Probabilistic Scene Grammars: A General-Purpose Framework for Scene Understanding

Jeroen Chua Advisor: Pedro Felzenszwalb

Why a general-purpose framework?

- Improvements can boost performance on many scene understanding tasks simultaneously
- Less engineering/research work for future scene understanding tasks
- Scene understanding tasks inform each other
- Scientifically interesting: can all (most) of scene understanding be understood as the same fundamental problem?

This thesis

- Motivation for a general scene understanding framework
- Background/related work
- Representation for general scene understanding tasks
- Efficient approximate inference algorithm
 - Notes on other possible inference algorithms
 - **Connections** to related work
- Learning algorithm to estimate model parameters
 - Experimental evaluation
- Extensions for larger/more complex tasks
 - **Directions** for future research

This talk

- Motivation for a general scene understanding framework
- Background/related work
- **Representation** for general scene understanding tasks
- Efficient approximate inference algorithm
- Notes on other possible inference algorithms
- Connections to related work
- Learning algorithm to estimate model parameters
- Experimental evaluation
- Extensions for larger/more complex tasks
- **Directions** for future research

This talk

- Motivation for a general scene understanding framework
- Background/related work
 - **Representation** for general scene understanding tasks
 - Efficient approximate inference algorithm
 - Learning algorithm to estimate model parameters
 - Experimental evaluation
 - Extensions for larger/more complex tasks
 - **Directions** for future research

Contextual information is often useful

Context helps for ____

Context helps for **object recognition**

Context helps for **object recognition**

Context helps for contour detection

Context helps for image segmentation

Related work

- Contextual information
 - Oliva and Torralba[1,2], Efros [3]
 - Empirical studies [4]
 - Gestalt Theory [5]
- Motivation
 - Probabilistic Programming Languages [6,7,8]
- [1] "Modelling the shape of the scene: a holistic representation of the spatial envelope", IJCV 2001
- [2] "The role of context in object recognition", Trends in Cognitive Sciences, 2007
- [3] "Unsupervised visual representation learning by context prediction", ICCV 2015
- [4] "An empirical study of context in object detection", CVPR 2009
- [5] Vision science: Photons to phenomenology, volume 1. MIT press, 1999

- Modelling
 - Pictorial Structures [8]
 - DPM [9]
 - "Markov backbone" model [10]
- Probabilistic inference for compositional models
 - Markov-chain Monte Carlo
 - Heuristics

[6] "Picture: A probabilistic programming language for scene perception", CVPR 2015

[7] "Edward: A library for probabilistic modeling, inference, and criticism", arXiv 2016

[8] "The design and Implementation of Probabilisitic Programming Languages", <u>http://dippl.org</u> 2014

- [9] "Pictorial Structures for object recognition", IJCV 2005
- [10] "Object detection with grammar models", NIPS 2011
- [11] "Context and hierarchy in a probabilistic image model", CVPR 2006

This talk

- Motivation for a general scene understanding framework
- Background/related work
 - **Representation** for general scene understanding tasks
 - Efficient approximate inference algorithm
 - Learning algorithm to estimate model parameters
 - Experimental evaluation
 - Extensions for larger/more complex tasks
 - **Directions** for future research

This talk

- Motivation for a general scene understanding framework
- Background/related work
- PSG
 Representation for general scene understanding tasks
 Efficient approximate inference algorithm
 Learning algorithm to estimate model parameters
 - - Experimental evaluation
 - **Extensions** for larger/more complex tasks
 - **Directions** for future research

The Probabilistic Scene Grammar Framework

The Probabilistic Scene Grammar Framework

Probabilistic Scene Grammars

- Context-free stochastic grammar
 - Symbols, eg. {Face, eye, conversation}
 - Pose space, eg. {location, orientation, scale}
 - Production rules, eg. Face →{Eye,Eye,Nose,Mouth}
 - Production rule probabilities
- Geometric relationships between objects/parts
- "Self-rooting" parameter

Rule	P(rule)	Spatial distribution
		type

Rule	P(rule)	Spatial distribution
		type

Rule	P(rule)	Spatial distribution
		type

Rule	P(rule)	Spatial distribution
		type

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform

Rule	P(rule)	Spatial distribution type
F →E ,E,N,M	1.0	Uniform

Rule	P(rule)	Spatial distribution type
F →E ,E,N,M	1.0	Uniform

Rule	P(rule)	Spatial distribution type
F →E ,E,N,M	1.0	Uniform

Rule	P(rule)	Spatial distribution type
F→E, <mark>E</mark> ,N,M	1.0	Uniform

Rule	P(rule)	Spatial distribution type
F→E, <mark>E</mark> ,N,M	1.0	Uniform

Rule	P(rule)	Spatial distribution type
F→E,E, <mark>N</mark> ,M	1.0	Uniform

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform
E→L	0.5	
E→Ø	0.5	-

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform
E→L	0.5	
E→Ø	0.5	-

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform
E→L	0.5	
E→Ø	0.5	-

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform
E→L	0.5	
E→Ø	0.5	-

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform
E→L	0.5	
E→Ø	0.5	-

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform
E→L	0.5	
E→Ø	0.5	-

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform
E→L	0.5	
E→Ø	0.5	-

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform
E→L	0.5	
E→Ø	0.5	-

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform
E→L	0.5	Indep. Bernoullis, 50%
E→Ø	0.5	-

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform
E→L	0.5	Indep. Bernoullis, 50%
E→Ø	0.5	-

Rule	P(rule)	Spatial distribution type
F→E,E,N,M	1.0	Uniform
E→L	0.5	Indep. Bernoullis, 50%
E→Ø	0.5	-
N→Ø	1.0	-
M→Ø	1.0	-
L→Ø	1.0	-

Generative example: Faces

Symbols: Face (F), eye (E), nose (N), mouth (M), eyelashes (L)

Generative example: Faces

Symbols: Face (F), eye (E), nose (N), mouth (M), eyelashes (L)

Probabilistic Scene Grammar Specification

Face localization grammar

Contour detection grammar

$\Sigma = \{ FACE, EYE, NOSE, MOUTH \}.$	$\Sigma = \{CURVE, INK\}.$
$\forall A \in \Sigma, \ \Omega_A = [N] \times [M].$	$\Omega_{CURVE} = [N] \times [M] \times [8].$
Rules:	$\Omega_{INK} = [N] \times [M].$
1.0, (FACE, ω) \rightarrow (EYE, UniformRect($\omega + a_1, \omega + b_1$)),	Rules:
$(EYE, \mathrm{UniformRect}(\omega + a_2, \omega + b_2)),$	$0.65, (CURVE, (x, y, \theta)) \rightarrow (INK, \delta((x, y))), (CURVE, \delta(((x, y) + \operatorname{Round}(T_{\theta}(1, 0)), \theta)))$
(NOSE, UniformRect $(\omega + a_3, \omega + b_3)$),	$0.10, (CURVE, (x, y, \theta)) \rightarrow (INK, \delta((x, y))), (CURVE, \delta(((x, y) + \operatorname{Round}(T_{\theta}(1, -1)), \theta)))$
$(MOUTH, UniformRect(\omega + a_4, \omega + b_4))$	$0.10, (CURVE, (x, y, \theta)) \rightarrow (INK, \delta((x, y))), (CURVE, \delta(((x, y) + \operatorname{Round}(T_{\theta}(1, +1)), \theta)))$
1.0, $(EYE, \omega) \longrightarrow \emptyset$	$0.05, (CURVE, (x, y, \theta)) \rightarrow (CURVE, \delta((x, y, \theta + 1)))$
1.0, $(NOSE, \omega) \rightarrow \emptyset$	$0.05, (CURVE, (x, y, \theta)) \rightarrow (CURVE, \delta((x, y, \theta - 1)))$
1.0, $(MOUTH, \omega) \rightarrow \emptyset$	$0.05, (CURVE, (x, y, \theta)) \rightarrow (INK, \delta((x, y))),$
$\epsilon_{FACE} = 10^{-4},$	1.00, $(INK, (x, y)) \longrightarrow \emptyset$
$\epsilon_{\rm EYE} = \epsilon_{\rm NOSE} = \epsilon_{\rm MOUTH} = 10^{-5}.$	$\epsilon_{\rm CURVE} = \epsilon_{\rm INK} = 10^{-4}.$

Binary image segmentation grammar

$\Sigma = \{SEED, FG\}.$
$\Omega_{SEED} = [1] \times [1].$
$\Omega_{FG} = [N] \times [M].$
Rules:
1.0, (SEED, ω) \rightarrow (FG, UniformRect((1, 1), (N, M)))
1.0, $(FG, \omega) \rightarrow (FG, \mathrm{UniformBern}(\mathrm{Rect}(\omega - (1, 1), \omega + (1, 1)) \setminus \omega, 0.25))$
$\epsilon_{SEED} = 1$,
$\epsilon_{FG} = 0.$

Probabilistic Scene Grammar Samples

Face localization grammar

Contour detection grammar

Binary image segmentation grammar

The Probabilistic Scene Grammar Framework

Factor Graphs

Encodes a distribution over random variables

Three types of distributions: 1) Categorical

Which child to choose ?

Which production rule?

E→L	0.5	-
E→Ø	0.5	-

Three types of distributions: 2) Independent Bernoullis

Three types of distributions: 2) Independent Bernoullis

Which children to choose ?

Three types of distributions: 3) Leaky-or

Three types of distributions: 3) Leaky-or

Object present?

Three types of distributions: 3) Leaky-or

Object present?

Binary random variables: Factors:

Connections with super-parts

Binary random variables: X: Presence/absence of object

Factors: f¹: Leaky-or factor

Framework: As a Factor Graph **Connections** with subparts Connections with super-parts **_**3 **Binary random variables: Factors:** f¹: Leaky-or factor X: Presence/absence of object f²: Selection factor R_i: Choose rule i f³: Bernoullis factor C_i: Create child j

- Symbols: Face, Eye, Eyelashes
- 1D pose spaces
- Spatial neighbourhoods:
 - Face(y) \rightarrow Eye(y'), y' = {y-1,y,y+1}
 - Eye(y) \rightarrow EyeLashes(y'), y' = {y-1,y,y+1}

- Symbols: Face, Eye, Eyelashes
- 1D pose spaces
- Spatial neighbourhoods:
 - Face(y) \rightarrow Eye(y'), y' = {y-1,y,y+1}
 - Eye(y) \rightarrow EyeLashes(y'), y' = {y-1,y,y+1}

The Probabilistic Scene Grammar Framework

Approximate Inference

- Given an image, what objects are in the image and what are their parts?
- Run Loopy Belief Propagation on the factor graph
 - Compute (approximate) posterior quantities, $\hat{p}(\cdot||mage)$

• In general: exponential time. Our case: linear time.

The Probabilistic Scene Grammar Framework

Learning: Approximate EM algorithm

- Goal: Estimate model parameters
 - Rule probabilities
 - Geometric relationships
 - Leaky-or parameter
- Maximization-step: sums involving posterior quantities
- Exact posterior quantities are intractable to compute
- Expectation-step: use approximate posteriors computed by Loopy Belief Propagation

Learning: Approximate EM algorithm

This talk

- Motivation for a general scene understanding framework
- Background/related work
- PSG
 Representation for general scene understanding tasks
 Efficient approximate inference algorithm
 Learning algorithm to estimate model parameters
 - - Experimental evaluation
 - **Extensions** for larger/more complex tasks
 - **Directions** for future research
This talk

- Motivation for a general scene understanding framework
- Background/related work
- **Representation** for general scene understanding tasks
- Efficient approximate inference algorithm
- Learning algorithm to estimate model parameters
- Experimental evaluation
 - Extensions for larger/more complex tasks
 - **Directions** for future research

PSG framework is competitive with some specialized frameworks

Application: contour detection

Application: contour detection

- Dataset:
 - Ground truth: human-drawn object boundary contours from Berkeley Segmentation Dataset [1]
 - B(x,y): Binary value of whether this pixel belongs to a contour
 - D(x,y): Pixel intensity
 - Data-model: $D(x,y) \sim N(\mu_{B(x,y)}, \sigma)$

[1] Arbelaez, Maire, Fowlkes, Malik. "Contour Detection and hierarchical image segmentation", PAMI 2011.

Application: contour detection

- Model:
 - Simple grammar model (next slides)
 - Factor graph contains \sim 50M edges
- Training:
 - Model parameters estimated using approximate EM algorithm
 - 200 train, 200 test

Inferred contours

Contour detection: Comparison

Context is important!

PSG framework competitive with Field-of-Patterns (FOP)

1-level FOP and 4-level FOP from: "Multiscale Field of Patterns", Felzenszwalb, Oberlin. NIPS 2014.

Application: binary image segmentation

Application: binary image segmentation

- Dataset:
 - Ground truth: binary leaf masks [1]
 - B(x,y): Binary value of whether this pixel belongs to a leaf
 - D(x,y): Pixel intensity
 - Data-model: $D(x,y) \sim N(\mu_{B(x,y)}, \sigma)$

[1] Soderkvist. "Computer vision classification of leaves from Swedish trees", Master's thesis 2011.

"Grow" a foreground. Red/black pixels are part of foreground.

Choose a pixel to be part of the foreground. Colour it red.

Choose a pixel to be part of the foreground. Colour it red.

Application: binary image segmentation

- Models:
 - Simple segmentation grammar (previous slides)
 - More complex segmentation grammar
- Training:
 - Model parameters estimated using approximate EM algorithm
 - 50 train, 25 test

Ground truth

Image data

Simple grammar

Complex

grammar

Binary image segmentation: Comparison

Context is important!

Complex segmentation grammar competitive with Field-of-Patterns (FOP)

1-level FOP and 4-level FOP from: "Multiscale Field of Patterns", Felzenszwalb, Oberlin. NIPS 2014.

Application: Face localization

Application: Face localization

Face localization: Single-face Dataset

- Labelled Faces in the Wild [1]
- Manually annotated 300 images with bounding box information for face, left eye, right eye, nose, mouth
- 200 training, 100 test

[1] Huang et al., "Labeled faces in the wild: A database for studying face recognition in unconstrained environments.", Technical Report 07-49, University of Massachusetts, Amherst, October 2007.
PSG Face Grammar

- Symbols: Face (F), Left eye (L), Right eye (R), Nose (N), Mouth (M)
- Pose space: (x,y,scale)
- Mechanism to handle help suppress false positives
- Geometric model learned from labelled data
- Data-model: calibrated HOG filter scores.
- Factor graph has ~3M edges

Face localization: Baselines

•HOG Filter scores: calibrated HOG filter scores only

- "Pictorial Structures for object recognition", IJCV 2005
 - Fast, exact inference
 - •Assumes 1 object of each type per scene

Ground truth

HOG Filters

Pictorial Structures

PSG Face Grammar

Face Localization: Performance comparison

Model	FACE	LEFT-EYE	RIGHT-EYE	NOSE	MOUTH	Average
HOG Filters	1.00	0.76	0.65	0.96	0.60	0.80
Pictorial Structures	1.00	0.97	0.93	0.98	0.90	0.96
PSG Face Grammar	1.00	0.98	0.92	0.98	0.92	0.96

Area under the precision-recall curve

Face localization: Family Portraits Dataset

- Dataset collected from the Internet
- Manually annotated 40 images with bounding box information
- Average of 5.9 faces per image
- Similar as trained model from LFW, but with more scales
- Use all 40 images for testing

Ground truth

Pictorial Structures

PSG Face Grammar

Face Localization: Performance Comparison

Model	FACE	LEFT-EYE	RIGHT-EYE	NOSE	MOUTH	Average
HOG Filters	0.95	0.50	0.48	0.90	0.32	0.63
Pictorial Structures	0.97	0.78	0.69	0.96	0.73	0.82
PSG Face Grammar	0.97	0.81	0.81	0.96	0.80	0.87

Area under the precision-recall curve

This talk

- Motivation for a general scene understanding framework
- Background/related work
- **Representation** for general scene understanding tasks
- Efficient approximate inference algorithm
- Learning algorithm to estimate model parameters
- Experimental evaluation
 - Extensions for larger/more complex tasks
 - **Directions** for future research

This talk

- Motivation for a general scene understanding framework
- Background/related work
- **Representation** for general scene understanding tasks
- Efficient approximate inference algorithm
- Learning algorithm to estimate model parameters
- Experimental evaluation
- Extensions for larger/more complex tasks
 - **Directions** for future research

Scaling up

• Bigger images! More objects! Larger grammars!

- Most edges are inter-object
- Example: Eye of a **particular** face

- Most edges are inter-object
- Example: Eye of a **particular** face
- (15 x 15) Size of image region

- Most edges are inter-object
- Example: Eye of a **particular** face

- Most edges are inter-object
- Example: Eye of a **particular** face

- Most edges are inter-object
- Example: Eye of a **particular** face

- Most edges are inter-object
- Example: Eye of a **particular** face

- Most edges are inter-object
- Example: Eye of a **particular** face

This is for a **single** face, and a **single** eye! Key issue: Size of distribution's support

Reducing the number of factor graph edges

- Reduce total support of probability distributions → Reduce # of factor graph edges
- Approximate N-D distribution as N one-dimensional distributions
- Decompose 1-D Uniform distribution into a set of Categorical distributions

Approximating an N-D distribution

Where to put eye? 1 of 25 choice

x-coordinate of eye? 1 of 5 choice

y-coordinate of eye? 1 of 5 choice

Cost: 25 edges

Cost: 10 edges

Approximating an N-D distribution

Original distribution

Approximated distribution

Decomposing a Uniform distribution

Decomposing a Uniform distribution

- Decomposition can be phrased as a series of convolutions
- Find N and p_i 's such that f=p and $\sum |p_i|_0$ is minimized.
- Minimum value of $\sum |p_i|_0 = \text{sum of prime factorization of } |f|_0$
- Construction algorithm for p_i's in thesis

Decomposing a Uniform distribution on set {0,...,99}

Applying edge reductions

Rule	Spatial distribution	Size of region	625 adaac	
Face→Nose	Uniform	[25,25]	ozs euges	
	Ļ			
Rule	Spatial distribution	Size of region		
Face→Nose-Y	Uniform	[1,25]	50 edges	
Nose-Y→Nose	Uniform	[25,1]		
	Ļ			
Rule	Spatial distribution	Size of region		
Face→Nose-Y1	Uniform	[1,5]		
Nose-Y1 \rightarrow Nose-Y	Uniform	[1,5]	20 odgos	
Nose-Y→Nose-Y2	Uniform	[5,1]	20 Euges	

This talk

- Motivation for a general scene understanding framework
- Background/related work
- **Representation** for general scene understanding tasks
- Efficient approximate inference algorithm
- Learning algorithm to estimate model parameters
- Experimental evaluation
- Extensions for larger/more complex tasks
 - **Directions** for future research

This talk

- Motivation for a general scene understanding framework
- Background/related work
- **Representation** for general scene understanding tasks
- Efficient approximate inference algorithm
- Learning algorithm to estimate model parameters
- Experimental evaluation
- Extensions for larger/more complex tasks
- → **Directions** for future research

Directions for Future Research

• More scene understanding tasks

• Integration with Deep Learning

• Grammar learning

This talk

- Motivation for a general scene understanding framework
- Background/related work
- **Representation** for general scene understanding tasks
- Efficient approximate inference algorithm
- Learning algorithm to estimate model parameters
- Experimental evaluation
- Extensions for larger/more complex tasks
- **Directions** for future research

Thanks!

Backup slides start

Face localization without a face data model

PSG Face Grammar

Faceless Grammar

Model	FACE	LEFT-EYE	RIGHT-EYE	NOSE	MOUTH	Average
PSG Face Grammar	0.97	0.81	0.81	0.96	0.80	0.87
Faceless Grammar	0.93	0.78	0.80	0.95	0.76	0.84

Family Portraits: Area under the precision-recall curve

Face localization: 0-1 Face Dataset

- Labelled Faces in the Wild [1] + images from VOC2012[2] without faces
- 200 training, 200 test
- 100 test image have one face, 100 images have no faces.

[1] Huang et al., "Labeled faces in the wild: A database for studying face recognition in unconstrained environments.", Technical Report 07-49, University of Massachusetts, Amherst, October 2007.

[2] Everingham, et al., "The PASCAL Visual Object Classes Challenge 2012 {(VOC2012)} Results", 2012.

Face localization: 0-1 Face Dataset

Model	Face	Left eye	Right eye	Nose	Mouth	Average
Pictorial Structures	0.86	0.94	0.86	0.81	0.84	0.86
PSG Face Grammar	1.00	0.98	0.95	0.99	0.93	0.97

Area under the precision-recall curve for the 0-1 Face Dataset

Model	Face	Left eye	Right eye	Nose	Mouth	Average
Pictorial Structures	1.00	0.97	0.93	0.98	0.90	0.96
PSG Face Grammar	1.00	0.98	0.92	0.98	0.92	0.96

Area under the precision-recall curve for the Single-Face Dataset

Decomposing a Uniform distribution with prime support

Search over partitions. Dynamic programming?