and
viewpoint changes. In order to cope with such a wide range of variability in object appearance, object recogni-
tion is typically performed in successive stages, with each stage hopefully providing invariance to some of the
previously described “nuisance” effects. The first stage involves defining or learning a function f (&) with which
to extract image features, ¥, from the image. These image features are meant to capture high-order information
about the depicted object, such as shape information, that is invariant to the aforementioned nuisance effects.
Typical image features include image-gradient information [14, 4], phase responses [22], and responses to a set of
basis functions that capture shape and texture information [18]. Given image features ¥ = f(Z), one then makes
predictions using a classifier function, g(¥) = y,y € {1...C'}, which outputs a prediction for the object class
present in the image. The classifier stage serves as a catch-all for nuisance effects not explicitly dealt with by the
image features. For example, if viewpoint invariance is a desirable property of an object recognition framework,
but the extracted image features are sensitive to viewpoint, then it is left to the classifier to make the entire system
viewpoint invariant. Popular classifier functions include SVMs, K-nearest-neighbors, and multinomial logistic
regression. The described object recognition paradigm is shown in Figure 1.2.

Examining the framework shown in Figure 1.2, we note that object recognition performance is sensitive to
the kinds of image features, ¥/ given to the classifier, and much work has gone into what constitutes a “good”
image features [14, 4, 22, 18, 17]. Intuitively, a good image feature extraction function makes the role of the

classifier trivial by having all desired invariance properties, and extracting features such that object classes are
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Figure 1.1: Examples of object classes in which shape and appearance descriptions have differing discriminative
powers. For example, cars (left) are primarily characterized by their shape and constituent parts, while appearance
features such as color play a lesser role. On the other hand, apple juice (middle) is primarily distinguished by its
appearance features, such as the specific shade of golden brown and its perceived transparency, while the shape it
takes is largely irrelevant. Finally, a sunflower (right) is characterized by both shape and color.

IICarII
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Image, X Image features, V  Classifier,g(V) Label, Y

Figure 1.2: A framework for doing object recognition. Starting from an image &, image features ¥ are extracted,
which are then fed into a classifier function, g(¥), which outputs an object label (in this case, “Car”).

easily delineated. Recall from Figure 1.1 that object classes vary in how discriminative shape and appearance de-
scriptions are, and so it is desirable to extract a set of features that is invariant to shape changes (if it is appearance
that is important) and a set that is invariant to color changes (if it is shape that is important). In light of this, it
is reasonable to suggest constructing two kinds of image features- one that describes shape alone, and one that
described appearance alone. This way, a classifier can learn which source of information is most discriminative,
or more generally, how to combine the evidence from shape and appearance features. Additionally, the classifier
is not saddled with the difficult task of gaining shape and appearance invariance. We argue that operating in such
a shape x appearance image feature space will ease the burden of the classifier by making it more apparent how
to distinguish once class from another. One of the primary motivations of this work is to find “good” factorized
descriptions of shape and appearance.

As will be discussed in Section 1.2, there has been much research on factorizing shape and color for object
recognition [10, 19, 20]. However, such approaches typically rely either on training and test images being aligned
(ie objects are in the same part of the image, and same scale and orientation) or that it is possible to compute
image alignments to a canonical reference frame [10, 20]. Computing the optimal image alignment often cannot
be found exactly and requires either an expensive search over transformation parameters (eg, translations), or
using unrealistically aligned datasets to sidestep the need to infer transformation parameters altogether. Unfortu-
nately, many kinds of objects naturally undergo extreme variations in deformation and articulation (eg, a person

in various poses), and so it is necessary to perform the search over transformation parameters. This search over
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Figure 1.3: Our object recognition framework. We operate on patches to extract shape and color descriptors
separately. Note that we extract one shape descriptor and one color descriptor per patch (illustrated by the four
red squares, and the four shape and color descriptors). We argue this approach combines the flexibility of patch-
based models with an efficient image representation afforded by factorizing shape and color descriptions.

transformation parameters is typically phrased as an optimization problem, and a wide class of algorithms use the
Expectation-Maximization (EM) algorithm to perform this optimization. However, EM in this case is extremely
prone to falling into local minima, and so the transformation parameter estimates tend to be poor. In addition,
such models have difficulty reasoning about occlusions as they presume that the entire object is visible, and it is
difficult to outfit them to handle such situations. These shortcoming limit the practical applications of existing

approaches that factorize shape and color [10, 19, 20, 9].

Recently, patch-based approaches [24, 12] have seen great success on object recognition tasks and seem
able to cope with a large range of object deformations. Here, (patch) features are extracted in a dense tiling
over spatial regions of an image to form an image feature representation. Such approaches overcome the need
to infer transformations by relying on statistics of local image features to perform recognition, thus foregoing
the requirement that entire images be well-aligned. Also, because local image features are used, patch-based
approaches can handle some occlusion as long as the local image statistics do not suffer extreme degradation
(empheg, due to a large degree of occlusion). However, one drawback with current patch-based approaches is that
they typically do not factorize shape and appearance and as we have previously discussed, such factorizations are
desirable.

In this work, we propose a patch-based framework that factorizes shape and appearance. Our approach oper-
ates in a patch-based manner, extracting shape and color descriptors for each patch. We then use these patch-based
descriptors for high-level vision tasks, such as object and scene recognition. A sketch of the framework we pro-
pose is outlined in Figure 1.3, and is described in more detail in Chapter 2. Our approach combines the flexibility

of patch-based models with an efficient image representation afforded by factorizing shape and color descriptions.
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Figure 1.4: Example of structure learned by the PIM model for “faces” for S = 5 index maps. Note how pixels
corresponding to regions that typical co-occur in color, such as forehead and cheek pixels (s = 2), and hair pixels
(s = 3) are grouped together. Visualization shown is of P(s,, = s), where white pixels indicate high probability
of assignment. PIM maps are taken from [10].

1.2 Background

In this section, we describe relevant previous approaches to factorizing shape and appearance, as well as a state-

of-the-art patch-based framework that does not separate shape and appearance in its image feature representation.

1.2.1 Probabilistic Index Maps

Our approach is highly influenced by the Probabilistic Index Maps (PIM) method [10], and this is the most related
work to our proposed model. The PIM method is also referred to as the “structure element model” (stel model).
Here, we describe the core idea behind PIMs, as introduced in [10]. Although there are many variants on PIMs
described in [10], we describe only the basic idea as that is the most relevant for our discussion.

The premise behind the PIM model is that while object classes may undergo large appearance changes (eg,
under different illuminations and viewpoints), the shape (structural) properties behind object instances are largely
the same. For example, a person wearing a red shirt or a green shirt may, on a pixel-color level, look vastly
different, but are shaped in a similar kind of way. This model then seeks to model the shape of a class of objects
independently of appearance.

Suppose we have M images of an object class, with each image containing [V pixels. The PIM model captures
the structure of an object class by way of a probabilistic index map which associates a discrete distribution over S
indices for each of the IV pixels. Throughout the image, each of the .S indices represents a probabilistic grouping
of pixels that tend to co-occur in color over all training images of a given object class. For example, the s — th
group might represent a group of pixels corresponding to the forehead of a person. We denote the probability that
a pixel n is assigned the index s as P(s,, = s). Note that all M images of an object class share the probabilistic
index map. An example of a learned PIM model for faces is shown in Figure 1.4, and is taken from [10]. Note
that the probabilistic index map specifies which pixels tend to co-occur in appearance without specifying what
appearance that should be.

We have described how structure is modelled in the PIM model, and now address how appearance is modelled.

The PIM model assumes that while the structure of an object class may be the same across images, instances of the
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class may differ in appearance from image to image. To deal with this appearance variability, the model defines,
for each image m, a set of S palettes which specify the appearance that pixels belonging to the s — th group takes
on in that image. One example of possible palette parameters are a mean color, /{7’ and a covariance matrix %7
for each of the S image palettes. In this case, it is assumed that all pixels in image m assigned to index s are
well-approximated by the color i7", with some covariance X2*. This way, images that have similar structure but
vastly different appearances can be described by similar probabilistic index map assignments, s,,, n € [1...N], but
different palettes {7, 37", s € [1...S]}. Note the separation of specification of structure from the specification
of appearance. This allows the PIM model to disentangle shape (in the form of the probabilistic index maps) from
appearance (in the form of palettes), and serves as a basis for the work we propose.

We stress that in this approach, entire object classes are modelled with a single probabilistic index map, and
it is implicitly assumed that images can be roughly aligned. As we have argued before, this makes the method

sensitive to the requirement of image alignment, and unable to be robust to object occlusions.

1.2.2 SIFT + Vector Quantization

Patch-based approaches for object recognition have recently become popular. Chief among these approaches is
the use of dense Scale-Invariant Feature Transforms (SIFT) features [14], coupled with vector quantization. In
this section, we outline the operation of this approach. Our goal here is to sketch out the high-level operation of
the SIFT feature extraction stage, and the vector quantization stage. There are many small details of the SIFT
extraction stage that are not critical to motivate or understand this work, such as the Gaussian weighting window
used to weight pixel gradients and the way in which the resulting feature vector is normalized, and so we will not
discuss these details to keep our treatment as simple as possible.

SIFT features [14], extract statistics relating to image gradients in image patches and have been used in a
wide array of applications including object recognition [24, 12], image stitching [1], and video tracking [27].
While a classic use of SIFT features has been feature matching, here we describe its use in an object recognition
framework. This will simplify our discussion since a large amount of machinery in extracting SIFT descriptors
as described in [14] is not performed in the object recognition setting. In particular, we will forego descriptions
of the interest point selection method for SIFT features, and the machinery involved in approximately matching
SIFT features across two images.

In an object recognition framework, SIFT features are first extracted from a set of patches (typically overlap-
ping) all over an image. Patches are typically 16 x 16 pixels, and are spaced so that their centres are only 4 pixels
apart. To extract a SIFT feature for a given 16 x 16 pixel patch, one first divides the patch into 16 non-overlapping
blocks of 4 x 4 pixels. Next, statistics relating to pixel gradients within each of the 16 blocks are computed and
are binned into eight bins, according to each gradient’s orientation. This results in an 8-dimensional descriptor
for each of the 16 blocks. These descriptors are then stacked together to form a patch descriptor that is 128-
dimensional. A pictorial illustration of the (simplified) SIFT extraction method is shown in Figure 1.5. Note that
since the SIFT features depends on statistics of pixel gradients, it contains a representation of local shape in a
patch intertwined with a representation of local coloring. For example, SIFT descriptors for image patches with
two vertical stripes of colors will, in general, look very different; a patch with red on the left and green on the
right will have a different SIFT descriptor than a patch with red on the left and purple on the right. This is highly
undesirable if appearance invariance is required; that is, if what is important is that there is two vertical stripes in
the patch, and not so much the exact colors of the stripes. In other words, SIFT features do not factorize shape

and color in its representation.
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Figure 1.5: A simplified pictorial illustration of SIFT feature construction. First, a 16 x 16 patch of pixels is
extracted from the image and divided into 16 blocks of 4 x 4 pixels. Then, statistics relating to image gradients
are computed at each pixel and binned into one of eight bins, depending on orientation. After, the binned image
gradients are accumulated within each of the 16 blocks. Finally, the binned image gradients are stacked into
a vector, yielding a 128-dimensional feature vector describing the image patch. Arrows within the the green
grids are used to indicate (example) directions and magnitudes of the image gradients located in the delineated
subregion. This process of SIFT feature extraction is repeated over a dense, possibly overlapping set of 16 x 16
pixel patches around the image.

Vector quantization

After SIFT features have been extracted from a training set of images, the SIFT features are quantized (clustered)
into a set of K clusters. In computer vision literature, each of the K clusters are also referred to as codewords, and
the set of clusters referred to as a codebook. The clustering object function is typically taken to be the K-means
clustering objective function, and clustering is performed using the K -means algorithm [12, 24]. Following this,
SIFT features are then hard-assigned to its nearest cluster centre.

Clustering the SIFT features has a number of advantages, including gaining robustness to a small amount
of unstructured noise, and making the feature representation much more compact. Rather than having 128 real
numbers used to represent a feature, ceil(log(K)) bits can be used instead, where ceil() is the ceiling function.

This results in potentially massive savings in memory footprint, which is crucial for large-scale applications.
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Model

In this section, we describe our patch-based approach to factorizing shape and color. We note that our model is
different than patch-based approaches, such as those based on SIFT descriptors described in Section 1.2, since
we explicitly factorize and color. Also, our model is different than other stel model variants since we operate in a
patch-based framework.

Given an unlabeled set of training images, the shapelet model attempts to explain all image patches using a
library of patch shapes, or shapelets, and a hierarchical set of palettes used to color each patch in each image. The
shapelets capture information concerning local shape in a patch regardless of the specific colors used, whereas
the palettes capture information concerning the coloring of patches and images regardless of the patch or image
structure. A hierarchical palette of colors is used to capture coloring at the patch level and image level. In addition,
a universal palette accounts for the colors of all training images. Each image selects a subset of image colors from
the universal palette to form the image palette, and in turn, each patch in the image chooses a subset of colors
from the image palette to form the patch palette. The hierarchy of palettes enables the model to capture inter and
intra-image coloring consistencies.

Using a generative modeling approach, a shapelet is a probabilistic grouping of pixels in a patch into a set of
regions that reflect co-occurrence of color. Shapelets capture local image structure by modeling this co-occurrence
without regard for the specific color identities. In order to explain patches of differing complexity, shapelets are
allowed to contain a differing number of regions. A shapelet with a single region describes a uniformly colored
patch, while a shapelet with several regions can capture more complex patterns. An image patch can be described
by a shapelet and a palette reflecting the color means and variances of each shapelet region. This gives rise to a
flexible patch-based image representation: multiple patches can be compactly explained by a single shapelet with
different palettes. The overall idea of this approach is shown in Fig. 2.1.

Regions within a shapelet serve a similar role to stels [10, 19, 20, 9] in that both represent probabilistic pixel
groupings based on color co-occurrence. However, stel models are often learned on whole images, and so stels
often correspond to object parts (eg, the shirt of a person), while shapelets are learned on the patch level and
correspond to shape primitives (eg, a quarter circle).

Given a test image and a learned library of shapelets, (approximate) posterior distributions describing which
shapelets best model each patch in the image are inferred, along with the palettes used to color the patches and the
image. This decomposed representation can be used to perform higher level vision tasks, such as object and scene
recognition. The rest of this section provides technical details of the generative model and the learning algorithm

employed in this work.
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Figure 2.1: An illustration of our approach. Shapes comprising image patches can be described using ‘shapelets’
with varying numbers of regions (bottom of figure). To describe an image as a collection of shapelets, each
shapelet region needs to be painted, or colored. From a universal palette (top of figure), each image selects a
subset of image colors (top-middle), and from these image colors, each patch selects a subset of patch color
(bottom-middle). Separately, for each patch, a shapelet from the shapelet library is chosen (bottom). The shapelet
is then colored according to the chosen patch palette. In this way, our model explicitly factorizes local shape, in
the form of shapelets, from appearance, in the form of hierarchical palettes.

2.1 Probabilistic graphical model for shapelets

Given M same-size images, each containing .J non-overlapping patches of size N, x N, = N pixels, our goal
is to learn a library of shapelets and to infer the universal, image, and patch palettes. Let .S denote the number
of shapelets in the library, U denote the number of colors in the universal palette, and G denote the number of
colors in the image palettes. Also, let each shapelet s contain R, regions, and let the patch palettes contain up
to R colors, where R = max, R;.

A shapelet s, containing R, regions, is represented as a collection of /N discrete distributions over the R
region indices. For each shapelet, these distributions indicate the region preference of every pixel in a patch.

To generate a set of images from our model, one first generates a set of universal colors comprised of U
means in some color space (eg, RGB). Next, to generate an image, an image palette is generated by randomly
selecting G color means from the universal palette and specifying their variances (therefore color variances are
image-specific). Allowing for image-specific variances for the image palette allows us to deal with data sources of
varying noise levels and conditions (eg, cameras using different exposure settings). Then, each patch in the image
picks one shapelet from the library of S shapelets. Each of the IV patch pixels are assigned to one of the R regions
by independently sampling from each pixel’s discrete distribution, as defined by the selected shapelet. Finally,

each of the R, regions is assigned to one of the G image colors by sampling from their respective distributions
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defined by the patch palette, and uses their image color’s mean and variance to color their assigned pixels. Note
that multiple regions may pick the same image color; all that is required is that pixels belonging to the same region
are explained by the same global color.

Therefore, in this model, the generation of local shape (specified by selecting a shapelet) is explicitly separated
from the generation of local appearance (palettes); it is this separation that allows the shapelet model to efficiently
factorize shape and appearance.

The graphical model is given in Fig. 2.2. u,,, € {1...U} is the universal color index being used in image m
by image color g; the shapelet index being used in image m and patch j is s,,; € {1...S}; the region index to
which pixel » in image m and patch j, using shapelet s, is assigned is 7, € {1...R,}; the image color index
to which pixel n in image m and patch j is assigned is g, j» € {1...G}; the observed value of pixel n in image
m and patch j is denoted by T, € RH | where H is the number of color channels (eg, H = 3 in the case of
RGB-space).

The above hidden variable distributions are paramatrized as follows:

Pty | 5) = Discrete(5), 5 € RY 2.1

P(8m; | 9) = Discrete(d), 0 € R® (2.2)

P(rmjn | 8mj=$, Tns) = Discrete(7ys), Tns € R It 2.3)
P(Gmjn | Tmjn =T, Gm;r) = Discrete(m;r ), Gmjr € RE 2.4)

The parameter E controls the selection of colors from the universal palette that form image colors. The parameter
g controls the prior over shapelets for modeling the local shape of a patch, and is further discussed below. 7,
parameterizes, for a pixel n in shapelet s, the distribution over the R regions and is analogous to a distribution
over stel assignments [10, 19, 20, 9] for patches. Similarly, &,,;, parameterizes, for a patch j in an image m for
the region r, the distribution over the G image colors, and forms the lowest level of our color hierarchy (patch
palette), as shown in Fig. 2.1.

Recall that our framework is capable of handling shapelets with a differing number of regions through an
appropriate choice of the R,Vs. The choice of shapelet, and thus of shapelet complexity, is controlled by the pa-
rameter § = [01,...,0s]T. Itis often desirable to either limit or regularize model complexity to obtain good gen-
eralization, and so the framework can be biased to prefer using shapelets with fewer regions (‘simpler’ shapelets).
This is achieved by setting

_ _ 2
g, — _ SPEAUR: —1)7) 2.5)

S exp(—A(Rs — 1)2)

where )\ is a regularization parameter. This prior is fixed since R is fixed Vs. Alternative forms of regularization

are also possible, such as using a Dirichlet prior with S parameters. However, such a prior may require careful
tuning to balance the use of simpler and more complex shapelets. In contrast, the regularization choice in Eq. 2.5
has only one tunable parameter, and in practice has the desired effect of encouraging the use of shapelets with
fewer regions.

For the observation model, it is assumed that each H-dimensional pixel value is distributed according to an

H-dimensional axis-aligned Gaussian:

H
P(Im]n ‘ Imjin =9, Umg=1U, ,LLu, mg H mjn ‘ :U‘Za (0—2)?,7,_(;)7 (26)
h=1
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where A/ () is the normal distribution, u/* is the mean of color channel 4 of universal color u, and (02)", g 1s the

variance of color channel & of image color g in image m.
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Figure 2.2: Graphical model for the shapelet model. An image m is generated by first selecting GG image colors
from a library of U universal colors. Then, each patch j in the image selects a shapelet, s,,;, to model its local
shape, and Ry, ; colors from the (G image colors to model its local color. Each patch 7, is then colored according
to the choice of shapelet and palettes.
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2.2 Variational learning

Here, we detail an algorithm to perform learning in the framework described in Section 2.1. For notational
convenience, let & = {m, a, 3, u, o } (the collection of model parameters), and Z={s,r, g, u} (the collection of
all hidden variables).

The goal of learning is find the model parameters, ®, that maximize the data likelihood, P(X | 5, ), or
equivalently, the data log-likelihood, log P(X | 5, ®). However, we are unable to directly optimize the data log-
likelihood since our model contains a potentially large number of hidden variables. Instead, we work with the
complete data log-likelihood, log P(X, Z | 6, ®), given by:

log P(X,Z |6, ®)=
ZlogP (Umg | B) +ZlogP (Smj | 6s)

mj
+ Z IOgP T'mgjn ‘ Smygs ﬁns) + Z log P(gmjn | Tmjn, &mjr)
mjn mjn
+ > 108 P(Zmjn | Gmin=0: tmg =1, lu, (02),,,)- 2.7)

mjn

Unfortunately, the global optimal setting of ® cannot be found in closed-form. As a result, we employ a variational
EM algorithm to perform learning. In general, there are three ingredients that must be specified or computed to
execute a variational EM algorithm:

e A distribution over the hidden variables, Q(Z) (Q-distribution)
e Expectation-step updates (E-step)
e Maximization-step updates (M-step)

We specify each of these ingredients in the remainder of this section.

2.2.1 Q-distributions

Here, we define the form of the Q-distribution, Q(Z), that we use for learning in the variational EM framework.
To keep the notation uncluttered, unless otherwise noted, we omit conditioning on the parameters ® and g for the
remainder of this section.

The EM algorithm requires the specification of a probability distribution over hidden variables, Q(Z). While
we are free to specify the functional form of Q)(Z), a natural choice is the one that minimizes the free-energy F
between Q(Z) and P(X,Z):

F= ZQ ) log P?(Z)Z). (2.8)

This is a natural objective to minimize as F' is an upper-bound on the negative data log-likelihood, — log P(X),
and so minimizing Eq. 2.8 is equivalent to maximizing a lower bound on the data log-likelihood [16]. Note also
that F = KL (Q(Z) || P(Z | X)) — log P(X), where K L(-) is the Kullback-Leibler divergence. So, F >
—log P(X) since K'L(-) > 0, and is minimized when Q(Z) = P(Z | X). In other words, Eq. 2.8 is minimized

when Q(Z) is set to be the posterior distribution over the hidden variables.
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Ideally, one would set Q(Z) = P(Z | X) to minimize Eq. 2.8; however, this does not always lead to a form of
Q(Z) that is tractable to compute. In general, a complete description of the posterior distribution P(Z | X) where
the hidden variables Z take on discrete values requires a table of HkK |z:| — 1 values to be computed, where there
are K total (discrete) hidden variables, and | zj| indicates the number of values the £ —th hidden variable may take.
Since the number of hidden variables generally increases with the amount of data available and model complexity,
it may be intractable to compute the true posterior distribution over discrete hidden variables. Because of this,
setting Q(Z) = P(Z | X) to minimize Eq. 2.8 is not always possible. Instead, one may consider a restricted form
of Q(Z) that is tractable to compute, yet is a good approximation to P(Z | X). We will see that the true posterior
distribution P(Z | X) for the shapelet model is indeed intractable and we must restrict the form of Q)(Z) to one

that is computationally feasible to work with.

Using the graphical model in Fig.2.2 as reference, we note that the following decomposition holds:

where Z,, is the set of hidden variable relevant to image m, and X,, is the data observations for image m.
Unfortunately, P(Z,, | X,,) cannot be further decomposed, and is intractable since each image may have many
associated hidden variables. As such, we cannot set Q(Z,,) = P(Z,, | X,,). Instead, we seek to restrict Q(Z,,)
to a form that is tractable to work with, and is as faithful to P(Z,, | X,») as possible.

The approach we will employ is to find a decomposed form of Q(Z,,) since such forms lead to compact
representations that can be computed efficiently. Since there may be many patches in a given image, it is desirable
for Q(Z,,) to have a decomposed form over each patch, j. We note that even conditioned on the training image
data, X,,, and noting that all patches must draw from a common set of image colors, P(Z,, | X,,) does not

factorize over patches due to explaining away. Because of this, we use the following approximation for Q(Z,,):
P(Zm) ~ Q(Sma Ty 8m, um) = Q(Sma T, gm)Q(um) (2.10)

where u,,, € RE*U denotes the set of hidden variables that govern to which of the U universal colors each
of the G image colors is assigned. As stated above, it is computationally desirable to restrict the ()-distributions
to decomposed forms, and since G may be large, we seek a further decomposed form of Q(u,,,). Examining the
graphical model in Figure 2.2, Q(u,,) does not have a further decomposable form due to explaining away. Since

Q(umg)Vg € {1...G} is not independent conditioned on observing the image data, X,

We now turn to finding a decomposed form for Q(S,y, 'y, &m ). We employ the following approximation:

J n

This is an approximation since Q (S, I'm, & ) does not factorize over patches, j, nor pixels, n, due to the sharing

of the set of image colors.

Using the above approximations, we may now fully specify the )-distributions used in our variational EM

framework:

P(Z|X)=P(s,r,g,u|X) =~ Q(Z) = Q(s,r,g,u) (2.12)
Qs w =] (T] QCwie)) TT Qsins) [T Qs [ 51) Qs | 7s) (2.13)
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We have now defined a restricted, decomposed form of (Q(Z) that is tractable. Next, we describe how, given an

estimate of the model parameters, ®, we can minimize Eqn. 2.8 using the Q)-distribution defined by Eqn. 2.11.

2.2.2 E-step

In this section, we define the algorithm to update the Q-distributions Q(sm,;), Q(Umg), Q(Tmjn | Smj), and
Q(gmyn | Tmjn) in order to minimize Eqn. 2.8, given an estimate of the model parameters, ®. In the language of
EM, this section outlines the E-step.

First, we explicitly substitute Eqn. 2.7 into Eqn. 2.8:

F=) " Q(Z)logQ(Z) (2.14)
Z

3Q(2) > log Pung) — > Q(Z) S log Psiny)
Z mg Z

mj

- Z Q(Z) Z 1ng(rmjn | Smj) - Z Q(Z) Z IOg P(gmjn ‘ijn)
V4 z

mjn mjn

- Z Q(Z) Z 1ng(fmjn |gmjn:g7 umg)'
Z

mjn

We first consider the factor Q(s,,,;). We seek the expression for Q(s,,;) that minimizes Eqn. 2.8, keeping all
other Q-distributions fixed. We will refer to this expression as Q*(sy,;). Taking the functional derivative of Eqn.

2.14 with respect to Q(s.,;) and setting it to zero yields

0 =10g @ (sm) @15)
- IOg P(smj)
- (Z Z Q(ijn | Smj)(IOg P(ijn | Smj) — log Q(rmjn ‘ Smj))
+ const (2.16)

where const is a constant that collects all terms that do not explicitly depend on s,,,;. Solving for Q*(s,,;) yields

Q*(Smj) X exp (IOgP(Smj) + Z Z Q(ijn | Smj)(IOg P(ijn |3mj) - IOg Q(rmjn | Smj))) (2.17)

N Tmjn

exp(log P(smj) + >, Zrmm Q(rmjn | Smj)(10g P(Tmjn | $mj) —10g Q(rmjn | $mj)))
Smj exp(log P(sm;) + >, Zrmjn Q(rmjn | Smj)(10g P(rmjn | Smj) —10g Q(Tmjn | $mj)))
(2.18)

= Q*(Smj) = E

Note that the update given by Eqn. 2.18 can be efficiently computed, as the operations required to characterize
Q*(smj) can be formulated as matrix and element-wise operations (eg, element-wise exponentiation of matrix
elements). In particular, such computation is amenable to parallel computing.

Next, we seek Q* (r'm;jn | Smj), the expression for Q(7mjn | Smj) that minimizes Eqn. 2.8, keeping all other
()-distributions fixed. We use the same approach as for finding Q*(s,y;). Taking the functional derivative of Eqn.

2.14 with respect to Q(7mjn | Sm;) and setting it to 0 yields
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0 =1log Q" (Tmjn | Smj) (2.19)
— log P(T‘mjn | Smj>
- Z Q(gm]n ‘ ijn)(log P(gm_]n | rmjn) - IOg Q(gm]n | rmjn))

Imijn

-+ const

where const is a constant that collects all terms that do not explicitly depend on Q*(7yjn | Smj). Solving for

Q*(Tmjn | Smj) yields

Q* (ijn | Smj) X eXp(logP(ijn | smj) + Z Q(gmjn | ijn)(logp(gmjn ‘ rmjn) - log Q(gmjn | ijn)))
Imjn

(2.20)
= Q*(T‘mjn | smj): (221)
exp(log P(rmjn | Smj) + ngj” Q(gmjn | Tmjn) (108 P(gmjn | Tmjn) — 108 Q(gmjn | Tmjn)))
5D (108 P(rmgn [ 5m3) + 3y Qmsn | Prgn) (108 P(Gmagn | Fenge) — 108 @Gz | i)

2

Tmjn

Note that just as with the computation of Q*(s,,;), the updates in Eqn. 2.21 can be efficiently computed using
matrix and element-wise operations.

Next, we seek Q*(gmjn | Fmjn), the expression for Q(gmjn | 7m;j») that minimizes Eqn. 2.8, keeping all other
Q)-distributions fixed. We use the same approach as for finding Q* (s, ). Taking the functional derivative of Eqn.

2.14 with respect to Q(gmjn | 7m;n) and setting it to zero yields

0 =log Q" (gmjn | Tmjn) (2.22)
- 1ng(gmjn | ijm)
+ Z Q(umg) lOgP(fEmjn | gm,jn; Umg)

Umg

-+ const

where const is a constant that collects all terms that do not explicitly depend on Q*(gmjn | 7mjn). Solving for

Q* (gmjn | rmjn) yields
Q* (gTrL]n:g | T'mjn) X exp (log P(gm]n:g ‘ ijn) - Z Q(umg:u) IOg P(fmgn | Imijn =9, Umg :u))

(2.23)

exXp (10g P(gmjn:g | 74mjn) - Zu Q(umg:u) log P(fmjn | Imin=9, umg:u))

Q*(gmjn:g | ijn): - .
5 (€x0 (108 P(gmjn=' | Tmsn) = 5,y Qtimgr =) 108 P(Fjn | gimsn =0/ tmg =1))

(2.24)

where to keep the notation uncluttered, we have used the binding notation | g,,,;» =g to indicate a particular value

for g,n;jn- The updates in Eqn. 2.24 can be computed efficiently using matrix operations.

Finally, we find @ * (umg), the form of Q(w,,,) that minimizes Eqn. 2.8, keeping all other Q-distributions
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fixed. We use the same approach as for finding Q*(s,,;). Taking the functional derivative of Eqn. 2.14 with
respect to QQ(u.,,4) and setting it to 0 yields

0 =log Q*(umg) (2.25)
— log P(tmg)
3D Qsmi=9) )Y QUmin=r15mj=5)>_ QGmjn=9|Tmin=")0gP(Emjn | Gmjn=7, tmg)
7 s n r g
-+ const

where const is a constant that collects all terms that do not explicitly depend on Q*(mg). Solving for Q* (tmg)

yields
Q" (ttmg) ¢ exp(log P(umg) + Z Z Z Q(gmjn=9)logP(Zmjn | gmjn =9, Umg)) (2.26)
Jj n g
exp(log P(umg) + 2.2, min=9)0gP(Zmin | gmin=9, tm
:>Q*(umg): p( g ( 9) ZJZ ZgQ(g j g) q ( j |g j g g)

2w (exp(log Pumg=1') + Zj 2on Zg Q(gmjn=9)l0gP(Zmjn | Gmjn =9, Umg=1"))
(2.27)

where Q(gmjn=9) = >, Q(Smj=5) >, Q(Tmjn=75m; =5)Q(gmjn =9 | Tmjn =7). Note that the update
defined by Q* (u,4) can be efficiently computed.

The details of the )-distribution updates, Q*($ymj), @ (Fmjn | Smj)s Q* (gmjn | Tmjn), and Q* (umg) have
now been specified. Note that because of the explicit decompositions we have made in defining the (-distributions,

all of these updates are efficient to compute using matrix operations and element-wise operations.

2.2.3 M-step

With the @Q-distributions and associated updates outlined in Sections 2.2.1 and 2.2.2, respectively, we give the
details of the model parameter updates to complete our description of the variational EM learning framework. In
the language of EM algorithms, we now specify the M-step.

We first explicitly write out the dependence of the complete data log-likelihood on the model parameters by
substituting Eqns. 2.1, 2.2, 2.3, 2.4, 2.6 into Eqn. 2.7, yielding

log P(X,Z |0, ®)=

Z log By + Z log 6
mg mj
+ Z log Ty + Z Amjrg

mjn mjn
+ 30> log N (ahy i | 1l (0%)) (2.28)
mjn h

where, for brevity, we use the notation g = U, Sinj = S, Ty jn =T, Gmjn = ¢. Substituting Eqn. 2.28 into Eqn.
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2.8, the equation for free energy, yields
F =3 Q(z)logQ(Z)
7

= (@) (Y tog B+ Y loge,

Z mg
+ Z log Tnsr + Z 1Og Amjrg

mjn mjn

+ 30 S g N (e | (09),0,)))- (2.29)

mjn h

We now consider the updates for the model parameters & = {7, «, 3, 1, o }. We first consider the update for
parameter 7, ,: the probability that pixel n of shapelet s takes on the region label r. Setting the derivative of Eqn.
2.29 with respect to 7,4, to zero, and using a Lagrange multiplier to enforce the constraint ZT Tnsr = 1 (ie, Tps

forms a valid probability distribution), we get

Q(Smjn = S)Q(rmjn =T | Smjn = 3)
= 2.
0 zj: — + A (2.30)
= Tper X Z Q(Smjn = $)Q(Tmjn =T | Smjn = S) (2.31)
mj

o ij Q(Smjn = S)Q(rmjn =T | Smjn = 8)

= M= Sy Qs = 9)

(2.32)

where ) is a Lagrange multiplier. The update for 7,5, given in Eqn. 2.32 can be thought of as updating the
normalized preferences a given pixel n in a given shapelet s has for the region label r, and operates by summing
over the evidence in each image and each patch of how well a particular pixel is described by a particular region-
shapelet combination. We note that the parameter update given by Eqn. 2.32 can be efficiently computed using
matrix operations.

The updates for model parameters 3, and oy, ;-4 can be derived using the same approach used for the updates

for my,5,-. The updates for 3,,, and oy, jrq are:

= Zs Q(Smj =s) Zn Q(ijn:T | Smj :S)Q(gmjnzg | ijnzr)
e 225 Qsmi=25) 22, Qrmjn=r$m;j=5)
3,= ng Q(Umg=1)
“ nguf Q(umg:u/).

(2.33)

(2.34)

h

The palette parameters, ji,, and (02)", ¢» are updated in a similar fashion to 7., though the derivation does not

require the use of a Lagrange multiplier. The updates are given by:

. ijng Q(Umg=1)Q(gmjn=9)Tmjn

o 2.35
: ijng Q(umg:u)Q(gm]’n:g) ( .
_ e h  _  h)\2

Note that the palette updates resemble the mean and variance updates for learning a mixture of Gaussians, where
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the responsibilities are given by Q(tmg=1)Q(gmj»=g) and the datapoints are the pixels.
All the model parameter updates have now be specified, and the description of our variational learning ap-

proach is complete.

2.3 Variational Inference

We now describe how we perform variational inference in the shapelet model. Inference on a given fest im-
age m involves computing the approximate posterior distributions Q (), Q(Tmjn | Smj)s Q(Gmjn | Tmjn), and
Q(umyg), as well as the image and patch-specific model parameters &, and (a§)m ;- Note that the model pa-
rameters that are shared across images, such as the parameters governing the shapelet library, 7,5, the distribution
over universal colors, 5 , and the mean of the universal colours ji are held fixed during inference as they are viewed
as parameters that describe the world of images (or just a particular dataset), and so should not vary from image
to image. Therefore, variational inference is carried out using the same variational EM algorithm as in Sections

2.2.2 and 2.2.3, except keeping the model parameters 7, 5 and /7 fixed.
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Experimental Results

In this section, we describe the experiments performed to analyze the properties and performance of the shapelet
model. In particular, we performed experiments using the Caltech101 [13], and Caltech28 [2] datasets to examine
object recognition performance, and Caltech28 [2] to examine image reconstruction capabilities. We note that
since we have a generative model of images, it is instructive to look at the kinds of images are framework is
able to reconstruct, and the properties of those reconstructions. Also, in order to compare more directly with
existing stel model variants such as [20], we examine scene recognition performance using the “All I Have Scene”
(AIHS ) dataset [11]. Although we have motivated our work through an object recognition paradigm, scene
recognition poses similar challenges (eg variations in scene illumination and viewing angle), and so examining

scene recognition capabilities is instructive to understanding the shapelet model.

3.1 Dataset description

We use several datasets to qualitatively evaluate our framework on object recognition, and scene recognition. In

this section, we describe the datasets we use to evaluate our shapelet model.

3.1.1 Caltech101

The Caltech101 dataset [13] has recently become a standard benchmark for object recognition algorithms. The
dataset is comprised of 101 object classes and one “background” class, with each class containing between 31 and
800 examples. Images are a mix of RGB and gray-level pixel values, and are sized roughly to be 3002200 pixels.
The dataset also comes with annotations indicating a tight bounding box around the object, and object contours.
However, in this work, such annotations are unused. For a given image, only the class label information is used.
Figure 3.1 shows a few example images from this dataset. As can be seen from the figure, the each image in
the dataset contains exactly one instance of one kind of object, objects are cropped, roughly centre-aligned, and
all instances of a class are often in a canonical pose (eg, motorbikes are all right-facing). Also note that some
classes, such as the minaret class (row 12, first and second from the left) contains rotation artifacts. Although
the aforementioned properties are undesirable in the sense that they are biases in the dataset that are presumably
absent in the real world, we benchmark on the Caltech101 dataset so as to compare with other state-of-the-art

algorithms.

19
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3.1.2 Caltech28

The Caltech28 dataset [2] is another dataset used to benchmark object recognition algorithms. This dataset is
derived from the Caltech101 dataset by extracting images from the (28) object classes that contain at least 60

examples. We report on Caltech28 results so as to compare with another stel model variant [19].

3.1.3 AllI Have Seen

In addition to object recognition, we evaluate our approach on scene recognition. For this task, we use the All 1
Have Seen (AIHS ) dataset [11]. This dataset seeks to model the distribution of visual data that a human receives
on a day-to-day basis. To this end, the AIHS dataset was created by outfitting a single human with a wearable
camera for two weeks, having the camera take a picture every 20 seconds during waking hours, and then manually
selecting a subset of the captured images.

The dataset consists of 10 classes of recurrent scenes such as a work office, outside of a house, and a biking
trail, with each class containing 30 examples. Images are 48 x 64 pixels. Note that the class instances are instances
of the same venue. For example, all work office scenes are instances of one particular work office at different times
of the day and lighting conditions, and slightly different viewpoints. This is different than other scene recognition
datasets, such as the “15 scenes” dataset [12], which combine many different work office venues into a single
class.

The AIHS dataset is especially useful to test approaches that factorize shape and appearance since a primary
source of variation is lighting conditions. Although there are variations in viewpoints of a particular scene and the
exact layout of smaller objects in the scene, these variations are relatively minor compared to the lighting changes.
Figure 3.2 shows a few example images from this dataset.

Because of the properties of the dataset, an approach that can effectively factorize shape and appearance
should be able to well explain the intra-class variation (lighting changes) with appearance descriptors, and should

be able to well explain inter-class variation with shape descriptors.
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Figure 3.1: Example images from the Caltech101 dataset. Two examples from each of the 101 classes are shown,
with both class examples placed side-by-side without space between them. Different classes are spaced part. Note
that images are typically cropped, roughly centre-aligned, and class instances often appear in a canonical pose.
For example, motorbikes (top row, fourth and third from the right), are right-facing, and are placed in the centre
of the image.



CHAPTER 3. EXPERIMENTAL RESULTS 22

e [

-
< 2- '
e

>

4 A

Figure 3.2: Example images from the AIHS dataset. Six examples from each of the 10 classes are shown, with
class examples placed side-by-side without space between them. Different classes are spaced part. Note that the
instance of a scene class represent a single venue, but with slightly varying viewpoints and layout, and different
lighting conditions. For example, the outside-house class (top-left row of six images) shows the same house but
at slightly different angles and times of day.
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3.2 A learned shapelet library
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Figure 3.3: A library of 201 shapelets learned from Caltech28 using our shapelet model. For each shapelet,
we show the multinomial parameters of the (up to) three regions for each pixel as a linear combination of red,
green and blue, where each color represents a multinomial parameter. Prior to learning, the shapelet library was
hardcoded to contain one single-region shapelet, 120 two-region shapelets, and 80 three-region shapelets. For
visualization purposes, the shapelets are ordered by increasing entropy, and the region colors of red, green, and
blue are arbitrary.

We first show the kinds of shapelets (local shapes) our model learns. A set of shapelets learned from the
Caltech28 dataset, described in section 3.1.2, is shown in Fig. 3.3. The shapelet library shown in Fig. 3.3 consists
of one single-region shapelet, 120 two-region shapelets, and 80 three-region shapelets. We will describe the
remainder of the exact parameter settings and implementation used to learn this shapelet library in Section 3.2.
As can be seen from the figure, the shapelets learned by our model vary in complexity from simple horizontal and
vertical lines (positions (4,1) and (3,12) in Fig. 3.3), to more complex patterns such as quarter circles (positions
(4,8) and (1,7)), and multi-line patterns (positions (3,18), (1,24)). Some of the shapelets also resemble Gabor-like
filters (positions (2,16), (3,15)), capturing patterns such as lines in different orientations and positions. Note that
whereas other coding methods, such as SIFT and Gabor filter responses, would need to have separate filters to
account for different combinations of intensity patterns, the shapelet model can make do with fewer filters. In
other words, the shapelet model offers a more compact representation. For example, the shapelet position (2,1)
can account for a patch with a bright strip above a dark region, but can equally well account for a dark strip
above a bright region. Because of this flexibility, the responses to shapelets are more coherent with local shape
description than descriptors that do not separate shape and color.

A drawback of the shapelet model approach is that it has no mechanism to encode priors for invariances to
image transformations such as scaling and rotation. For example, it may be desirable to instruct a model to learn
filter responses that have a small degree of invariance to image transformations, such as small angle rotations, in
order to have more compact image descriptors that is robust to noise. In its current form, the shapelet model has
no mechanism to support this kind of invariance. However, one may hope that the shapelet model will simply
learn about all relevant local patterns if they are prominent in the training set. For example, one may hope that
the model learns about lines at all orientations, if such lines do occur in the training set. Unfortunately, as can be
seen in Fig. 3.3, this is not the case. While the model learns about lines at particular orientations (positions (2,16),
(3,15), (3,12)), the shapelets that represent lines do not densely tile the space of orientations. The same can be
seen for learning lines at the same orientation but different thicknesses, which can be viewed as lines at different
spatial scales.

For qualitative comparison, we also show the learned shapelets for the patch-based mixture of probabilistic
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index maps (PB-MoPIM) model; see Section 3.5.3 for a description of this model. Fig. 3.4 show stels learned
by PB-MoPIM for a setting where all stels contain R = 3 stels. The stels learned largely resemble Gabor-like
filters. Additionally, the stel libraries learned by this method generally have higher entropy (and so appear more
“blurred”) than shapelet libraries. Lastly, stel libraries learned by PB-MoPIM tend to capture simpler shapes, such
as lines and curvatures, than shapelet libraries learned by the shapelet model, which tend to capture more complex

shapes, such as pie-wedges (position (4,15) in Fig. 3.3).

11

N
w
N
(&)}
-
N
-
©

HEEEES

MEHENEEE-
L LLT N
ANFNENN~
HEREESEEC
ENES#EDES
TNENEI"
NEEREERES
EUIARYEN
NERREFES-
«MAFnIE
HEEEEENS
HENE=EN]
FUHNEEDNN
AMARLF-
] 111 LIS
AFMI JEEe
1L
ITEEEENES
HONEENEY
HNEFEEEN
BSNMEEEALS
AEEEEEEY
EENEEEE:

Figure 3.4: A library of 201 probabilistic index maps learned from Caltech28 using the PB-MoPIM model with
three regions. For each probabilist index map, we show the multinomial parameters of the three regions for each
pixel as a linear combination of red, green and blue, where each color represents a multinomial parameter. For
visualization purposes, the shapelets are ordered by increasing entropy, and the region colors of red, green, and
blue are arbitrary.

3.3 Shapelet-based patch descriptors

Before we present results on image reconstruction, and object and scene recognition, we describe the image rep-
resentation used by the shapelet model. Recall that the motivation of the shapelet model is that it factorizes local
shape and appearance, and so our image representation is based on quantifying shape and appearance separately.

We first describe how local shape is encoded by the model. Since shapelets represent local shapes, one
may hope that given a library of shapelets, local shape in a given image m and patch j can be described by
the posterior distribution over shapelets, P(s,,; | Z,;). However, recall from Section 2.2.1 that computing this
posterior distribution is intractable. As a result, we use our approximate shapelet posterior, Q)(sy;), as our shape-
based descriptor. This results in an S-dimensional distribution over shapelets that describes the local shape in an
image patch.

Additionally, we can describe image patches according to local appearance features. In the shapelet model,
we encode color information. One way to do this, which is not done in this work, is to infer, for a given patch
in a given image, the distribution over univerisal colour entries. That is, for each patch, one could construct a
histogram with U bins and assign each pixel to a single bin according to its most likely universal colour, given by
the distribution over the hidden variable u;g,, ;. To find a pixel’s assigned universal color, one could look at its
mostly likely global colour, g.,jn, and use that as an index to look up its most likely universal color, U, ;,, -

There are several problems with the aforementioned approach to describe color information. First, because the
universal palettes are specific to our method, using these palettes makes comparison to other algorithms difficult.
Ideally, we would like our color descriptor to be approach-agnostic in the sense that most existing algorithms can

trivially make use of the same color descriptor. This would allow us to fairly analyze the effectiveness of our
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shape descriptor, and factorization of shape and color. Second, the model may use the “wrong® universal color
in the sense that there is another universal color, if assigned the same pixels, would yield a higher data likelhood.
This primarily occurs due to local minima issues in the inference algorithm.

The approach we take to form the patch color descriptor is to form a color histogram. Specifically since our
data is described in H color channels, we divide this H-dimensional space evenly into U bins. For example,
for RGB space (H = 3) and U = 125, each of the H color channel is divided evenly into 5 bins, and the bin
centres are described by a 3-D vector in RGB space. Then, to form the color descriptor for a patch, we assign
pixels to their closest bin centre in this H-dimensional space. Since there are U bins, the patch color descriptor is
U-dimensional.

To sum up, we use a factorized description for shape and appearance for a patch. To describe shape, we use
the S-dimensional approximate posterior distribution over shapelets, (s, ), and to describe appearance, we use

a U-dimensional color histogram of equally spaced bins.

3.4 Image reconstruction

In this section, we explore the shapelet model’s ability to perform image reconstruction. Since we have a gen-
erative model, our shapelet model can perform image reconstruction. To perform reconstruction of an image m,
we first take a learned shapelet library, which defines the 7, sVn, s, and using the method outlined in Section 2,
we infer an approximate posterior distribution over shapelets Q (s | é', Xoni)WVi Xmj = {Zmjn N_ refers to
all pixels in a particular patch), the image palette parameters ji,,g, (6%)mgVg, and the patch palette parameters
Qm;jr V7, 7. We then follow our generative model described in Section 2.1, except using the approximate posterior
distribution over shapelets instead of the prior over shapelets given in Eq. 2.5. In addition, instead of sampling
from our multinomial distributions, we use the index with the highest probability mass, and instead of sampling
from our Gaussian observation models, we use their means. Reconstructions are shown in Figure 3.5 using a
shapelet library learned on Caltech28 . The original images were resized to be 100 x 100, and we performed
inference using a patch size of 8 x 8, a stride of 2! and G = 6.

Since we use overlapping patches, we also average the appearance of a pixel over all patches that overlap with
that pixel. As shown in the image reconstructions, our model is capable of reconstructing images with a variety
of properties, such as having very many or very few colors. Additionally, while our model does not typically
smooth over object boundaries (due to the typically low-entropy of the learned shapelet library, and using a small
stride to perform the image reconstructions), it tends to smooth over areas of fine detail, such as textured regions.
This can be seen in the way the “streaking* across in the sky in the original image (left image in Fig. 3.5) is
lost in the reconstruction, and in the way the dots on the dog’s nose in the original image is smoothed over in
the reconstruction. This inability to reconstruct textured regions is to be expected, as modeling co-occurrence of
colors in a patch does not lend itself well to explaining texture. Furthermore, the shapelet model assumes that
pixels in a patch are independent given the shapelet label, but a hallmark of textured regions is the spatial structure
that the pixels in the region exhibit (ie pixels values are not independent). Unfortunately, it is non-trivial to modify

the shapelet framework to handle such intricate spatial structures that textured regions typically display.

our model, described in Sec. 2, assumes non-overlapping patches, but the patch size and stride used for our experiments violates this

assumption. We ignore this violation for computational reasons, and to simplify the inference and learning algorithms.
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Figure 3.5: Image reconstructions (bottom row) and the original resized 100 x 100 images (top row). For pictures
with a multitude of colors, such as the sunset picture (left), our model finds G colors that captures the dominant
colors in the image. Our model can also reconstruct images where there is a relatively small range of colors, such
as in the cup picture (middle). Finally, we note that our model tends to smooth regions with fine details, such as
the spots on the dog’s nose and ears (right).

3.5 Object and scene recognition

To explore the usefulness of the shapelet model for object and scene recognition, we compare it with other com-
petitive methods such as other stel model variants, and a SIFT-based framework. For object recognition, we
benchmark using the Caltech28 [2] and Caltech101 [13] datasets, and for scene recognition, we benchmark using
the AIHS dataset [11].

We first describe how we form image descriptors are formed from patch descriptors, and how we use these
image descriptors to perform object and scene recognition. We then describe the experimental protocol, and then
present performance results on Caltech28 , Caltech101 , and AIHS datasets.

3.5.1 Shapelet-based image descriptors

Before forming image descriptors for an image, we first form patch descriptors for each patch in the image using
the approach described in Section 3.3. Recall that we use two types of patch descriptors: shape descriptors and
color descriptors, represented by the S-dimensional approximate posterior over a given shapelet library, and a U-
dimensional color histogram, respectively. Although we could simply concatenate all patch descriptors together in
raster scan order, thus forming a J x S-dimensional shape descriptor, and a JJ x U-dimensional color descriptor,
that approach has severe drawbacks. First, the descriptors would be sensitive to small transformations such as
translations. For example, shifting a object in an image over by a few pixels could cause a permutation all the
entries in the image descriptor. Second, the descriptors could become very high-dimensional and may cause
working with certain kinds of classifiers computationally intractable. For example, if J = 2000, S = 201,
U = 125, which as will be discussed later are typical values for these parameters, the shape descriptor would be
2000 x 201 = 402, 000-dimensional, and the color descriptor would be 2000 x 125 = 250, 000-dimensional.
Such high-dimensional descriptors would make even simpler classifiers like K -nearest-neighbors difficult to use.

Because of the issues with concatenating patch descriptors in raster scan order outlined above, we follow the
approach of [12, 24]. Specifically, we spatially pool features using an image pyramid with three levels which
divide the image into 1 x 1, 2 x 2 and 4 X 4 non-overlapping blocks, leading to a total of 1 + 4 4 16 = 21 spatial

regions. To do the pooling, we use an averaging operator. Spatial pooling helps with increasing robustness to
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small translations since such translations in the input will not yield a different image descriptor; only translations
large enough to cause patches to land in a different image region will affect the pooled feature representation.
Also, since there are only 21 spatial regions instead of .J, as would be the case if all patch descriptors were
concatenated together, the dimensionality of the image descriptors is greatly reduced.

To make features gathered over all levels of the pyramid comparable, we normalize each type of descriptor
(shapelet and color) for each of the 21 regions to have unit length. The complete image representation consists of
21 x S descriptors of local shape, and 21 x U descriptors of local color, each of which are normalized to have

unit length. This completes the description of forming image descriptors from patch descriptors.

3.5.2 Shapelet-based classifier

We now discuss how to perform object and scene recognition given a set of image descriptors describing the
training set and a test image.

Given a shapelet library, learned using the algorithm described in Section 2, we first construct image construc-
tors for the training set using the method described in Section 3.5.1. Following this, we train a one-versus-all
SVM classifier [3], setting the soft-margin penalty to C' = 1 for each class. For the SVM kernel function, we use
a convex combination of two kernels- one kernel measures similarity in shape, and the other similarity in color.

Specifically, we use the kernel

K (@, &%) =wK, (&), #7) + (1 — w)K.(&, 72 3.1
where 72 € R is the shapelet descriptor and 72 € RY is the palette (color) descriptor for image A, K, measures
similarity between shapelet descriptors, /. measures similarity between palette descriptors, and w € [0..1] is the
weighting between the two. w controls the importance of shape similarity versus color similarity; w > 0.5
indicates a belief that shape is more discriminative for determining class (object or scene) membership, w < 0.5
indicates a belief that color is more discriminative, and w = 0.5 indicates a belief that shape and color are equally
discriminative.

There are many reasonable kernel functions to use for the similarity functions K and K, such as dot-product,
cosine angle, and Gaussian kernel with an appropriate bandwidth. The intersection kernel, defined as K (Z, §) =
wa min(x;,y;) where M is the dimensionality of both Z and % has been empirically successful in standard
baselines [12, 7] and is straightforward to compute. For these reasons, we have adopted the intersection kernel as

the similarity measure for both shape (K), and color (K ).

3.5.3 Baselines

We compare our shapelet model with other stel model variants, including the multi-level stel model [19], the Stel
Epitome model [20], and a patch-based version of the original stel model (the PIM model [10]) where possible.
Recall that the PIM model outlined in [10] operates on entire images, as opposed to patches. In order to provide
a fair basis of comparison with our patch-based shapelet framework, we modify the PIM model to operate as a
mixture model on patches. Specifically, we modify the PIM learning algorithm to learn a PIM mixture model for
patches by dividing an image into (possibly overlapping) patches, and treating each patch as a separate image.
We learn the parameters of the K PIMs, where K is the number of mixture components, using an EM algorithm

resembling that of the algorithm used to learn shapelets, and also infer a distribution over the K PIMs for each
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patch in a similar fashion to how the shapelet model infers a distribution over K shapelets. For classification,
we use the posterior distribution over stels for each patch as the local shape descriptor, and use a color histogram
to form the local color descriptor as described in 3.5.1. We then proceed proceed with spatial pooling and SVM
classification as outlined in 3.5.2. Note that from the SVM classifier’s perspective, the only difference between
our method and the PIM method is the shape descriptor. For all experiments involving our patch-based PIM model
variant, we use a patch size of 8 x 8 pixels, a stride of 2 pixels, and a library of 201 stels with each stel having
three regions. The size of the library and number of regions per stel were selected so that the library complexity
(number of free parameters) is comparable to the complexity of the shapelet model’s library. We will henceforth
refer to this PIM model variant as PB-MoPIM for “Patch-Based Mixture of PIMs” .

To compare with the multi-level stel model, we restate the results as published in [19] 2 on available datasets.

We also compare with the state-of-the-art method of using SIFT descriptors with vector quantization, and an
SVM classifier stage with the Spatial Pyramid Match kernel (SIFT+SPM) [12] for classification. This method
extracts SIFT features and performs vector quantization as outlined in Section 1.2, and employs the same spatial
pooling scheme as in the shapelet model, as described in Section 3.5.1. However, unlike the shapelet method,
the SIFT+SPM approach uses the spatial pyramid match kernel [7, 12], which is similar to the intersection kernel
except matches at finer levels of the image pyramid are up-weighted to reflect “more discriminative” matches.

We use our own implementation of the SIFT+SPM method as described in [12]. For all experiments, we use
a patch size of 16 x 16 pixels, and a stride of 4 pixels to extract SIFT descriptors. We use a visual dictionary
size of 201. For computational efficiency, we learn the codebook by selecting a random set of 100,000 SIFT
descriptors from the training set, and perform K — means on this set of descriptors to learn the visual dictionary.
In order to make a fair comparison, we also augment the SIFT+SPM method with color descriptors. We form the
local color descriptor in the same fashion as for the shapelet model, as described in 3.5.1, and use the similarity
metric defined by Eq. 3.1, where we replace the shapelet feature vector by the the descriptor of visual codewords

collected over a spatial pyramid.

3.5.4 Caltech101: Object recognition results

For each object class, we use 30 training examples and up to 30 testing examples. We use five different randomly
chosen train/test splits to obtain confidence intervals, and the splits are identical across the different methods. In
all experiments, we used RGB color images where possible, and for computational reasons, resized all images to
100 x 100 pixels. This mimics the experimental methodology of [12], except with image resizing. Note that, as
noted in Section 3.1.1, some classes contain as few as 31 examples per class, so a class may contain as few as
a single test instance, since the other 30 instances are used for training. The implication of this is that the class
distributions at train and test time are vastly different. This violates the pervasive assumption in machine learning,
from which SVMs originate, that the training and test data come from some common underlying distribution.
In view of this, we acknowledge that this experimental methodology is flawed, especially when coupled with an
SVM classifier, but we use this methodology regardless so that we may compare fairly with benchmark approaches
that have adopted this methodology.

To perform classification, we must set the weighting, w, between the shapelet and color similarities in Eq. 3.1.
We report results for the settings w = {0.5,1} which corresponds to classification with an equal weighting of
the shape and color descriptors, and classification using only shape descriptors. Although it is possible to cross-
validate the setting w on a per-class basis, which corresponds to a belief that the relative importance of shape and

color is class-dependent, we have found in practice the performance gain is negligible.

2we were unable to run their code on our partitions as the code is unavailable.
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Method Shape only | Shape + color
(w=1) (w = 0.5)

Shapelets 59.1%(0.5%) 63.4%(1.1%)

PB-MoPIM 59.77%(0.9%) | 63.5%(1.1%)

with R =3

SIFT+SPM? 58.3%(0.8%) 61.6%(1.0%)

Table 3.1: Caltech101 classification rates. The standard deviation of the estimated mean classification rate is
shown in brackets. Note that our model, when only shape descriptors are used, achieves comparable performance
to the baselines methods. However, when color is added, we slightly outperform the other methods.

For the shapelet model, we used 8 x 8 patches with a stride of 2our model, described in Sec. 2, assumes
non-overlapping patches, but the patch size and stride used for our experiments violates this assumption. We
ignore this violation for computational reasons, and to simplify the inference and learning algorithms., set G = 6
and U = 125, used a shapelet library having one single-region shapelet, 120 two-region shapelets, and 80 three-
region shapelets, and set A = 2. 8 x 8 patches are large enough to capture interesting local structure in 100 x 100
images while still being computational to handle. Our results are not sensitive to the settings of G and U’; setting
G = [3...8] and U = [64, 125, 216] yields no statistical difference in recognition rates.

The parameters for the baseline methods we have implemented, specifically the PB-MoPIM model and the
SIFT+SPM framework, are given in Section 3.5.3.

We report classification results for w = {0.5,1} in Table3.1 as the mean of the diagonal of the confusion
matrix.

Comparing with the SIFT+SPM approach, it is interesting to note that when ignoring color information and
classifying based on shapelet similarity alone (w = 1), we achieve comparable recognition rates to the SIFT+SPM
approach, but we outperform them when color information is included. This difference in performance is due
to our model’s explicit factorization of local shape information from local color information. Because of this
factorization, the shapelet model can make greater use of color information when it is provided. On the other
hand, SIFT descriptors, which are a function of image gradients within a patch, already incorporate a form of
color information and so do not gain as much when explicit color information is provided. In other words, color
is, in a sense, an orthogonal source of information when combined with our shapelet descriptors, while for the
SIFT+SPM approach, gradient statistics of color are already accounted for and so raw color does not constitute
an orthogonal source of information.

Comparing with the PB-MoPIM model, we note that our performance is competitive; the performance differ-
ence is not statistically significant. Examining the shape descriptor-only performance (w = 1), it is surprising that
PB-MoPIM achieves similar performance as the shapelet model. The PB-MoPIM model learns mainly simple
Gabor-like patterns (see Figure 3.4), while the shapelet model learns both simple and more complex patterns,
such as pie-wedges and curvatures (see Figure 3.4), which may be more discriminative patterns for recognizing
object classes. Unfortunately, the results for this dataset suggest that the complex patterns that the shapelet model
learns does not help in object recognition. There are a few possible reasons for this. First, the complex patterns
may be generic patterns that happen to occur for many classes (eg many classes contain curvature patterns) and
so are not actually discriminative. Also, it may be that the complex patterns are modelling common background
clutter, which again would not make them discriminative patterns. Lastly, since there is much more complexity
and variation in the kinds of local shapes learned by the shapelet model than by the PB-MoPIM model, more train-

ing examples may be needed by the SVM classifier to appropriately characterize the shapelet feature space. To

3We do not exactly reproduce the results reported by [12] of 64.6% using 30 training examples due to our image resizing
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Method Descriptor only | Descriptor with
(w=1) color (w = 0.5)

Shapelets 74.6%(0.4%) 83.1%(0.5%)

PB-MoPIM 74.2%(0.3%) 79.9%(0.3%)

with R =3

SIFT+SPM 75.4%(0.4%) 79.7%(0.4%)

Table 3.2: Caltech28 classification rates. The standard deviation of the estimated mean classification rate is shown
in brackets. Note that as with the Caltech101 results, our model, when only shape descriptors are used, achieves
comparable performance to the baselines methods. However, when color is added, we slightly outperform the
other methods.

investigate this possibility, we examine the effect of training set size on performance in Section 3.5.7. Finally, the
PB-MoPIM model and shapelet model appear equally effective at using additional color information (w = 0.5).

One question to ask is how useful color alone is for classification. Setting w = 0 so that only color is used as
the descriptor yields a classification rate of 27.6%(0.4%).

Finally, we ran our method on the same three train/test partitions the authors of the multi-resolution stel model
[19] used to evaluate their method. In this setting, 15 training and 15 test examples are used. Note that these
additional trials are not included in the set of trials reported in Table 3.1. The authors of [19] report a recognition
rate of 58.92%, while we achieve a recognition rate of 57.9%(0.6%) with a setting of w = 0.5 on these partitions,
showing that we have competitive performance on this dataset. It is also worth noting that the classifier used in
[19] is much more complex than our simple SVM classifier, and so it is unclear whether the multi-resolution stel
model’s superior performance is due to the model itself, or the classifier used. We also acknowledge that the
multi-resolution stel model could make use of local color information to boost performance®.

Overall, we note that our results are competitive with the standard stel model applied to patches as well as the
multi-resolution stel model. Additionally, our framework slightly underperforms against the SIFT+SPM approach
when only shape information is used, but slightly outperforms the SIFT+SPM approach when using both shape

and color information.

3.5.5 Caltech28: Object recognition results

We use the same train/test methodology as outlined in Section 3.5.4 for the Caltech101 dataset, except we use
10 different train/test partitions to get confidence intervals. We use the same model parameters for the shapelet
model, and all baselines methods.

We report classification results in Table 3.2 as the mean of the diagonal of the confusion matrix. As with the
Caltech101 results, our method outperforms the other methods whenever color information is available, but when
it is not available, the SIFT+SPM approach performs better. Using only local color information (eg setting w = 0)
yields a classification rate of 51.4%(0.4%).

As with the Caltech101 results, it is interesting to note again that when ignoring color information and clas-
sifying based on shapelet similarity alone (w = 1), we achieve comparable recognition rates to the SIFT+SPM
model approach, but outperform that approach when color information is included. This result again is due to our
model’s explicit factorization of shape and color.

Comparing with the PB-MoPIM model, we note that our performance is comparable when only shape infor-
mation is used (w = 1). This mirrors the results obtained on the Caltech101 dataset (see Section 3.1). However,

“4we could not use color histograms to boost the performance of [19] as the source code is unavailable
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unlike on the Caltech101 dataset, we outperform PB-MoPIM when color information is available (w = 0.5),
which is surprising since both models have similar mechanisms to perform the shape-color factorization. One
possibility is that since the PB-MoPIM model is able to choose palettes for each patch independently, it may be
prone to overfitting. That is, small changes in colors or light intensity in a patch may cause PB-MoPIM to select
an entirely different stel (or a different distribution over stels) to explain the local pattern in the patch. Because
of this, small appearance variations can greatly affect the way local shape is encoded and in this sense, the effects
of color and shape are not “cleanly” separated. On the other hand, the shapelet model must use a small number
of colors (G colors) to explain the coloring of the entire image, and so it is not as sensitive to small appearance
variations. Enforcing a set of G image colors, and having each patch select from these G colors to explain its
own appearance, can then be seen as enforcing kind of regularization of image appearance. Because of this albeit
unusual form regularization, the shapelet model may provide a more robust description of local color, which also
leads to a more robust description of local shape. Because of these more robust shape descriptions, the shapelet
model is better able to separate local color from shape and so, may benefit more from transitioning from using
shape-only information to shape + color information than the PB-MoPIM model. Alternatively, this may be an
instance of an algorithm (in this case, the shapelet model) being well-suited to the peculiarities of a particular
dataset.

The multi-resolution stel model as reported in [19] achieves a recognition rate of 78.1% on this dataset, but
their approach may benefit from using a color histogram’. Additionally, their performance numbers may change

if tested on our train/test splits.

It is instructive to look at the kinds of classification errors that the shapelet model makes when only shape
information is available, and when only color information is available. Having a factorized representation for
shape and color affords us the luxury to try to address this question. Fig. 3.6 shows the confusion matrix of
the shapelet model both with and without color information. First, color information is greatly helpful when a
class contains a characteristic set of colors. For example, the dolphin class typically contains a lot of blue, and
so color information proves to be greatly informative in distinguishing this class whereas shape information did
not prove to be totally effective. Note also that some class pairs that are not well disambiguated by shape alone,
like sunflowers and lotuses, are well distinguished when color information is also used. Also, the pair brain and
soccer ball classes are also similarly shaped (both somewhat round) and are often confused when only shape
information is used, but can be disambiguated when color information is provided. We note again that for such
classes, we receive such significant boost in classification rate by adding color information since the shapelet
model factorizes description of local shape from description of local color. However, this gain in classification
rate when adding color does not in occur all classes. For example, the ewer class has a lower classification rate
when color is added. This occurs since in the ewer images, the background, which is often a uniform color that is
different for each image, takes up a large portion of the image. Because of this, the color histograms capture color
information primarily about the uninformative background. To compound this difficulty, the cup class images
appears on similar kinds of backgrounds as the ewer images, and Fig. 3.6 shows that ewers and cups are confused
more often when color information is used. In general, adding color information helps to disambiguate classes
that are similarly shaped (eg sunflower vs. lotuses, brain vs. soccer ball, but can also cause similarly colored

classes to be confused (eg ewer vs. cup).

Swe could not use color histograms to boost the performance of [19] as the source code is unavailable
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Method Descriptor only | Descriptor with
(w=1) color (w = 0.5)

Shapelets 86.9%(0.5%) 91.9%(0.3%)

PB-MoPIM 87.6%(0.4%) 92.3%(0.6%)

with R =3

SIFT+SPM 93.6%(0.3%) 94.4%(0.5%)

Table 3.3: AIHS classification rates. The standard deviation of the estimated mean classification rate is shown in
brackets.

3.5.6 AIHS: Scene recognition results

We now report experimental results for scene recognition using the ATHS dataset described in Section 3.1.3.
For each scene category, we use 15 training examples and 15 testing examples. We use five different randomly
chosen train/test splits to obtain confidence intervals, and the splits are identical across the different methods.
In all experiments, we used RGB color images where possible, and kept the image to its original 48 x 64 pixel
resolution. This mimics the experimental methodology of [19].

We report classification results in Table 3.3 as the mean of the diagonal of the confusion matrix. Using only
local color information (eg setting w = 0) yields an extremely high classification rate of 90.1%(0.4%), and is
even competitive with the shapelet and PB-MoPIM models. Since color appears to be so discriminative for this
dataset, we believe that this dataset is not suitable for investigating the usefulness of shape-color factorization
for scene recognition. However, we benchmark on this method for sake of comparison with another stel-related
method [20].

Comparing with the SIFT+SPM approach, it is interesting to note that our method is significantly outper-
formed by the SIFT+SPM approach. Examining the results of Table 3.3, it can be seen that the SIFT+SPM shape
descriptors in particular constitute a much more powerful and robust scene representation than the shapelet model.
Although our approach may seem to benefit more from adding color information than the SIFT+SPM model for
this task, it is difficult to make such a conclusion since the SIFT+SPM model operates in a much lower test-error
regime than the shapelet model, and so performance improvements are inherently much harder to achieve. The
superior performance of the SIFT+SPM approach is not surprising as SIFT descriptors have been successfully
applied to scene recognition [12, 20] and appears especially suited to this task.

Comparing with the PB-MoPIM model, we note that our performance is comparable and the difference is not
statisically significant.

Unfortunately, the multi-resolution stel model as reported in [19] did not benchmark on this dataset and the
code is not public, and so we cannot report this method’s result on scene recognition.

Overall, the performance of both the shapelet model and the PB-MoPIM model are inferior to the SIFT+SPM
approach, and so it seems that the particular way in which the shapelet model and the PB-MoPIM model factorize
shape and color is not conducive to scene recognition. This is contrast to object recognition (see Sections 3.1,

3.2), in which our approach appears superior to the SIFT+SPM approach.

3.5.7 Performance with fewer training examples

Recently, there has been a drive in the vision community to the “big data” paradigm, which espouses the use of
lots training data, and so it has become important to understand how an algorithm’s performance scales with the
number of training examples. Recent datasets that attempt to bridge the gap between smaller datasets such as
Caltech101 , and “big data” include the Caltech256 [8] and Pascal VOC 2007 [6] datasets.
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In this section, we investigate the performance of the shapelet model and other benchmarks as the number of
training examples is varied on the Caltech28 , Caltech101 , and the ATHS datasets described in Sections 3.1.1-
3.1.3.

We first examine performance as a function of training examples on the Caltech101 dataset. We use a similar
train/test methodology as outline in Section 3.1.1, except we train using [5, 10, 15, 30] examples per class while
keeping the number of test examples per class at 30.

The graph of performance is given in Figure 3.7.

The first trend to note is that for all methods, performance appears to increase roughly as the log of the
number of examples per training class. This trend of logarithmically increasing performance with number of
training examples is characteristic of many recognition algorithms [7, 23, 26].

The second trend to note is that for all number of training examples per class tested, the shapelet model
performs comparably to the SIFT+SPM method when only shape information is used, and outperforms it when
when color information is added. This suggests that the shapelet model’s factorization of shape and color is
effective for any number of training examples used, as opposed to only in a “small data” or “big data” limit. Also,
the PB-MoPIM model and the shapelet model are comparable when using shape-only information and shape +
color information for all number of training examples per class tested.

The final trend to note is that adding color information benefits all methods, even the SIFT+SPM method
which does not explicitly factorize shape and color. This suggests that a trivial way for any method to gain
performance on this dataset- simply append a color histogram as an additional patch/image feature. However, the
usefulness of color as a patch/image feature in general is still an open question. Adding color information on the
Caltech101 dataset may only boost performance due to dataset bias, as described in Section 3.1.1.

Next, we examine performance as a function of training examples on the Caltech28 dataset. The graph of
performance is given in Figure 3.8.

First, as with the Caltech101 dataset results, the increase in performance is logarithmic in the number of
training examples per class. Similarily, the shapelet model again outperforms the SIFT+SPM when shape+color
information is used, but performs comparably when only shape information is used. Surprisingly, unlike the
Caltech101 results, the shapelet model appears to outperform the PB-MoPIM model when both shape and color
information is used for all number of training examples tested. As noted in 3.2, this is a surprising result and it
appears from Figure 3.8 that the shapelet model’s superior performance reported in Section 3.2 was not a fluke for
the number of training examples tested. The trend in Figure 3.8 shows that the shapelet model outperforms the
PIPB-MoPIMM model on all number of training examples tested, and suggests that the difference in performance
may further increase if the number of training examples per class was increased. Finally, adding color information
appears to help all methods on this dataset, as was the case for the Caltech101 dataset.

Lastly, we examine performance as a function of training examples on the AIHS dataset. The graph of perfor-
mance is given in Figure 3.9.

The performance curves for the AIHS dataset show similar trends as the curves for the Caltech101 and Cal-
tech28 datasets. The primary difference, however, is that the SIFT+SPM approach outperforms both the shapelet
model and the PB-MoPIM model for all number of training exampels per class tested. This suggests that the
SIFT+SPM approach is generally superior to the shapelet model, regardless of how much training data is pro-
vided.
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(a) Confusion matrix using only shapelet information
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(b) Confusion matrix using shapelet and color information with w = 0.5.

Figure 3.6: Confusion matrices for Caltech28 . Entry (4, j) is the percentage of the time class 7 was classified
as class j, averaged over 10 trials. For pairs of classes not disambiguated by local shape alone, such as the lotus
and sunflower classes, and classes where color is highly informative, such as the dolphin class (abundance of
blue), adding color information significantly improves performance. However, adding color information hurts
performance for a few classes, such as the ewer class. Performance increases are in green circles, and decreases
are in red rectangles.
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Caltech101: Performance vs. # training examples per class
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Figure 3.7: Training performance vs. number of training examples per class on the Caltech101 dataset. Note
that performance for all methods increases roughly logarithmically, the shapelet model with color outperforms
the SIFT+SPM when color information is added for all numbers of training examples tested, and adding color
information helps all methods. Also, the shapelet model performs similarily to the PB-MoPIM model on this
dataset.
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Caltech28: Performance vs. # training examples per class
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Figure 3.8: Training performance vs. number of training examples per class on the Caltech28 dataset. Note that
performance for all methods increases roughly logarithmically, the shapelet model with color outperforms both
the SIFT+SPM and PB-MoPIM models when color information is added for all numbers of training examples
tested, and adding color information helps all methods.
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AIHS: Performance vs. # training examples per class
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Figure 3.9: Training performance vs. number of training examples per class on the AIHS dataset. Note that
performance for all methods increases roughly logarithmically, the SIFT+SPM approach outperforms both the
shapelet and PB-MoPIM models when color information is added for all numbers of training examples tested,
and adding color information helps all methods.



Chapter 4

Conclusion

In this work, we present an extension of the stel model [10] to a patch-based framework, which we call the
‘shapelet model’. We introduce the notion of hierarchical palettes for describing the coloring of an image set,
images, and patches in an image. We demonstrate that our framework factorizes local shape from local color in the
form of shapelets and palettes, respectively. With such a factorization, object classification and scene recognition
can be performed using descriptors encoding shape and color information separately. We illustrate the kinds of
local shapes the shapelet model tends to learn, and show that these shapes tend to capture richer structures than a
patch-based mixture of PIMs. Also, we show that our model is competitive on the object recognition datasets of

Caltech28 , Caltech101 , and the scene recognition dataset AIHS against several baselines.

38



Bibliography

[1] Matthew Brown and David G. Lowe. Automatic panoramic image stitching using invariant features. Inter-
national Journal of Computer Vision, 74(1):59-73, 2007.

[2] L. Cao and L. Fei-Fei. Spatially coherent latent topic model for concurrent object segmentation and classi-
fication. In ICCV, 2007.

[3] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2:27:1-27:27, 201 1.

[4] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In CVPR (1), pages
886-893, 2005.

[5] Seyed Mohammadali Eslami and Christopher Williams. Factored shapes and appearances for parts-based
object understanding. In BMVC, 2011.

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[7] Kristen Grauman and Trevor Darrell. The pyramid match kernel: Discriminative classification with sets of
image features. In In ICCV, pages 1458-1465, 2005.

[8] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical Report 7694, California
Institute of Technology, 2007.

[9] N. Jojic, A. Perina, M. Cristani, V. Murino, and B. J. Frey. Stel component analysis: Modeling spatial
correlations in image class structure. In CVPR, pages 2044-2051, 2009.

[10] Nebojsa Jojic and Yaron Caspi. Capturing image structure with probabilistic index maps. In CVPR, 2004.

[11] Nebojsa Jojic, Alessandro Perina, and Vittorio Murino. Structural epitome: a way to summarize one’s visual
experience. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances
in Neural Information Processing Systems 23, pages 1027-1035. 2010.

[12] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial pyramid matching
for recognizing natural scene categories. In CVPR, 2006.

[13] Fei-Fei Li, Robert Fergus, and Pietro Perona. Learning generative visual models from few training ex-
amples: An incremental Bayesian approach tested on 101 object categories. Computer Vision and Image
Understanding, 106(1), 2007.

39



BIBLIOGRAPHY 40

[14] David Lowe. Object recognition from local scale-invariant features. In Proceedings of ICCV, 1999.

[15] D. Marr. Vision: A computational investigation into human representation and processing of visual infor-

mation. W. H. Freeman and Company, San Franciso, 1982.

[16] Radford Neal and Geoffrey E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and
other variants. In Learning in Graphical Models, pages 355-368. Kluwer Academic Publishers, 1998.

[17] Aude Oliva and Antonio Torralba. Building the gist of a scene: the role of global image features in recogni-

tion. In Progress in Brain Research, 2006.

[18] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse
code for natural images. Nature, 381(6583):607—609, June 1996.

[19] Alessandro Perina, Nebojsa Jojic, Umberto Castellani, Marco Cristani, and Vittorio Murino. Object recog-
nition with hierarchical stel models. In ECCV (6), 2010.

[20] Alessandro Perina, Nebojsa Jojic, and Vittorio Murino. Structural epitome: a way to summarize one’s visual
input. In NIPS, 2010.

[21] MarcAurelio Ranzato and Geoffrey E. Hinton. Modeling pixel means and covariances using factorized
third-order Boltzmann machines. JMLR, 7:2369-2397, 2003.

[22] Eero P. Simoncelli and William T. Freeman. The steerable pyramid: A flexible architecture for multi-
scale derivative computation. In Proc 2nd IEEE Int’l Conf on Image Proc, volume III, pages 444-447,
Washington, DC, Oct 23-26 1995. IEEE Sig Proc Society.

[23] Gang Wang and Ye Zhang Li Fei-fei. Using dependent regions for object categorization in a generative
framework. In CVPR, pages 1597-1604. IEEE Computer Society, 2006.

[24] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear spatial pyramid matching using sparse
coding for image classification. In CVPR, 2009.

[25] Matthew D. Zeiler, Graham W. Taylor, and Rob Fergus. Adaptive deconvolutional networks for mid and
high level feature learning. In ICCV, 2011.

[26] Hao Zhang, Alexander C. Berg, Michael Maire, and Jitendra Malik. Svm-knn: Discriminative nearest
neighbor classification for visual category recognition. In In CVPR, pages 21262136, 2006.

[27] Huiyu Zhou, Yuan Yuan, and Chunmei Shi. Object tracking using sift features and mean shift. Computer
Vision and Image Understanding, 113(3):345-352, 20009.



