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Patch-based object recognition

 Typical approach in vision for patch-based
object recognition:

Image feature Pooled features Classifier
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Forming image features:
sparse coding

. Sparse coding on image patches is a popular
approach in vision, but often conflates shape and
colour
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Forming image features:

shapelet models

« Shapelet models are probabilistic generative
models that factorize local structure and colour

« Patch-based model

« Define a dictionary (visual codewords) of probabilistic
groupings of pixels that tend to co-occur in colour

Visualization of dictionary:

P(group = 1) x.+ P(group = 2) x.+ P(group = 3) x.
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Shapelet dictionary

Dictionary elements (codewords) define groups of
pixels that co-occur in colour without specifying what
that colour should be.
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Related shapelet work

1. Chua et al., “Learning Structural Element Patch Models
with Hierarchical Palettes”, CVPR 2012

. Patch-based shapelets, non-sparse image
representation

This work: patch-based shapelet
models with sparse image
representations



Combining sparse coding and
shapelets

« 10 encode an image patch given a dictionary,D,
sparse coding using the lasso solves:

arg min ||7; — DrTj-H% + A

Y j

(V; ‘ ‘ 1

. D : visual dictionary
. (V; : sparse representation for patch j
. A :codeword penalty



Combining sparse coding and
shapelets

. ldea: Before encoding an image patch, first allow the

dictionary to be transformed to account for colouring.
Find:
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. D : shapelet dictionary
. (V; : sparse shape representation for patch |
. A : codeword penalty

. 1;(D, 7;): “coloured in” shapelet dictionary for patch |



Combining sparse coding and
shapelets

. ldea: Before encoding an image patch, first allow the
dictionary to be transformed to account for colouring.
Find:
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. D : shapelet dictionary

. (V; : sparse shape representation for patch |

. A\;: penalty for shapelet k

. 15(D.7;): “coloured in” shapelet dictionary for patch |



Patch encoding

arg min |7, — 7;(D rlj“2+2f\g‘fl
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. Patch encoding is done by first estimating /;, then
fixing 7 and finding ; .

. Given 1}, estimating; is a standard sparse
coding problem.



Inferring patch-specific appearance

. 1;(D.7;)found by minimizing reconstruction error
between each “coloured in” shapelet, and the
image patch,.F:;.-.
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Inferring patch-specific appearance

. 1;(D.7;)found by minimizing reconstruction error
between each “coloured in” shapelet, and the
image patch,.7;.
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Image representation

. After inferring coloured in dictionary,7;(D. 7;),
sparse coefficients found by solving:

arg min ||x; — 15(D “;HEJFZ*’M‘“
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&'; represents local shape information

« For local colour information, we compute a
histogram of colours,c; , over the patch.



Classification

« Average pooling over three levels of spatial
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« SVM classifier with weighted similarity of shape
and color:
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« We use the intersection kernel, and w = 0.5

In short: infer shape and colour descriptors for
images, compute similarity score, pass to SVM



Experiments
« Datasets:

» Caltech101 [1]
« 15-scenes [Z]
« Dictionary learning:

. Learn a dictionary of shapelets unsupervised using EM

. Feature extraction:
« For each image patch, infer :

. (' : local structure

e

« “i :local colour

[1] L. Fei-Fei, R. Fergus and P. Perona. Learning generative visual models from few training
examples: an incremental Bayesian approach tested on 101 object categories. CVPR 2004.
[2] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond Bags of Features: Spatial
Pyramid Matching for Recognizing Natural Scene Categories. CVPR, 2006



Results: Caltech 101

Descriptor, | Descriptor + Colour
no Colour |Histogram

Shapelet model [1] 56.7(0.2) 59.1(1.8)
Sparse coding 59.1(1.6) 54.1(1.7)

Shapelet model + 62.6(0.9) 65.5(1.0)
Sparse coding

« Colour images resized to 100 x 100

. 8x8 patches, stride of 2 pixels

. 201 shapelet dictionary, 125-bin colour descriptor
« 30 training examples

[1] Chua et al., “Learning Structural Element Patch Models with Hierarchical Palettes”,
CVPR 2012



Results: Caltech 101
Effect of # of codewords
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Results: 15-scenes

Descriptor, | Descriptor + Colour
no Colour |Histogram

Shapelet model [1] 62.2(1.3) 63.4(0.2)
Sparse coding 71.2(1.1) 68.78(0.83)

Shapelet model + 66.8(0.9) 70.2(0.5)
Sparse coding

. Grayscale images resized to 100 x 100
. 8x8 patches, stride of 2 pixels
« 201 shapelet dictionary, 125-bin colour descriptor

« 100 training examples

[1] Chua et al., “Learning Structural Element Patch Models with Hierarchical Palettes”,
CVPR 2012



Future Work

« Factorization of other appearance factors
« Material type, texture

« For a particular object class, which is more
important (and by how much): shape or colour?
How should we measure similarity in shape and
colour?



Conclusion

« Introduced shape-colour factorization for sparse
coding on image patches, using shapelet models

« Encouraging results on Caltech101 (where colour
information is available)



The End

Thanks! Questions?
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