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Forming image features:
shapelet models

 Shapelet models are probabilistic generative 
models that factorize local structure and colour

 Patch-based model

 Define a dictionary (visual codewords) of probabilistic 
groupings of pixels that tend to co-occur in colour

P(group = 1) x +  P(group = 2) x +  P(group = 3) x

Visualization of dictionary:

… …



Generative shapelet model



Generative shapelet model
Note: RGB colors denote different groups, not pixel colors.  

…
Dictionary of shapelets

…
k=1 k=K



Image

Generative shapelet model
Note: RGB colors denote different groups, not pixel colors.  

…
Dictionary of shapelets

…
k=1 k=K



Image

Generative shapelet model
Note: RGB colors denote different groups, not pixel colors.  

…
Dictionary of shapelets

…
k=1 k=K



Image

Generative shapelet model

p(k)

k=1

Sample a 
shapelet index

Note: RGB colors denote different groups, not pixel colors.  

k=1 k=K

…
Dictionary of shapelets

…



Sample a group 
index for each 
pixel

Image

Generative shapelet model

p(k)
Sample a 
shapelet index

3

2

1

Note: RGB colors denote different groups, not pixel colors.  

…
Dictionary of shapelets

…

k=1

k=1 k=K



Image

Generative shapelet model

p(k)

Patch-specific palette

Color 1
Color 2
Color 3

Sample a 
shapelet index

Sample a group 
index for each 
pixel

3

2

1

Note: RGB colors denote different groups, not pixel colors.  

…
Dictionary of shapelets

…

k=1

k=1 k=K



Paint patch

Image

Generative shapelet model

p(k)

Patch-specific palette

Color 1
Color 2
Color 3

Sample a 
shapelet index

Sample a group 
index for each 
pixel

3

2

1

Note: RGB colors denote different groups, not pixel colors.  

…
Dictionary of shapelets

…

k=1

k=1 k=K



Image

Generative shapelet model

p(k)
Sample a 
shapelet index

Patch-specific palette

Color 1
Color 2
Color 3

Note: RGB colors denote different groups, not pixel colors.  

…
Dictionary of shapelets

…

k=3

k=1 k=K



Image

Generative shapelet model

p(k)

Note: RGB colors denote different groups, not pixel colors.  

…
Dictionary of shapelets

…
k=1 k=K



Shapelet dictionary

Dictionary elements (codewords) define groups of 
pixels that co-occur in colour without specifying what 
that colour should be.



Shapelet dictionary

Dictionary elements (codewords) define groups of 
pixels that co-occur in colour without specifying what 
that colour should be.



Shapelet dictionary

Dictionary elements (codewords) define groups of 
pixels that co-occur in colour without specifying what 
that colour should be.



Shapelet dictionary

Dictionary elements (codewords) define groups of 
pixels that co-occur in colour without specifying what 
that colour should be.



Related shapelet work

1. Chua et al., “Learning Structural Element Patch Models 
with Hierarchical Palettes”, CVPR 2012

 Patch-based shapelets, non-sparse image 
representation

This work: patch-based shapelet
models with sparse image 

representations



 : visual dictionary

 : sparse representation for patch j

 : codeword penalty

Combining sparse coding and 
shapelets
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sparse coding using the lasso solves:   
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 : shapelet dictionary

 : sparse shape representation for patch j

 : penalty for shapelet k

 : “coloured in” shapelet dictionary for patch j

Combining sparse coding and 
shapelets

 Idea: Before encoding an image patch, first allow the 
dictionary to be transformed to account for colouring. 
Find:



 Patch encoding is done by first estimating     , then 
fixing     and finding     .

 Given     , estimating     is a standard sparse 
coding problem.

Patch encoding
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 ,             found by minimizing reconstruction error 
between each “coloured in” shapelet, and the 
image patch,    .



 After inferring coloured in dictionary,              , 
sparse coefficients found by solving:

 .   represents local shape information

 For local colour information, we compute a 
histogram of colours,    , over the patch. 

Image representation



Classification

 Average pooling over three levels of spatial 
pyramid

 SVM classifier with weighted similarity of shape 
and color:

 We use the intersection kernel, and w = 0.5

In short: infer shape and colour descriptors for 
images, compute similarity score, pass to SVM  



 Datasets:

 Caltech101 [1]

 15-scenes [2]

 Dictionary learning:

 Learn a dictionary of shapelets unsupervised using EM

 Feature extraction:

 For each image patch, infer :

 : local structure

 .   : local colour

Experiments

[1] L. Fei-Fei, R. Fergus and P. Perona. Learning generative visual models from few training 
examples: an incremental Bayesian approach tested on 101 object categories. CVPR 2004.
[2] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond Bags of Features: Spatial 
Pyramid Matching for Recognizing Natural Scene Categories. CVPR, 2006



Results: Caltech 101

Method Descriptor, 
no Colour

Descriptor + Colour
Histogram

Shapelet model [1] 56.7(0.2) 59.1(1.8)

Sparse coding 59.1(1.6) 54.1(1.7)

Shapelet model + 
Sparse coding 

62.6(0.9) 65.5(1.0)

[1] Chua et al., “Learning Structural Element Patch Models with Hierarchical Palettes”, 
CVPR 2012

 Colour images resized to 100 x 100

 8x8 patches, stride of 2 pixels

 201 shapelet dictionary, 125-bin colour descriptor

 30 training examples



Results: Caltech 101
Effect of # of codewords

Our methods



Results: 15-scenes

Method Descriptor, 
no Colour

Descriptor + Colour
Histogram

Shapelet model [1] 62.2(1.3) 63.4(0.2)

Sparse coding 71.2(1.1) 68.78(0.83)

Shapelet model + 
Sparse coding 

66.8(0.9) 70.2(0.5)

[1] Chua et al., “Learning Structural Element Patch Models with Hierarchical Palettes”, 
CVPR 2012

 Grayscale images resized to 100 x 100

 8x8 patches, stride of 2 pixels

 201 shapelet dictionary, 125-bin colour descriptor

 100 training examples



Future Work

 Factorization of other appearance factors

 Material type, texture

 For a particular object class, which is more 
important (and by how much): shape or colour? 
How should we measure similarity in shape and 
colour?



Conclusion

 Introduced shape-colour factorization for sparse 
coding on image patches, using shapelet models

 Encouraging results on Caltech101 (where colour 
information is available)



The End
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Thanks! Questions?


