Sparse coding with shapelet dictionaries

Jeroen Chua, Brendan Frey University of Toronto Snowbird Learning Workshop 2012

• In this work, we look at object recognition

• In this work, we look at object recognition

• Shape important, colour less important

• In this work, we look at object recognition

 Shape important, colour less important

Shape less important, colour important

• In this work, we look at object recognition

 Shape important, colour less important

 Shape less important, colour important

• Shape important, colour important

Patch-based object recognition

 Typical approach in vision for patch-based object recognition:

 Our goal is to learn an image representation (image features) that captures local shape and colour information separately

Patch-based object recognition

 Typical approach in vision for patch-based object recognition:

 Our goal is to learn an image representation (image features) that captures local shape and colour information separately

Forming image features: sparse coding

 Sparse coding on image patches is a popular approach in vision, but often conflates shape and colour

Forming image features: sparse coding

 Sparse coding on image patches is a popular approach in vision, but often conflates shape and colour

Forming image features: sparse coding

 Sparse coding on image patches is a popular approach in vision, but often conflates shape and colour

Forming image features: shapelet models

- Shapelet models are probabilistic generative models that factorize local structure and colour
 - Patch-based model
 - Define a dictionary (visual codewords) of probabilistic groupings of pixels that tend to co-occur in colour

Forming image features: shapelet models

- Shapelet models are probabilistic generative models that factorize local structure and colour
 - Patch-based model
 - Define a dictionary (visual codewords) of probabilistic groupings of pixels that tend to co-occur in colour

Forming image features: shapelet models

- Shapelet models are probabilistic generative models that factorize local structure and colour
 - Patch-based model
 - Define a dictionary (visual codewords) of probabilistic groupings of pixels that tend to co-occur in colour

Note: RGB colors denote different groups, not pixel colors.

Dictionary of shapelets

Note: RGB colors denote different groups, not pixel colors.

Dictionary of shapelets

Image

Note: RGB colors denote different groups, not pixel colors.

Dictionary of shapelets

Note: RGB colors denote different groups, not pixel colors.

Note: RGB colors denote different groups, not pixel colors.

Note: RGB colors denote different groups, not pixel colors.

Note: RGB colors denote different groups, not pixel colors.

Image

Note: RGB colors denote different groups, not pixel colors.

Image

Related shapelet work

- 1. Chua et al., "Learning Structural Element Patch Models with Hierarchical Palettes", CVPR 2012
 - Patch-based shapelets, non-sparse image representation

This work: patch-based shapelet models with sparse image representations

Combining sparse coding and shapelets

 To encode an image patch given a dictionary, D, sparse coding using the lasso solves:

$$\arg\min_{\vec{\alpha}_j} \|\vec{x}_j - \mathbf{D}\vec{\alpha}_j\|_2^2 + \lambda \|\vec{\alpha}_j\|_1$$

- D: visual dictionary
- $\vec{\alpha}_j$: sparse representation for patch j
- λ : codeword penalty

Combining sparse coding and shapelets

 Idea: Before encoding an image patch, first allow the dictionary to be transformed to account for colouring. Find:

$$\arg\min_{\vec{\alpha_j}, T_j \in \tau} \|\vec{x_j} - T_j(\mathbf{D}, \vec{x_j}) \vec{\alpha_j}\|_2^2 + \lambda \|\vec{\alpha_j}\|_1$$

- D: shapelet dictionary
- $\vec{\alpha}_j$: sparse shape representation for patch j
- λ : codeword penalty
- $T_j(\mathbf{D}, \vec{x}_j)$: "coloured in" shapelet dictionary for patch j

Combining sparse coding and shapelets

 Idea: Before encoding an image patch, first allow the dictionary to be transformed to account for colouring. Find:

$$\arg\min_{\vec{\alpha_j}, T_j \in \tau} \|\vec{x_j} - T_j(\mathbf{D}, \vec{x_j})\vec{\alpha_j}\|_2^2 + \sum_k \lambda_k |\alpha_{j,k}|$$

- D: shapelet dictionary
- $\vec{\alpha}_i$: sparse shape representation for patch j
- λ_k : penalty for shapelet k
- $T_j(\mathbf{D}, \vec{x}_j)$: "coloured in" shapelet dictionary for patch j

Patch encoding

$$\arg\min_{\vec{\alpha_j}, T_j \in \tau} \|\vec{x_j} - T_j(\mathbf{D}, \vec{x_j})\vec{\alpha_j}\|_2^2 + \sum_k \lambda_k |\alpha_{j,k}|$$

- Patch encoding is done by first estimating T_j , then fixing T_j and finding $\vec{\alpha}_j$.
 - Given T_j , estimating $\vec{\alpha}_j$ is a standard sparse coding problem.

Image representation

• After inferring coloured in dictionary, $T_j(\mathbf{D}, \vec{x}_j)$, sparse coefficients found by solving:

$$\arg\min_{\vec{\alpha_j}} \|\vec{x_j} - T_j(\mathbf{D}, \vec{x_j})\vec{\alpha_j}\|_2^2 + \sum_k \lambda_k |\alpha_{j,k}|$$

- $\vec{\alpha}_j$ represents **local shape** information
- For **local colour** information, we compute a histogram of colours, $\vec{c_j}$, over the patch.

Classification

Average pooling over three levels of spatial

pyramid

 SVM classifier with weighted similarity of shape and color:

$$K(\vec{x}_1, \vec{x}_2) = w \cdot K^{shape}(\vec{x}_1^{shape}, \vec{x}_2^{shape}) + (1 - w) \cdot K^{colour}(\vec{x}_1^{colour}, \vec{x}_2^{colour})$$

• We use the intersection kernel, and w = 0.5

In short: infer shape and colour descriptors for images, compute similarity score, pass to SVM

Experiments

- Datasets:
 - Caltech101 [1]
 - 15-scenes [2]
- Dictionary learning:
 - Learn a dictionary of shapelets unsupervised using EM
- Feature extraction:
 - For each image patch, infer :
 - $\vec{\alpha}_j$: local structure
 - \vec{c}_j : local **colour**

[1] L. Fei-Fei, R. Fergus and P. Perona. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. CVPR 2004.
[2] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. CVPR, 2006

Results: Caltech 101

Method	Descriptor, no Colour	Descriptor + Colour Histogram
Shapelet model [1]	56.7(0.2)	59.1(1.8)
Sparse coding	59.1(1.6)	54.1(1.7)
Shapelet model + Sparse coding	62.6(0.9)	65.5(1.0)

- Colour images resized to 100 x 100
- 8x8 patches, stride of 2 pixels
- 201 shapelet dictionary, 125-bin colour descriptor
- 30 training examples

[1] Chua et al., "Learning Structural Element Patch Models with Hierarchical Palettes", CVPR 2012

Results: Caltech 101 Effect of # of codewords

Results: 15-scenes

Method	Descriptor, no Colour	Descriptor + Colour Histogram
Shapelet model [1]	62.2(1.3)	63.4(0.2)
Sparse coding	71.2(1.1)	68.78(0.83)
Shapelet model + Sparse coding	66.8(0.9)	70.2(0.5)

- Grayscale images resized to 100 x 100
- 8x8 patches, stride of 2 pixels
- 201 shapelet dictionary, 125-bin colour descriptor
- 100 training examples

[1] Chua et al., "Learning Structural Element Patch Models with Hierarchical Palettes", CVPR 2012

Future Work

- Factorization of other appearance factors
 - Material type, texture
- For a particular object class, which is more important (and by how much): shape or colour? How should we measure similarity in shape and colour?

Conclusion

- Introduced shape-colour factorization for sparse coding on image patches, using shapelet models
- Encouraging results on Caltech101 (where colour information is available)

The End

Thanks! Questions?

Acknowledgements: Inmar Givoni (Toronto) and Prof. Ryan Adams (Harvard) for helpful discussions